Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the...

43
Analyzing fluid flows via the ergodicity defect ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener Center FFT 2013, Norbert Wiener Center February 22, 2013 Support: ONR-MURI Ocean 3D+1(N00014-11-1-0087)

Transcript of Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the...

Page 1: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Analyzing fluid flows via the ergodicity defectergodicity defect

Sherry E. Scott

FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener CenterFebruary 22, 2013

Support: ONR-MURI Ocean 3D+1(N00014-11-1-0087)

Page 2: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

O tliOutline

B kg o nd & Moti tion Background & Motivation

General Idea: Ergodicity Defect (ED)General Idea: Ergodicity Defect (ED)With Jones, Redd, Mezić & Kuznetsov

ED & other metrics & some resultsWith Rypina Pratt & BrownWith Rypina, Pratt & Brown

ED & Other fluid flow aspectsED & Other fluid flow aspectsFuture & preliminary work

Page 3: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

L i D t i th OLagrangian Data in the Ocean

Float/drifter trajectory data

ALACE float http://www.seabird.com/products/spec_sheets/41data.htm

Page 4: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Analyze Key Structures - LagrangianCoherent Structures (LCS)

LCS:“Organized patterns of Trajectories”Trajectories

( NOAA website)

Page 5: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Wh LCS?Why LCS?

fUnderstand transport of materials/flow properties

transport barriers?where/how transport happens?

Page 6: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

M ti ti S h tti l tMotivation - Spaghetti plot

Complex fluid flowComplex fluid flow& wide range oftrajectory behavior

www.oceancurrents.rsmas.miami.edu/.../analysis/Analysis.htm

Page 7: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Background:Th IdThe Idea

f fUnderstand flows/systems in terms of how trajectories sample/cover the spacespace

Ergodicity?god c ty

Page 8: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Background:D fi iti f E di itDefinition of Ergodicity

Given a measure ( µ ) preserving flow T T is ergodic if the only T‐invariant sets A are trivial, ‐ i.e. are such that

or

A is T invariant if0)( A 1)( A

A is T‐ invariant if 

ATA 1

Page 9: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Theory:Boltzmann & The Ergodic Hypothesis

Tx

xx x

x xT 2

n xTfxTfTxfxf 2 )(),...,(),(),(

xattrajectoryofsponfirstatf int

fn

xTfn

i

i

0

1)(

Time avg = space avg? (~1860s)

Page 10: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Theory:ED & Characterization of Ergodicity& C a ac e a o o god c y

(George Birkhoff (1931))

T is ergodic if

f ll n 11 a e xfor all

faveragespace

X

Txfaveragetime

r

r

nfd

XxTf

nLf

,),(,

1

1

)(1))(()1(lim

*

a.e. x

i.e, ergodic if for all integrable functions,

“time-average = space-average”

Page 11: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Ergodicity Defect (General Idea)

Thi k f di it i t f Think of ergodicity in terms of “time average of observables = space

average of observables” average of observables

Ergodicity defect evaluates difference Ergodicity defect evaluates difference between time average and space average for a collection of b bl ( l i f ti )observables (analyzing functions)

Page 12: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Characterization of Ergodicity(due to George Birkhoff (1931))

faveragespace

X

Txfaveragetime

n

r

r

nfdxTf

nLf

,),(,

1

1

*

))(()1(lim

T is ergodic if for all

)(0,1

)( Aareafsoelse

Axxf A

,0 elseA

Xxaverage time spent in A = time average

Page 13: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Ergodicity Defect (ED) on unit squareErgodicity Defect (ED) on unit square

Analyzing functions are 2 dimensional HaarAnalyzing functions are 2 dimensional Haarfather wavelets

ssi

si

sii iiyxyx 2,...1,)()(),( 21

)()()(2121

iiii yy ,,)()(),( 212121

CcCorresponds

to

Partition of unit square into squares each of s22q qarea

(where s is the spatial scale)s221

Page 14: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Deviation from Ergodicitywith respect to Haar scaling functions

Haar ergodicity defect

The ergodicity defect of T with respect to the Haar g y ppartition at scale s is given by

s

dxTxTsd sj X

ss

s s

j2

2

1

),*( )(21),(

122),(

d(s,T) measures the degree of ergodicity- if T is ergodic, d=0- the normalization factor is chosen such that

d(s,Id) = 1d(s,Id) 1

We call this d(s,T) the Haar ergodicity defect

Page 15: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED in 2 dimensions for a trajectory–

T k d t j t i it• Take mapped trajectory in unit square • Partition the unit square into squares of length and

l 2

s

equal area• Space average =

2s2s

• Use number of trajectory points inside jth squarejN

to estimate the average time spent in each square (time average)

Page 16: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED in 2 dimensions – Numerical Algorithm

F j i h i i i l di i

For a trajectory with initial conditions

22 ))(

();(2

ssN

txsd s j

00 ,tx

Time averagefor jth square

100 )(),;( sN

txsdj

Space average

“Ergodic” (most complex) trajectory:

0d

Stationary (least complex) trajectory:

0d

y ( p ) j y0as 11 2 ssd

Page 17: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED in 3 dimensions – Numerical Algorithm

• T k t j t d i t it b• Take trajectory mapped into unit cube

• Partition the unit cube into smaller cubes of length and equal volume s 3s

• Space average =

• Use number of trajectory points )(sN

3s

• Use number of trajectory points inside jth cube to estimate the average time spent in each cube (time average)

Partition of cube for s=1/2

)(sN j

For a trajectory with initial conditions 00 ,tx

2300 )

)(();(

3

ssN

txsd s j

100 )(),;( sN

txsdj

Page 18: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:C t l ill t tiConceptual illustration

Move into differentMove into differentregions

Stable manifold given by black curve

Complexities for trajectories along stable manifold are similar to each other (all similar to hyperbolic point) but

DIFFERENT FROM

Complexities of trajectories on opposite sides of stable manifold p j ppwhich also often differ in complexity

Manifolds correspond to level sets of ED values

Page 19: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & Lagrangian Coherent Structures (LCSs)

Compute the ergodicity defect of dCompute the ergodicity defect of individual fluid particle trajectories

Take the mean over scales of interest -

meand

Distinguish each trajectory by the i hi h i l h manner in which it samples the

space (i.e., by its complexity)

Page 20: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:D ffi O ill t E lDuffing Oscillator Example

Blue curve = stable manifold from a direct evolution methodHave minimizing ridges of (left) maximizing ridges of (right)c d

Page 21: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:T M f C l itTwo Measures of Complexity

Correlation dimensionmeasures area occupied by a trajectoryF F( )

c21 For F(s) =

Use to estimate

22 ))((1

jj sN

N

cssF )(Use to estimate

Ergodicity defectd

ssF )(

Ergodicity defectmeasures the manner in which the trajectory samples the space

dp p

Small Large d c

Page 22: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:D ffi O ill t E lDuffing Oscillator Example

Blue curve = stable manifold from a direct evolution methodHave minimizing ridges of (left) maximizing ridges of (right)c d

Page 23: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:Numerically generated flow field from Regional Ocean Model System velocities

(on left) (on right)c d

Page 24: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Oth M th dOther Methods:(1) Finite Time Lyapunov Exponent (FTLE)(1) Finite Time Lyapunov Exponent (FTLE)

- separation rates between trajecs(George Haller)( g )

(2) Correlation Dimension, c - how trajecs fill/cover the space ( l)(Procaccia et al)

(3) M functionsarclengths of trajecs- arclengths of trajecs

( A. Mancho)(4) Ergodic quotient (Mezic et al)(4) Ergodic quotient (Mezic et al)

Page 25: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Identifying LCSs:Add i Ch llAddressing a Challenge

fOften data is not amenable to traditional analysis methods such as FTLE FTLE

if drifter trajectories are sparse and if drifter trajectories are sparse and non-uniformly spaced then individual trajectory methods have j yan advantage

Page 26: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:Advantages with sparse & non-uniform data

2550 drifters

640 drifters

(left) d (middle) FTLE using Lekien and Ross (2010) method(right) conventional FTL (darkest color =stable manifold)

Page 27: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Ergodicity Defect & Polynyas( d d )(3D + time dependence )

persistent open water where we would expect to find sea ice

Note: 3D data primarily from floats/drifters/gliders etci e from trajectoriesi.e., from trajectories

Page 28: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Polynyas( )(3D + time )

Page 29: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Not polynya but upwelling flow( )(3D + time )

• Coastal upwellingCoastal upwelling

Page 30: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & an Upwelling flow (Rivas & Samelson) ( i l )(3D + time example)

Strong Vertical Velocity in Ocean?

Use Ergodicity Defect to Identify Vertical LCS?

Does 3D DefectDoes 3D Defect (sampling in x,y, & z )give more/different

info than just 2D?

Color=bathymetry

info than just 2D?

Numerical model off Oregon coast in 2005

Page 31: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & an Upwelling flow (Rivas & Samelson) ( i l )(3D + time example)

Page 32: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

3D ED & Upwelling flow at different depths

Page 33: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & an Upwelling flow f ll d dfull domain, 3D advection

3D defect grayscale 2D defect grayscale=

BUT

x, y & z sampling x,y sampling

Page 34: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Upwelling flow ll d ( l h )on smaller domain (closer to shore)

3D advection, 3D defect 2D advection, 2D defect

Still 3D defect grayscale pic similar 2D defect Rerunning with better resolution

Page 35: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Oth t f ED di tiOther aspects of ED as a diagnostic

Ergodicity Defect (ED) distinguishes Ergodicity Defect (ED) distinguishes optimal trajectories/initial conditions

for assimilating data ?

for float/glider deployment for float/glider deployment strategy?

ffor estimating properties?

Page 36: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & other fluid flow aspects:Lagrangian Data Assimilation(LDA)

f fWant: estimate flow field

Have: positions of a drifter

Assimilate drifter positions into modelto estimate velocitieso a o

Page 37: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Ergodicity Defect & LaDA(Linearized Shallow Water & Particle Filter (E. Spiller))

Whi h j ? L d f b ? Which trajectory? – Lower defect better?

H l ?How long?

Page 38: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

SSummary

Ergodicity Defect (ED) captures trajectory/flow Ergodicity Defect (ED) captures trajectory/flow complexity for identifying Lagrangian Coherent Structures

Understanding barriers to transportf Understanding/Determining transport of

material/flow properties by coherent structures

Advantages of ED Advantages of ED Distribution of trajectory can be non-uniform/sparse Works in both 2 and 3 dimensions Scaling analysis component/ other wavelet-like funcs

Page 39: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

LDA E l LSWLDA Example - LSW

Linearized Shallow Water(LSW) ModelHave a flow fieldu(x; y; t) = 2 sin(2∏x) cos(2∏y)uo + cos(2∏y)u1(t)v(x; y; t) = 2 cos(2∏x) sin(2∏y)uo + cos(2∏y)v1(t)h(x; y; t) = sin(2∏x) sin(2∏y)uo + sin(2∏y)h1(t)( ; y; ) ( ) ( y) ( y) ( )

Drifter trajectories given by:= u[x(t); y(t); t]dtxd /= u[x(t); y(t); t]

= v[x(t); y(t); t]dtxd /dtdy /

Page 40: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:T M f C l it (CM)Two Measures of Complexity (CM)

(1) Correlation dimensionCompute F(s) = U t ti t

c

c

22 ))((1

jj sN

NUse to estimate

(2) E di it d f t d

cssF )( c

(2) Ergodicity defectadjust to analyze individual

t j t i d t k th

dd

trajectories and take the mean over scales of interest meand

Page 41: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

Background: ED with respect to Haar mother g pwavelets

x )1,0[,1

)()(

sss jj 21))1(2()()(

elsexx

,0)[

)()( 1,0

sssj jjxx 2,...,1)),1(2()()( Time

averages

Better for scaling analysis

Page 42: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED 3 dimensions + time – Numerical Algorithm

F diff t fi d i iti l d th ( ) l lFor different fixed initial depth (z) levels, Generate trajectory from (time) snapshots Take mapped trajectory in unit cube Take mapped trajectory in unit cube Partition the unit cube into smaller cubes

with sides of length Space average

s3s Space average =

Use number of trajectory points inside each cube to estimate the average

s)(sN j

time spent in each cube (time average) Combine info from all depth levels

Page 43: Analyzing fluid flows via the ergodicity defect - The … · Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013 Norbert Wiener CenterFFT 2013, Norbert Wiener

ED & LCSs:G l S tGeneral Setup

For 2d fluid flows, trajectories satisfy),(/ txudtxd

Trajectories exhibit a wide range of behavior

)(

from stationary densely covering

i.e., trajectories have different complexitiesp