Chapter 4. The Intensity-Dependent Refractive...

28
Nonlinear Optics Lab. Hanyang Univ. Chapter 4. The Intensity-Dependent Refractive Index - Third order nonlinear effect - Mathematical description of the nonlinear refractive index - Physical processes that give rise to this effect Reference : R.W. Boyd, “Nonlinear Optics”, Academic Press, INC.

Transcript of Chapter 4. The Intensity-Dependent Refractive...

Nonlinear Optics Lab. Hanyang Univ.

Chapter 4. The Intensity-Dependent Refractive Index

- Third order nonlinear effect

- Mathematical description of the nonlinear refractive index

- Physical processes that give rise to this effect

Reference :

R.W. Boyd, “Nonlinear Optics”, Academic Press, INC.

Nonlinear Optics Lab. Hanyang Univ.

4.1 Description of the Intensity-Dependent Refractive Index

Refractive index of many materials can be described by

......~2

20 tEnnn

0n

2n

where, : weak-field refractive index

: 2nd order index of refraction

..)(~

cceEtE ti 2*2 )(2)()(2

~ EEEtE

2

20 2 Ennn : optical Kerr effect (3rd order nonlinear effect)

Nonlinear Optics Lab. Hanyang Univ.

Polarization :

EEEEP eff2)3()1( 3)(

In Gaussian units,effn 412

2)3()1(

22

20 12412 EEnn

2)3()1(42

2

2

20

2

0 124144 EEnEnnn

21)1(

0 41 n

0

)3(

2 3 nn

Nonlinear Optics Lab. Hanyang Univ.

Appendix A. Systems of Units in Nonlinear Optics (Gaussian units and MKS units)

1) Gaussian units ;

....~~~

)(~ 3)3(2)2()1( tEtEtEtP

2cm

bstatcoulom

cm

statvolt~~ EP

statvolt

cm~1

# )2(

E

2

2

2

)3(

statvolt

cm~1

#

E

essdimensionl# )1(

The units of nonlinear susceptibilities are

not usually stated explicitly ; rather one

simply states that the value is given in

“esu” (electrostatic units).

Nonlinear Optics Lab. Hanyang Univ.

2) MKS units ;

....~~~

)(~ 3)3(2)2()1(

0 tEtEtEtP

2

~

m

CP

m

VE ~

: MKS 1

....~~~

)(~ 3)3(2)2()1(

0 tEtEtEtP : MKS 2

essdimensionl)1( V

m

E

~

1)2( 2

2)3(

V

m

2

)2(

V

C

3

)3(

V

Cm

[C/V][F] F/m,1085.8# 12

0

In MKS 1,

In MKS 2, essdimensionl)1(

Nonlinear Optics Lab. Hanyang Univ.

3) Conversion among the systems

)1(41~~

4~~

)2( EPED

)1(

00 1~~~~

EPED

(Gaussian) E~ 103 (MKS) E

~ V 300statvolt 1 )1( 4

(Gaussian)

(MKS)(Gaussian)4(MKS) )1()1(

)3(

(Gaussian)103

41) (MKS )2(

4

)2(

(Gaussian)103

42) (MKS )2(

4

0)2(

(Gaussian))103(

41) (MKS )3(

24

)3(

(Gaussian))103(

42) (MKS )3(

24

0)3(

Nonlinear Optics Lab. Hanyang Univ.

Alternative way of defining the intensity-dependent refractive index

Innn 20

20 )(2

Ecn

I

(4.1.4) 2

20 )(2 Ennn

)3(

2

0

2

0

)3(

0

2

0

2

12344

cnncnn

cnn

?)3(

2 n

esu0395.0

esu1012

W

cm )3(

2

0

)3(7

2

0

22

2

ncnn

),:( esu12

101.9)3(

2

CS ,/1 2cmMWI ?n,58.10n

Wcm

esun

n

/103

109.158.1

0395.00395.0

214

12

2

)3(

2

0

2

8146

2 103103101 Inn

Example)

Nonlinear Optics Lab. Hanyang Univ.

Nonlinear Optics Lab. Hanyang Univ.

Physical processes producing the nonlinear change in the refractive index

1) Electronic polarization : Electronic charge redistribution

2) Molecular orientation : Molecular alignment due to the induced dipole

3) Electrostriction : Density change by optical field

4) Saturated absorption : Intensity-dependent absorption

5) Thermal effect : Temperature change due to the optical field

6) Photorefractive effect : Induced redistribution of electrons and holes

Refractive index change due to the local field inside the medium

Nonlinear Optics Lab. Hanyang Univ.

Nonlinear Optics Lab. Hanyang Univ.

4.2 Tensor Nature of the 3rd Susceptibility

rrrrF ~)~~(~~ 2

0 mbmres

Centrosymmetric media

Equation of motion :

mteb /)(~~)~~(~~2~ 2

0 Errrrrr

Solution :

cceEeEeEttititi

.)(~

321

321

E

n

ti

nneE

)(

Perturbation expansion method ;

...)(~)(~)(~)(~ )3(3)2(2)1( tttt rrrr

mte /)(~~~2~ )1(2

0

)1()1(Errr

0~~2~ )2(2

0

)2()2( rrr

0~~~~~2~ )1()1()1()3(2

0

)3()3( rrrrrr b

Nonlinear Optics Lab. Hanyang Univ.

3rd order polarization :

)()( )3()3(

qq Ne rP

jkl mnp

plnkmjpnmqijklqi EEE)(

)3()3( ),,,()( P

jkl

plnkmjpnmqijkl EEED ),,,()3(

where, D : Degeneracy factor

(The number of distinct permutations of the frequency m, n, p)

4th-rank tensor : 81 elements

Let’s consider the 3rd order susceptibility for the case of an isotropic material.

333322221111

332233112233221111332211

323231312121232313131212

322331132332211213311221

1221121211221111

21 nonzero

elements :and,

(Report)(Report)

Element with

even number

of index

Nonlinear Optics Lab. Hanyang Univ.

Expression for the nonlinear susceptibility in the compact form :

jkiljlikklijijkl 122112121122

Example) Third-harmonic generation : )3( ijkl

122112121122

)()3()3( 1122 jkiljlikklijijkl

Example) Intensity-dependent refractive index : )( ijkl

122112121122

jkiljlikklijijkl )()()()3( 12211122

Nonlinear Optics Lab. Hanyang Univ.

Nonlinear polarization for Intensity-dependent refractive index

jkl

lkjijkli EEE )(3)(P

EEEEP

iii EE 12211122 36)( EEEEEEP 12211122 36 in vector form

Defining the coefficients, A and B as

12211122 6,6 BA (Maker and Terhune’s notation)

EEEEEEP BA2

1

Nonlinear Optics Lab. Hanyang Univ.

In some purpose, it is useful to describe the nonlinear polarization by in terms of an

effective linear susceptibility,

j

jiji EP

ij as

jijiijij EEEEBA 2

1 EE

12211122 362

1 BAA

12216 BB

where,

Physical mechanisms ;

ictionelectrostr : 0,0

response electronict nonresonan : 2,1

norientatiomolecular : 3'/,6/

B'/A'B/A

B'/A'B/A

ABAB

Nonlinear Optics Lab. Hanyang Univ.

4.3 Nonresonant Electronic Nonlinearities

# The most fast response : s10/2 16

0

va [a0(Bohr radius)~0.5x10-8cm, v(electron velocity)~c/137]

Classical, Anharmonic Oscillator Model of Electronic Nonlinearities

Approximated Potential : 422

04

1

2

1rrr mbmU

)()()()(3

),,,(3

4

)3(

pnmq

jklijlikklij

pnmqijklDDDDm

Nbe

DDm

Nbe jklijlikklij

ijkl 33

4

)3(

3)(

(1.4.52)

where, iD 222

0

According to the notation of Maker and Terhune,

DDm

NbeBA

33

42

Nonlinear Optics Lab. Hanyang Univ.

Far off-resonant case, 22

0

2

00 /,)( dbD

26

0

3

4)3(

dm

Ne

esu102~

g101.9 ,rad/s107

esu108.4 ,cm103 ,cm104

14)3(

2815

0

108322

m

edN

Typical value of )3(

Nonlinear Optics Lab. Hanyang Univ.

4.4 Nonlinearities due to Molecular Orientation

The torque exerted on the molecule when an electric field is applied :

EPτ

induced dipole moment

Nonlinear Optics Lab. Hanyang Univ.

Second order index of refraction

Change of potential energy :

1133 dEpdEpdpdU E 111333 dEEdEE

22

1

22

3

2

11

2

33 sincos2

1

2

1EEEEU

22

13

2

1 cos2

1

2

1EE

Optical field (orientational relaxation time ~ ps order) : 222 ~~EtEE

1) With no local-field correction

Nn 412

Mean polarization :

2

131

2

1

2

3 cos)(sincos

Nonlinear Optics Lab. Hanyang Univ.

kTUd

kTUd

/exp

/expcoscos

2

2

Defining intensity parameter, kTEJ /~

2

1 2

13

0

2

0

22

2

sincosexp

sincosexpcoscos

dJ

dJ

i) J 0

3

1

sin

sincoscos

0

0

2

0

2

d

d

130 3

2

3

1

13

2

03

2

3

141 Nn : linear refractive index

Nonlinear Optics Lab. Hanyang Univ.

ii) J 0

2

131

2 cos41 Nn

3

2

131

2

0

2

3

1cos

3

14 Nnn

3

1cos4 2

13 N

2

0

2

0

2 nnn

3

1cos

2 2

13

0

0

n

Nnnn

Nonlinear Optics Lab. Hanyang Univ.

0

2

0

22

2

sincosexp

sincosexpcoscos

dJ

dJ

....945

8

45

4

3

1 2

JJ

kT

E

n

NJ

n

Nn

22

13

0

13

0

~

45

4

45

4

2

4

2

2

~En

Second-order index of refraction :

kTn

Nn

2

13

0

245

4

Nonlinear Optics Lab. Hanyang Univ.

2) With local-field correction

PEE~

3

4~~loc

locp E~

NpP~

and

PEP

~

3

4~~ N

EP~

3

41

~

N

NE~)1(

N

N

3

41

)1(

)1()1( 41

N

3

4

2

1)1(

)1(

N

n

n

3

4

2

1or

2

2

: Lorentz-Lorenz law

kT

n

n

Nn

2

13

42

0

0

23

2

45

4

Nonlinear Optics Lab. Hanyang Univ.

8.2 Electrostriction

: Tendency of materials to become compressed in the presence of an electric field

Molecular potential energy :

2

00 2

1

2

1EddpU

EE

EEEEE

Force acting on the molecule :

2

2

1EU F

density change

Nonlinear Optics Lab. Hanyang Univ.

Increase in electric permittivity due to the density change of the material :

Field energy density change in the material = Work density performed in compressing the material

88

22 EEu

stst p

V

Vpw

So, electrostrictive pressure :

88

22 EEp est

where,

e : electrostrictive constant

Nonlinear Optics Lab. Hanyang Univ.

stst CPPP

1

Density change :

PC

1where, : compressibility

8

2EC e

For optical field,

8

~2EC e

4

1

4

4

1

8

~2

EC e

2

2

~

32

1EC e

e

Nonlinear Optics Lab. Hanyang Univ.

..~

ccet ti EE

EE2~2E

EE2

216

1eC

<Classification according to the Maker and Terhune’s notation>

Nonlinear polarization : EP

EEP22

216

1eC

EE

2)3( )(3

2

2

)3(

48

1)( eC

0,16

2

2

is,That BC

A eT

Nonlinear Optics Lab. Hanyang Univ.

e

12 ne

3/21 22 nne

: For dilute gas

: For condensed matter (Lorentz-Lorenz law)

Example) Cs2, C ~10-10 cm2/dyne, e ~1 (3) ~ 2x10-13 esu

Ideal gas, C ~10-6 cm2/dyne (1 atm), e =n2-1 ~ 6x10-4 (3) ~ 1x10-15 esu