Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19....

21

Transcript of Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19....

Page 1: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Dark Matter

In Minimal Supersymmetric

Inverse-Seesaw Models

YANG LIU

Universität Würzburg

YANG LIU Universität Würzburg 1/ 19

Page 2: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

arXiv:1909.11686

Prof. Werner Porod from Universität Würzburg&

Prof. Joel Jones-Pérez from Ponticia UniversidadCatolica del Peru

YANG LIU Universität Würzburg 2/ 19

Page 3: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Motivation

Dark matter (DM) need to be explained

Supersymmetry provides candidates

lightest νR (keV range), νR (superpartner of νR)

YANG LIU Universität Würzburg 3/ 19

Page 4: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Motivation

Dark matter (DM) need to be explained

Supersymmetry provides candidates

lightest νR (keV range), νR (superpartner of νR)

YANG LIU Universität Würzburg 3/ 19

Page 5: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Motivation

Dark matter (DM) need to be explained

Supersymmetry provides candidates

lightest νR (keV range), νR (superpartner of νR)

YANG LIU Universität Würzburg 3/ 19

Page 6: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Minimal Inverse-Seesaw Model: Structure

Superpotential

W =WMSSM +1

2(MR)ij νR,iνR,j + (Yν)ijLi · HuνR,j (1)

Soft-breaking terms

The corresponding soft breaking terms are

Vsoft = VsoftMSSM+(m2νR)ij ν

∗R,iνR,j +

1

2(Bν)ij νR,iνR,j + (T )ijLi ·HuνR,j .

(2)

YANG LIU Universität Würzburg 4/ 19

Page 7: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Parameterization(Casas-Ibarra-like):arXiv:1505.05880With this parametrization, the neutrino Yukawa coupling is:

Yν = −i√

2

vuU∗PMNSH

∗m12

l (mlR† +RTMh)M

− 12

h H.

The neutrino mixing matrix U is a function of ml = diag(m1,m2,m3),Mh = diag(M4,M5,M6), UPMNS matrix and matrix H and R. Where Hs are:

H = (I + m1/2l R†M−1

h Rm−1/2l )−1/2 H = (I + M

1/2h Rm−1

l R†M−1/2h )−1/2,

and the matrix R is parametrized as:

R =

1c56 s56

−s56 c56

c46 s46

1−s46 c46

c45 s45

−s45 c45

1

where cij = cos θ′ij and θ

′ij are the mixing angles in this 3× 3 mixing

matrix, θ′ij = ρij + iγij .

Upshot

γ change the magnitude of Yν exponentially: minimal inverse-seesaw

YANG LIU Universität Würzburg 5/ 19

Page 8: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Minimal Inverse-Seesaw Model: Decay Processes

Three-Body Decay

νj

νi

νl

νk

pk1

Z

k2k3

νj

νi

νl

νk

pk1

H/A

k2k3

Radiative Decay

νj

νi

γ

W+

l

l

νj

νi

γ

l

χ+

χ+

νj

νi

γ

H+

l

l

YANG LIU Universität Würzburg 6/ 19

Page 9: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Numerical Results: ν4 (keV)Our Results:

Γ ≈ 10−47GeV,

BR(ν4 → νγ) ' 10%

sin2 2θ =∑3i |Ui,4|2,

Γ ∝ sin2(2θ)(mν4keV

)5s−1

Mν4(keV) min. sin2 2θ7 3.38462×10−9

20 1.18462×10−9

30 7.89744×10−10

40 5.92308×10−10

50 4.73847×10−10

NuSTAR Results(arXiv:1609.00667):

Condition: neutrinos are produced by Shi-Fuller mechanism.

YANG LIU Universität Würzburg 7/ 19

Page 10: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Numerical Results: ν

ν

ν f

f

h

Calculated with SPheno and micrOMEGAS

Variation

Variable Values Magn. of Ωh2

Yν 10−12 107

M2ν 8000( GeV)2 102

M2ν , Tν M2

ν = 8000( GeV)2, Tν = 100 10−1

M2ν , Tν , Yν,1 M2

ν = 6000( GeV)2, Tν = 100, Yν,1 = 10−5 10−2

Tν = AνYν = 100, Aν = 107 → charge breaking minimum

YANG LIU Universität Würzburg 8/ 19

Page 11: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

BLSSM (B-L Supersymmetric Standard Model) : Structure

Gauge Group

U(1)Y × SU(3)c × SU(2)L × U(1)B−L

Structure

MSSM particles + η, η

W =WMSSM + Y ijν LiHuνj − µ′η ˆη + Y ijx νiηνj ,

LSB =LMSSM −m2η|η|2 −m2

η|η|2 + ...(3)

Idea:

Typical 2 light H: 1 MSSM, 1 singlet

Build up Higgs funnel with one of the light Higgs which is mainlyη-like: Mh ' 2Mν , controlled by tanβ′ =

vηvη

This will exhaust ν DM and produce ν4

YANG LIU Universität Würzburg 9/ 19

Page 12: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Varied Yx(1, 1)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

10-9

10-8

10-7

10-6

10-5

10-4

10-3

0

20

40

60

80

100

Ω h

2

% i

n t

ota

l

YX(1,1)

Varied with YX(1,1), tanβ’=0.97

Ωh2

ν4ν5ν6

gd3e3u2A

WmWph1Z

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

10-9

10-8

10-7

10-6

10-5

10-4

10-3

0

20

40

60

80

100

YANG LIU Universität Würzburg 10/ 19

Page 13: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Varied tan β′, Yx(1, 1) = 10−5

10-5

10-4

10-3

10-2

10-1

100

101

102

103

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

Ω h

2

tanβ'

Ωh2

10-5

10-4

10-3

10-2

10-1

100

101

102

103

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

YANG LIU Universität Würzburg 11/ 19

Page 14: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Varied Mass Ratio

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

1.5 2 2.5 3 3.5 4 0

50

100

150

200Ω

h2

Mas

s (G

eV)

mh'/mν~ 1P

Ω h2 mν~ 1P mh'/2 mh/2

YANG LIU Universität Würzburg 12/ 19

Page 15: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Conclusion

Minimal Inverse-Seesaw model:

keV range neutrino DM, excluded if νR are produced throughShi-Fuller mechanism

excluded for ν DM if ν4 in keV range.

BLSSM

Exists regions where ν DM allowed : observed relic density, colliderexperiments.

YANG LIU Universität Würzburg 13/ 19

Page 16: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

THANK YOU!

For your attention.

YANG LIU Universität Würzburg 14/ 19

Page 17: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

BACK UP

YANG LIU Universität Würzburg 15/ 19

Page 18: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

MSSM (minimal supersymmetric standard model)

Superpotential

WMSSM = µHu · Hd − ˆUYuQ · Hu − ˆDYdQ · Hd − ˆEYeL · Hd. (4)

Soft-breaking Terms

LSOFT =− 1

2(M3g

α · gα +M2Wα · Wα +M1B · B + h.c.)

−m2Qij

Q†i · Qj −m2˜Uij

˜U†i˜Uj −m2

˜Dij

˜D†i˜Dj

−m2˜Lij

˜L†i · ˜Lj −m2˜Eij

˜E†i˜Ej

−m2HuH

†u ·Hu −m2

HdH†d ·Hd − (bHu ·Hd + h.c.)

− aiju ˜UiQj ·Hu + aijd˜DiQj ·Hd + aije

˜EiLj ·Hd + h.c.

(5)

YANG LIU Universität Würzburg 16/ 19

Page 19: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Approximations for the Integrals1

Loop integrals I, J,K, I2 appear in the decay width, and the originalforms can have numerical problems when setting the light neutrino massto 0.

I =1

m2j −m2

i

∫ 1

0

dx

1− xlog

(m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2ix(1− x)

)(6)

J =1

m2j −m2

i

∫ 1

0

dx

xlog

(m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2ix(1− x)

)(7)

I2 =1

m2j −m2

i

∫ 1

0

dx log

(m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2ix(1− x)

)(8)

K =−1

m2j −m2

i

∫ 1

0

dx

[1 +

m2x+M2(1− x)−m2jx(1− x)

x(1− x)(m2j −m2

i )

× log

(m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2ix(1− x)

)].

(9)

m: loop fermion mass, M : loop boson mass, mj : sterile neutrino mass,mi: light neutrino mass.

1H.E. Haber and D. Wyler. Radiative neutralino decay. Nuclear Physics,

B323:267310, 1989.

YANG LIU Universität Würzburg 17/ 19

Page 20: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

Approximations

Basic idea

Mj ,m << M , expand the integrals with x =M2j

M2 , y = m2

M2 to the secondorder around 0.

For example:

I =1

36M2[2x2(93y2 + 42y + 11)

+ 6(2x2(18y2 + 6y + 1) + 3x(8y2 + 4y + 1)

+ 6(2y2 + 2y + 1)) log(y) + 9x(8y2 + 6y + 1) + 36]

(10)

YANG LIU Universität Würzburg 18/ 19

Page 21: Dark Matter Inverse-Seesaw Models · 2019. 12. 3. · ANGY LIU Universität Würzburg 5/ 19. MotivationModels and ResultsConclusion Minimal Inverse-Seesaw Model: Decay Processes Three-Body

Motivation Models and Results Conclusion

BLSSM: Method

Paramters

tanβ′ =vηvη: controls the Higgs mass and sneutrino masses;

Yx: Yukawa coupling of the singlet Higgs;

Induced variables: M2ν , Bµ′ = m2

A0sin 2β′

2 ,Tx(1, 1) = Ax(1, 1)Yx(1, 1)

Idea

set the mass dierence: mνS1−mνP1

= 0.5 GeV

vary one variable at a time, solve out the induced varibles

calculate with SPheno-4.0.3 and micrOMEGAS-4.3.5

YANG LIU Universität Würzburg 19/ 19