EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009

19
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc

description

EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc. Second Assignment. Please print and bring to class a signed copy of the document appearing at http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf. - PowerPoint PPT Presentation

Transcript of EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009

Page 1: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

EE 5340Semiconductor Device TheoryLecture 7 - Fall 2009

Professor Ronald L. [email protected]

http://www.uta.edu/ronc

Page 2: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15

Second Assignment• Please print and bring to class a

signed copy of the document appearing at

http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

2

Page 3: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 3

Diffused or ImplantedIC Resistor (Fig 2.451)

Page 4: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 4

An IC Resistor with L = 8W (M&K)1

Page 5: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 5

Typical IC dopingprofile (M&K Fig. 2.441)

Page 6: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 6

Mobilities**

Page 7: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 7

IC Resistor Conductance

g1R dxxnxqg

dxxnxqLWG

dxLWxnxqdG

sx

0n

x

0n

n

j

j

,

Page 8: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 8

An IC Resistor with Ns = 8, R = 8Rs (M&K)1

Page 9: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 9

The effect of lateral diffusion (M&K1)

Page 10: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 10

A serpentine patternIC Resistor (M&K1)

R = NSRS + 0.65NCRS

note: RC = 0.65RS

Page 11: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 11

• The equilibrium carrier concentration ahd the Fermi energy are related as

• The potential = (Ef-Efi)/q• If not in equilibrium, a quasi-Fermi

level (imref) is used

Fermi Energy

kT

EEnn and , n

nkTEE fif

i

o

i

ofif expln

Page 12: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 12

Electron quasi-Fermi Energy (n = no + n)

kTEE

nnn

:is density carrier the and

, nnnkTEE

:defined is (Imref) level Fermi-Quasi The

fifn

i

o

i

ofifn

exp

ln

Page 13: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 13

Hole quasi-Fermi Energy (p = po + p)

kTEE

npp

:is density carrier the and

, nppkTEE

:as defined is Imref the holes, For

fpfi

i

o

i

ofpfi

exp

ln

Page 14: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 14

Ex-field when Ef - Efi not constant• Since = (Ef - Efi)/q = Vt ln(no/ni)• When Ef - Efi = is position dependent,• Ex = -d/dx = -[d(Ef-Efi)/dx] = - Vt

d[ln(no/ni)]/dx• If non-equilibrium n = (Efn-Efi)/q = Vt

ln(n/ni), etc• Exn = -[dn/dx] = -Vt d[ln(n/ni)]/dx

Page 15: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 15

Si and Al and model (approx. to scale)

qm,Al ~ 4.1 eV

Eo

EF

mEFp

EFn

Eo

Ec

Ev

EFi

qs,n

qsi~ 4.05 eV

Eo

Ec

Ev

EFi

qs,p

metal n-type s/c p-type s/c

qsi~ 4.05 eV

Page 16: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 16

Making contact be-tween metal & s/c• Equate the EF in the

metal and s/c materials far from the junction

• Eo(the free level), must be continuous across the jctn.

N.B.: q = 4.05 eV (Si),and q = qEc - EF

Eo

EcEF EFiEv

q (electron affinity)

qF

q(work function)

Page 17: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 17

Equilibrium Boundary Conditions w/ contact• No discontinuity in the free level, Eo at

the metal/semiconductor interface.• EF,metal = EF,semiconductor to bring the

electron populations in the metal and semiconductor to thermal equilibrium.

• Eo - EC = qsemiconductor in all of the s/c.• Eo - EF,metal = qmetal throughout metal.

Page 18: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 16 18

Ideal metal to n-typebarrier diode (m>s,Va=0)

EFn

Eo

Ec

Ev

EFi

qs,n

qs

n-type s/c

qm

EF

m

metal

qBnqi

q’n

No disc in Eo

Ex=0 in metal ==> Eoflat

Bn=m- s = elec mtl to s/c barr

i=Bn-n= m-s elect s/c to mtl barr Depl reg

Page 19: EE 5340 Semiconductor Device Theory Lecture 7 -  Fall 2009

L 07 Sept 15 19

References1Device Electronics for Integrated Circuits,

2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the model.

2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

3Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997.