Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.

67
Digital Integrated Circuits © Prentice Hall 1995 Devices Devices Jan M. Rabaey The Devices

Transcript of Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Jan M. Rabaey

The Devices

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Goal of this chapter

• Present intuitive understanding of device operation

• Introduction of basic device equations

• Introduction of models for manual analysis

• Introduction of models for SPICE simulation

• Analysis of secondary and deep-sub-microneffects

• Future trends

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Diode

n

p

p

n

B A SiO2Al

A

B

Al

A

B

Cross-section of pn-junction in an IC process

One-dimensionalrepresentation diode symbol

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Depletion Region

hole diffusionelectron diffusion

p n

hole driftelectron drift

ChargeDensity

Distancex+

-

ElectricalxField

x

PotentialV

W2-W1

(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostaticpotential.

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Diode Current

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Forward Bias

x

pn0

np0

-W1 W20

p n(W

2)

n-regionp-region

Lp

diffusion

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Reverse Bias

x

pn0

np0

-W1 W20n-regionp-region

diffusion

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Diode Types

x

x

pn0

pn0

Wn

pn(x)

pn(x)

Wn

Short-base Diode

Long-base Diode

(standard in semiconductordevices)

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Models for Manual Analysis

VD

ID = IS(eVD/T – 1)+

VD

+

+

–VDon

ID

(a) Ideal diode model (b) First-order diode model

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Junction Capacitance

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Diffusion Capacitance

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Diode Switching Time

Vsrc

t = 0

V1

V2

VD

Rsrc

t = T

ID

Time

VD

ON OFF ON

Space chargeExcess charge

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Secondary Effects

–25.0 –15.0 –5.0 5.0

VD (V)

–0.1

I D (A

)0.1

0

0

Avalanche Breakdown

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Diode Model

ID

RS

CD

+

-

VD

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE Parameters

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The MOS Transistor

n+n+

p-substrate

Field-Oxyde

(SiO2)

p+ stopper

Polysilicon

Gate Oxyde

DrainSource

Gate

Bulk Contact

CROSS-SECTION of NMOS Transistor

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Cross-Section of CMOS Technology

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

MOS transistors Types and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Threshold Voltage: Concept

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Threshold Voltage

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Current-Voltage Relations

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Current-Voltage Relations

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Transistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

I-V Relation

0.0 1.0 2.0 3.0 4.0 5.0

VDS (V)

1

2

I D (

mA

)

0.0 1.0 2.0 3.0VGS (V)

0.010

0.020

÷ I

D

VT

SubthresholdCurrent

Triode Saturation

VGS = 5V

VGS = 3V

VGS = 4V

VGS = 2V

VGS = 1V

(a) ID as a function of VDS (b) ID as a function of VGS

(for VDS = 5V).

Sq

ua

re D

ep

end

en

ce

VDS = VGS-VT

NMOS Enhancement Transistor: W = 100 m, L = 20 m

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

A model for manual analysis

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Dynamic Behavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Gate Capacitance

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Average Gate Capacitance

Most important regions in digital design: saturation and cut-off

Different distributions of gate capacitance for varying

operating conditions

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Diffusion Capacitance

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Junction Capacitance

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Linearizing the Junction Capacitance

Replace non-linear capacitance bylarge-signal equivalent linear capacitance

which displaces equal charge over voltage swing of interest

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Sub-Micron MOS Transistor

• Threshold Variations

• Parasitic Resistances

• Velocity Sauturation and Mobility Degradation

• Subthreshold Conduction

• Latchup

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Threshold Variations

VT

L

Long-channel threshold Low VDS threshold

Threshold as a function of the length (for low VDS)

Drain-induced barrier lowering (for low L)

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Parasitic Resistances

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Velocity Saturation (1)

EV/m)Esat

n (c

m/s

ec)

sat = 107

Constant mobility (slope = )

constant velocity

EtV/m)

n (c

m2 /V

s)

n0

(b) Mobility degradation(a) Velocity saturation

0

700

250

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Velocity Saturation (2)

VDS (V)

I D (

mA

)

Lin

ea

r D

ep

en

de

nc

e

VGS = 5

VGS = 4

VGS = 3

VGS = 2

VGS = 1

0.0 1.0 2.0 3.0 4.0 5.0

0.5

1.0

1.5

(a) ID as a function of VDS (b) ID as a function of VGS(for VDS = 5 V).

0.0 1.0 2.0 3.0VGS (V)

0

0.5

I D (

mA

)

Linear Dependence on VGS

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Sub-Threshold Conduction

0.0 1.0 2.0 3.0VGS (V)

10 12

10 10

10 8

10 6

10 4

10 2

ln(I

D)

(A)

Subthreshold exponential region

Linear region

VT

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Latchup

(a) Origin of latchup (b) Equivalent circuit

VDD

Rpsubs

Rnwell p-source

n-source

n+ n+p+ p+ p+ n+

p-substrateRpsubs

Rnwell

VDD

n-well

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE MODELS

Level 1: Long Channel Equations - Very Simple

Level 2: Physical Model - Includes VelocitySaturation and Threshold Variations

Level 3: Semi-Emperical - Based on curve fittingto measured devices

Level 4 (BSIM): Emperical - Simple and Popular

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

MAIN MOS SPICE PARAMETERS

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE Transistors Parameters

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Fitting level-1 model for manual analysis

VGS = 5 V

VDS = 5 V VDS

ID

Long-channel

approximation

Short-channelI-V curve

Region of

matching

Select k’ and such that best matching is obtained @ Vgs= Vds = VDD

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Technology Evolution

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Bipolar Transistor

n-epitaxy

p-substrate

n+ buried layer

p+

isolation

n+ p+

pn+

E B C

p+

E C

B

n+ p n

(a) Cross-sectional view.

(b) Idealized transistor structure.

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Schematic Symbols and Sign Conventions

C

E

B

IB

IE

IC+

+

+

VBC

VBE

VCE

C

E

B

IB

IE

IC+

+

+

VBC

VBE

VCE

(a) npn (b) pnp

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Operations Modes

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Forward Active Operation

x

E B C

WB

Carrier Concentration

DepletionRegions

0 W

pe0

pc0

nb0

nb(0)

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Current Components

x

E B C

ICIE

IB

1

2 3

electrons

holes

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Reverse Active

x

E B C

WB

Carrier Concentration

0 W

pe0nb0

nb(0)

pc0

nb(W)

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Saturation Mode

x

E B C

WB

Carrier Concentration

0 W

pe0

nb0

nb(0)

pc0QS

QAnb(W)

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Cutoff

x

E B C

WB

Carrier Concentration

0 W

pe0

nb0nb(0)pc0

nb(W)

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Bipolar Transistor Operation

0.0 2.0VCE (V)

0

5

10

15

I C(m

A)

-3.0 -1.0

VCE (V)

-0.5

I C (

mA

)

IB=100 A

IB=75 A

IB=50 A

IB=25 A

0

-0.25

IB=25 A

IB=50 A

IB=75 A

IB=100 A

Reverse Operation

Forward Operation

Active

Saturation

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

A Model for Manual Analysis

E

CB

FIB

IB

+

VBE

IB = IS(eVBE/T – 1)E

CB

FIB

IB

+–VBE(on)

(a) Forward-active (b) Forward-active (simplified)

E

CB

IB

+–VBE(sat)

(c) Forward-saturation

+– VCE(sat)

IC < FIB

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Capacitive Model for Bipolar Transistor

C

E

B

QF

QR

Cbe

Cbc

S

Ccs

collector-substratejunction capacitance

base-emitterbase-collector

junction capacitances

base charge

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Junction Capacitances

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Base Charge - Diffusion Capacitance

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Bipolar Transistors - Secondary Effects

• Early Voltage

• Parasitic Resistances

• Beta Variations

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Early Voltage

ForwardActive

Saturation

VA

VCE

IC

VBE3

VBE2

VBE1

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Parasitic Resistance

n-epitaxy

p-substrate

n+ buried layer

p+

isolation

n+ p+p n+

E B C

p+rC1

rC3

rB

rC2

rE

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Beta Variations

VBE (linear)

ln (I)

IC

IB

F

High Level Injection

Recombination

IKF

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE models for Bipolar

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Main Bipolar Transistor SPICE Models

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Spice Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE Transistor Parameters

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Process Variations

Devices parameters vary between runs and even on the same die!

Variations in the process parameters, such as impurity concentration den-sities, oxide thicknesses, and diffusion depths. These are caused by non-uniform conditions during the deposition and/or the diffusion of theimpurities. This introduces variations in the sheet resistances and transis-tor parameters such as the threshold voltage.

Variations in the dimensions of the devices, mainly resulting from thelimited resolution of the photolithographic process. This causes (W/L)variations in MOS transistors and mismatches in the emitter areas ofbipolar devices.

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Impact of Device Variations

1.10 1.20 1.30 1.40 1.50 1.60

Leff (in mm)

1.50

1.70

1.90

2.10

De

lay

(nse

c)

–0.90 –0.80 –0.70 –0.60 –0.50

VTp (V)

1.50

1.70

1.90

2.10

De

lay

(nse

c)

Delay of Adder circuit as a function of variations in L and VT