8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in...

35
8/23-25/05 ELEC5970-001/6970-001 Lecture 2 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Power Consumption in a CMOS Circuit Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University http://www.eng.auburn.edu/~vagrawal [email protected]
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    0

Transcript of 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in...

Page 1: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 1

ELEC 5970-001/6970-001(Fall 2005)Special Topics in Electrical EngineeringLow-Power Design of Electronic Circuits

Power Consumption in a CMOS Circuit

Vishwani D. AgrawalJames J. Danaher Professor

Department of Electrical and Computer EngineeringAuburn University

http://www.eng.auburn.edu/[email protected]

Page 2: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 2

Class Projects• Study of leakage dynamic power in nanometer devices• Low leakage technologies• Charge recovery and adiabatic switching circuits• Simulation-based power estimation tool• Transistor-sizing for low power• Logic and flip-flop design for low power• Low power clock distribution• Low power arithmetic circuits• Low power memory design• Benchmarking of low power microprocessors• Low power system design

Page 3: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 3

Components of Power• Dynamic

– Signal transitions• Logic activity• Glitches

– Short-circuit

• Static– Leakage Ptotal = Pdyn + Pstat

Ptran + Psc + Pstat

Page 4: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 4

Power of a Transition: Ptran

VVDDDD

GroundGround

CL

Ron

R=large

vi (t) vo(t) ic(t)

Page 5: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 5

Charging of a Capacitor

V C

R

i(t) v(t)

Charge on capacitor, q(t) = C v(t)

Current, i(t) = dq(t)/dt = C dv(t)/dt

t = 0

Page 6: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 6

i(t) = C dv(t)/dt = [V – v(t)] /R dv(t) V – v(t) ─── = ───── dt RC

dv(t) dt∫ ───── = ∫───── V – v(t) RC

-t ln [V – v(t)] = ── + A

RC

Initial condition, t = 0, v(t) = 0 → A = ln V -t

v(t) = V [1 – exp(───)]

RC

Page 7: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 7

-t v(t) = V [1 – exp( ── )]

RC

dv(t) V -ti(t) = C ─── = ── exp( ── )

dt R RC

Page 8: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 8

Total Energy Per Charging Transition from Power Supply

∞ ∞ V2 -tEtrans = ∫ V i(t) dt = ∫ ── exp( ── ) dt

0 0 R RC

= CV2

Page 9: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 9

Energy Dissipated per Transition in Resistance

∞ V2 ∞ -2tR ∫ i2(t) dt = R ── ∫ exp( ── ) dt 0 R2 0 RC

1= ─ CV2

2

Page 10: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 10

Energy Stored in Charged Capacitor

∞ ∞ -t V -t∫ v(t) i(t) dt = ∫ V [1-exp( ── )] ─ exp( ── ) dt0 0 RC R RC

1= ─ CV2

2

Page 11: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 11

Transition Power• Gate output rising transition

– Energy dissipated in pMOS transistor = CV2/2– Energy stored in capacitor = CV2/2

• Gate output falling transition– Energy dissipated in nMOS transistor = CV2/2

• Energy dissipated per transition = CV2/2• Power dissipation:

Ptrans = Etrans α fck = α fck CV2/2

α = activity factor

Page 12: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 12

Short Circuit Current, isc(t)

Time (ns)0 1

Amp

Volt

VDD

isc(t)

0

Vi(t)Vo(t)

VDD - VTp

VTn

tB tE

Iscmaxf

Page 13: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 13

Peak Short Circuit Current

• Increases with the size (or gain, β) of transistors

• Decreases with load capacitance, CL

• Largest when CL= 0

• Reference: M. A. Ortega and J. Figueras, “Short Circuit Power Modeling in Submicron CMOS,” PATMOS’96, Aug. 1996, pp. 147-166.

Page 14: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 14

Short-Circuit Energy per Transition

• Escf =∫tB

tE VDD isc(t)dt = (tE – tB) IscmaxfVDD /2

• Escf = tf (VDD- |VTp| -VTn) Iscmaxf /2

• Escr = tr (VDD- |VTp| -VTn) Iscmaxr /2

• Escf = 0, when VDD = |VTp| + VTn

Page 15: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 15

Short-Circuit Energy

• Increases with rise and fall times of input

• Decreases for larger output load capacitance

• Decreases and eventually becomes zero when VDD is scaled down but the threshold

voltages are not scaled down

Page 16: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 16

Short-Circuit Power Calculation

• Assume equal rise and fall times

• Model input-output capacitive coupling (Miller capacitance)

• Use a spice model for transistors– T. Sakurai and A. Newton, “Alpha-power Law

MOSFET model and Its Application to a CMOS Inverter,” IEEE J. Solid State Circuits, vol. 25, April 1990, pp. 584-594.

Page 17: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 17

Short Circuit Power

Psc = α fck Esc

Page 18: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 18

Psc vs. C

C (fF)

Decreasing Input rise time3ns

0%

45%

0.5ns

Psc

/Pto

tal

0.7μ CMOS

35 75

Page 19: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 19

Psc, Rise Time and Capacitance

VVDDDD

GroundGround

CL

Ron

R=large

vi (t) vo(t) ic(t)+isc(t)

tftr vo(t)───

R↑

Page 20: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 20

isc, Rise Time and Capacitance

-tVDD[1- exp(─────)]

vo(t) R↓tf (t)CIsc(t) = ──── = ──────────────

R↑tf (t) R↑tf (t)

Page 21: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 21

iscmax, Rise Time and Capacitance

Small C Large C

tf

1────R↑tf (t)

iscmax

vo(t) vo(t)

i

t

Page 22: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 22

Psc, Rise Times, Capacitance

• For given input rise and fall times short circuit power decreases as output capacitance increases.

• Short circuit power increases with increase of input rise and fall times.

• Short circuit power is reduced if output rise and fall times are smaller than the input rise and fall times.

Page 23: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 23

Technology Scaling

• Scale down by factors of 2 and 4, i.e., model 0.7, 0.35 and 0.17 micron technologies

• Constant electric field assumed

• Capacitance scaled down by the technology scale down factor

Page 24: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 24

Bulk nMOSFET

n+

p-type body (bulk)

n+

L

W

SiO2

Thickness = tox

Gate

SourceDrain

Polysilicon

Page 25: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 25

Scaling Factor, α• Constant electric field• L = L / α• W = W / α• tox = tox / α• VDD = VDD/α• Capacitance → 1/α• Gate delay → 1/α• Area → 1/α2

• Power dissipation → 1/α2

• Power density constant• Doping → α

Page 26: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 26

Technology Scaling Results

Input tr or tf (ns)1%

70%

Psc

/Pto

tal

L=0.7μ, C=40fF

0.4 1.6

12%

L=0.35μ, C=20fF

L=0.17μ, C=10fF

60%

4%

16%

37%

Page 27: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 27

Effects of Scaling Down

• 1-16% short-circuit power at 0.7 micron

• 4-37% at 0.35 micron

• 12-60% at 0.17 micron

• Reference: S. R. Vemuru and N. Steinberg, “Short Circuit Power Dissipation Estimation for CMOS Logic Gates,” IEEE Trans. on Circuits and Systems I, vol. 41, Nov. 1994, pp. 762-765.

Page 28: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 28

Summary: Short-Circuit Power

• Short-circuit power is consumed by each transition (increases with input transition time).

• Reduction requires that gate output transition should not be faster than the input transition (faster gates can consume more short-circuit power).

• Increasing the output load capacitance reduces short-circuit power.

• Scaling down of supply voltage with respect to threshold voltages reduces short-circuit power.

Page 29: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 29

Components of Power

• Dynamic– Signal transitions

• Logic activity• Glitches

– Short-circuit

• Static– Leakage

Page 30: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 30

Leakage Power

IG

ID

Isub

IPT

IGIDL

n+ n+

GroundVDD

R

Page 31: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 31

Leakage Current Components

• Subthreshold conduction, Isub

• Reverse bias pn junction conduction, ID

• Gate induced drain leakage, IGIDL due to

tunneling at the gate-drain overlap

• Drain source punchthrough, IPT due to short

channel and high drain-source voltage

• Gate tunneling, IG through thin oxide

Page 32: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 32

Subthreshold Current

Isub = μ0 Cox (W/L) Vt2 exp{(VGS-VTH)/nVt}

μ0: carrier surface mobility

Cox: gate oxide capacitance per unit area

L: channel lengthW: gate widthVt = kT/q: thermal voltage

n: a technology parameter

Page 33: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 33

IDS for Short Channel Device

Isub = μ0 Cox (W/L) Vt2 exp{(VGS-VTH+ηVDS)/nVt}

VDS = drain to source voltage

η: a proportionality factor

Page 34: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 34

Increased Subthreshold Leakage

0 VTH’ VTH

Lo

g I

sub

Gate voltage

Scaled device

Ic

Page 35: 8/23-25/05ELEC5970-001/6970-001 Lecture 21 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

8/23-25/05 ELEC5970-001/6970-001 Lecture 2 35

Summary: Leakage Power

• Leakage power as a fraction of the total power increases as clock frequency drops. Turning supply off in unused parts can save power.

• For a gate it is a small fraction of the total power; it can be significant for very large circuits.

• Scaling down features requires lowering the threshold voltage, which increases leakage power; roughly doubles with each shrinking.

• Multiple-threshold devices are used to reduce leakage power.