CoursM2-USTH Eco-Optimisation BEN AHMED 2013 Part3

download CoursM2-USTH Eco-Optimisation BEN AHMED 2013 Part3

If you can't read please download the document

description

CoursM2-USTH Eco-Optimisation BEN AHMED 2013 Part3

Transcript of CoursM2-USTH Eco-Optimisation BEN AHMED 2013 Part3

  • 64

    Eco-design and eco-optimization methodmethod

    preamble:There exist three levels (from least intrusive to most intrusive)eco-qualification: ACV system defineseco-optimization: design of a system according to the LCA criteriaEco-design: design and simulation of a system of LCA criteria

    by including parameters related to manufacturing (realization process / manufacturingassembly, ...) and deconstruction.

  • Classical Optimization65

    c

    vue de dessus

    The problem :

    - Identify the variables

    a

    3a

    a

    b.a

    a

    n1n2

    2a

    vue de face - Identify the variables- Make two objective functions- Formulate constraints

    Data: U1=230V, U2=9V, f=50HzS=230 VA in steady state+ materials data (physical characteristics)

  • Formalism 66

    4 variables

    Formalisation

    2 objectifs To minimizeTo minimize

    3 constraints

  • Results 67

    0.1

    0.2

    0.3

    0.4

    0.5Config. qui minimise lObjectif N1 (dim. en mtre)

    0.1

    0.2

    0.3

    0.4

    0.5Exemple de Config. compromis (dim. en mtre)

    1 pt of operating

    8 10 12 14 16 180

    5

    10

    15

    20Front de Pareto

    Pertes totales (W)

    Mas

    se t

    otal

    e (k

    g)

    0 0.1 0.2 0.3 0.4 0.50

    0.1

    0 0.1 0.2 0.3 0.4 0.50

    0.1

    0.2

    0.3

    0.4

    0.5Config. qui minimise lObjectif N2 (dim. en mtre)

    0 0.1 0.2 0.3 0.4 0.50

    0.1

  • Results 68

    5

    10

    15

    20

    Mas

    se t

    otal

    e (k

    g)

    Front de Pareto

    8 10 12 14 16 180

    20

    40

    60

    80

    100

    120

    Pertes totales (W)

    Tem

    pra

    ture

    s cu

    ivre

    =o

    et f

    er=

    +

    Tempratures

    2Induction maximale CM (T)

    8 9 10 11 12 13 14 15 16 17 180

    Pertes totales (W)

    8 10 12 14 16 180

    0.2

    0.4

    0.6

    0.8

    Pertes totales (W)

    para

    mt

    res

    a=o,

    b=

    *, c

    =+

    Variables optimises (m)

    8 10 12 14 16 180

    100

    200

    300

    400

    500

    Pertes totales (W)Nom

    bre

    de s

    pire

    s pr

    imai

    re=

    o se

    cond

    aire

    =+ Nb spires primaire

    b~0.5

    c

    a

    n1

    n2

    8 10 12 14 16 180

    0.5

    1

    1.5

    Pertes totales (W)

    Bm

    en

    T

  • Second example : PMSM69

    we replace the slotted stator armature by a fictitious "smooth" equivalent generatingeven distribution of the tangential magnetic field:

    ( ) ( )tpcosAt,A LeffL w-g=g 2

    e

    effLeff R

    I.NqA

    p=

    2

    2

    Aimants alterns

    The average tangential magnetic force density is (TM):

    The average electromagnetic torque:

    2fMax

    LeffnLnttB

    .AB.AB.H ===s

    ( ) eefMaxLeffem RLR22

    B.Ac p= rotorfMaxLeffem VB.A2c =

    w=W= petaimantsnbp:quetelest)t(Asi L 2

    Volume of rotor

    Equivalent modelEquivalent model

  • Formalime

    70

    7 variables

    2 objectifs to minimize

    5 constraints

  • Rsultats 71 1 pt de fonct.

  • Eco-optimization in EI72

    The main costs are considered: GER, GWP and raw materials

  • Life cycle energie (Eacv)73

  • PRG (GWP) (q. CO2)74

    GWPprod

    GWPmat

  • Approach75

    Donnes (matriaux, cycle de fonctionnement, )

    Modle multi physique

    Performances et

    Paramtres de design

    ACV

    Optimisation Performances et contraintes physiques

    Impacts

    convergencenon

    Solutions optimales

  • Study cases76

    3 study cases:- Single phase transformer- Actuator automation (asynchrone)- Standalone PV system- Standalone PV system

    The first two are from the PhD thesis of VinentDebusschre (SATIE, 2009). The third case is the result of the PhD thesis of Yael Thiaux (SATIE, 2010)

  • Case 1 : transformer77

    Cf. Thse V. Debusschre (satie)

  • Data

    12V/230 V, 50 Hz Pnom=200 W

  • Results 79

    Cf. Thse V. Debusschre (satie)

  • Optimal Structures80

    Cf. Thse V. Debusschre (satie)

  • Influence of the operation time81

    Cf. Thse V. Debusschre (satie)

  • Sensitivity to the type of conductor82

    Cf. Thse V. Debusschre (satie)

  • Life cycle Efficiency83

    Classical efficiency (operating efficiency) Life Cycle efficiency

  • Case 2 : Induction motor84

    Cf. Thse V. Debusschre (satie)

  • Specifications85

    Cmax=0.1 Nm

    Torque imposed:

  • Modlization 86

  • Results (1/2)87

    Cf. Thse V. Debusschre (satie)

  • Results (2/2) 88

    Cf. Thse V. Debusschre (satie)

  • Case 3 : Standalone PV system89

    Cf. Thse Y. Thiaux (satie)

  • Model of consumption (load)90

    Cf. Thse Y. Thiaux (satie)

  • Models of other components91

    Cf. Thse Y. Thiaux (satie)

    MPPT converter

    Load side converterPV model

    Batterie model (Lead Acide type)

  • 92

    Optimization approach

    Two criteria :

    - Minimise the GER of system- Minimise the LLP service

    Cf. Thse Y. Thiaux (satie)

  • 93

    LLP Service criteria

    Cf. Thse Y. Thiaux (satie)

  • 94

    Cf. Thse Y. Thiaux (satie)

  • 95

    Cf. Thse Y. Thiaux (satie)

  • 96

    Results (1/3)

    Cf. Thse Y. Thiaux (satie)

  • 97

    Results (2/3)

    Cf. Thse Y. Thiaux (satie)

  • 98

    Results (3/3)

    Cf. Thse Y. Thiaux (satie)

  • Bibliographie (1/3)99

    ! " ##$ % & & ( ) ### (( & *+)) , - " ./- (( & * & (&( & 01& & !& 2& +)) ( * &03 & )1& 0!1& 2 %44

    && ( /! ( * & && *! 2& 2 2&& & ! ( * & ##$ ,(& ( ( & 5 ( ( 5 ( && ! 2&& 0 %444 ! 6 (( ### "7 8,9 ,! ( & & && & ( 1 (( ( %#: %44% "7 8,9 ,! ( & & && & ( 1 (( ( %#: %44% +8 ; ! & (( *)) ! 1 & && *! 2&

  • Bibliographie (2/3)100

    ; &S &S SSS& SC;SM0 C ;& NS0 (TT6666&6!T &S SS&& S5S*!S 1 S0 (TT666) ; S SSS. SS*!S S&S7 E&S,E&SS7& ESS*& S

  • Bibliographie (3/3)101

    ,S;.S.S