Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special...

31
Fall 06, Sep 19, 21 Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lectu ELEC5270-001/6270-001 Lectu re 6 re 6 1 ELEC 5970-001/6970-001(Fall ELEC 5970-001/6970-001(Fall 2005) 2005) Special Topics in Electrical Special Topics in Electrical Engineering Engineering Low-Power Design of Electronic Circuits Low-Power Design of Electronic Circuits Dynamic Power Dynamic Power Vishwani D. Agrawal Vishwani D. Agrawal James J. Danaher Professor James J. Danaher Professor Department of Electrical and Computer Department of Electrical and Computer Engineering Engineering Auburn University, Auburn, AL 36849 Auburn University, Auburn, AL 36849 http://www.eng.auburn.edu/~vagrawal http://www.eng.auburn.edu/~vagrawal [email protected] [email protected]
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special...

Page 1: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 11

ELEC 5970-001/6970-001(Fall ELEC 5970-001/6970-001(Fall 2005)2005)

Special Topics in Electrical EngineeringSpecial Topics in Electrical EngineeringLow-Power Design of Electronic CircuitsLow-Power Design of Electronic Circuits

Dynamic PowerDynamic PowerVishwani D. AgrawalVishwani D. AgrawalJames J. Danaher ProfessorJames J. Danaher Professor

Department of Electrical and Computer Department of Electrical and Computer EngineeringEngineering

Auburn University, Auburn, AL 36849Auburn University, Auburn, AL 36849http://www.eng.auburn.edu/~vagrawalhttp://www.eng.auburn.edu/~vagrawal

[email protected]@eng.auburn.edu

Page 2: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 22

CMOS Dynamic PowerCMOS Dynamic PowerDynamic Power = Σ 0.5 αi fclk CLi VDD

2

All gates i

≈ 0.5 α fclk CL VDD2

≈ α01 fclk CL VDD2

where α average gate activity factorα01 = 0.5α, average 0→1 trans.fclk clock frequencyCL total load capacitanceVDD supply voltage

Page 3: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 33

Example: 0.25Example: 0.25μμm CMOS m CMOS ChipChip

f = 500MHzf = 500MHz Average capacitance = 15 fF/gateAverage capacitance = 15 fF/gate VVDDDD = 2.5V = 2.5V 101066 gates gates PowerPower = = αα0101 f Cf CLL VVDDDD

22

= = αα0101×500×10×500×1066×(15×10×(15×10-15-15×10×1066) ) ×2.5×2.522

= 46.9W, for = 46.9W, for αα0101 = 1.0 = 1.0

Page 4: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 44

Signal Activity, Signal Activity, αα

T=1/f

Clock α01= 1.0

α01= 0.5

α01= 0.5

Comb.signals

Page 5: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 55

Reducing Dynamic PowerReducing Dynamic Power

Dynamic power reduction isDynamic power reduction is Quadratic with reduction of supply Quadratic with reduction of supply

voltagevoltage Linear with reduction of capacitanceLinear with reduction of capacitance

Page 6: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 66

0.250.25μμm CMOS Inverter, m CMOS Inverter, VVDD DD

=2.5V=2.5V0

-4

-8

-12

-16

-20

Vin (V)

Vou

t (V

)

Vin (V)

2.5

2.0

1.5

1.0

0.5

00 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5

Gai

n =

dV

out /

dVin

Page 7: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 77

0.250.25μμm CMOS Inverter, m CMOS Inverter, VVDD DD << 2.5V2.5V

0.2

0.15

0.1

0.05

0

Vin (V)

Vou

t (V

)

Vin (V)

2.5

2.0

1.5

1.0

0.5

00 0.5 1.0 1.5 2.0 2.5 0 0.05 0.1 0.15 0.2

Vou

t (V

)

Gain = -1

Vth = 0.4 V

Similar to analog amplifier

Page 8: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 88

Low Voltage Operation (Low Voltage Operation (VVDDDD > > VVthth))

Reduced dissipation, increased Reduced dissipation, increased delay.delay.

Operation sensitive to variations in Operation sensitive to variations in device parameters like device parameters like VVthth . .

Reduced signal swing reduces Reduced signal swing reduces internal noise (crosstalk), increases internal noise (crosstalk), increases sensitivity to external noise.sensitivity to external noise.

Page 9: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 99

Impact of Impact of VVDDDD on on PerformancePerformance CLVDD

Inverter delay = K ─────── , Power ~ CLVDD2

(VDD – Vth )α

0.4V 1.45V 2.5V VDD

Power

Delay

40

30

20

10

0

Del

ay (

ns)

VDD=Vth

Page 10: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1010

Optimum Power × DelayOptimum Power × Delay VDD

3

Power × Delay, PD = constant × ─────── (VDD – Vth)α

For minimum power-delay product, d(PD)/dVDD = 0

(VDD – Vth)α 3VDD2 – VDD

3 α (VDD – Vth)α – 1

———————————————————— = 0(VDD – Vth)2α

3VDD – 3Vth = α VDD

VDD = 3 Vth / (3 – α)

Page 11: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1111

Optimum Power × Delay Optimum Power × Delay (Cont.)(Cont.)

For minimum power-delay product, d(PD)/dVDD = 0

3VthVDD = ───

3 – α

For long channel devices, α = 2, VDD = 3Vth

For very short channel devices, α = 1, VDD = 1.5Vth

Page 12: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1212

Very Low Voltage OperationVery Low Voltage Operation VVDDDD < < VVthth

Operation via subthreshold current.Operation via subthreshold current. Small currents have long charging Small currents have long charging

and discharging times – very slow and discharging times – very slow speed.speed.

Increasing sensitivity to thermal Increasing sensitivity to thermal noise.noise.

Page 13: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1313

Lower Bound on Lower Bound on VVDDDD

For proper operation of gate, maximum gain For proper operation of gate, maximum gain (for Vin = V(for Vin = VDDDD/2) should be greater than 1./2) should be greater than 1.

Gain = - (1/Gain = - (1/nn)[exp()[exp(VVDD DD / 2/ 2ΦΦTT) – 1] = - 1 ) – 1] = - 1 nn = 1.5 = 1.5 ΦΦT T = = kT/q = kT/q = 25 mV at room temperature25 mV at room temperature VVDDDD == 48 mV48 mV

VVDDminDDmin > 2 to 4 times > 2 to 4 times kT/qkT/q or ~ 50 to 100 mV or ~ 50 to 100 mV at room temperature (27at room temperature (27ooC)C)

Ref.:Ref.: J. M. Rabaey, A. Chandrakasan and B. Nikolić, J. M. Rabaey, A. Chandrakasan and B. Nikolić, Digital Digital Integrated CircuitsIntegrated Circuits, , A Design Perspective, Second EditionA Design Perspective, Second Edition, , Upper Saddle River, New Jersey: Pearson Education, 2003, Upper Saddle River, New Jersey: Pearson Education, 2003, Chapter 5.Chapter 5.

Page 14: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1414

Capacitance ReductionCapacitance Reduction

Transistor sizing forTransistor sizing for PerformancePerformance PowerPower

Page 15: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1515

Basics of Sizing (Basics of Sizing (SS = Scale = Scale Factor)Factor)

Sizing a gate by factor Sizing a gate by factor SS means all means all transistors in that gate have their transistors in that gate have their widths widths WW changed to changed to WS. WS. Lengths (Lengths (LL) ) of transistors is left unchangedof transistors is left unchanged.. On resistance of the scaled transistor is On resistance of the scaled transistor is

reduced as 1/reduced as 1/SS Gate capacitance is scaled asGate capacitance is scaled as S S

Next we consider the delay and Next we consider the delay and power of the original and scaled power of the original and scaled gates.gates.

Page 16: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1616

A Standard Inverter, A Standard Inverter, SS = 1 = 1

CCgg = input capacitance = input capacitance RReqeq = on resistance= on resistance CCintint = intrinsic output capacitance = intrinsic output capacitance ≈ ≈ CCgg

Cg CLCint

Page 17: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1717

Transistor Sizing for Transistor Sizing for PerformancePerformance

Problem: If we increase Problem: If we increase W/LW/L to make the to make the charging or discharging of load charging or discharging of load capacitance faster, then the increased capacitance faster, then the increased WW increases the load for the driving gateincreases the load for the driving gate

Cin=Cg CL+SCg

Increase W for faster charging of CL

Faster charging

Slower chargingMore power

Req /S

Page 18: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1818

Delay of a CMOS GateDelay of a CMOS Gate

CMOSgate CLCg

Cint

Propagation delay through the gate:

tp = K 0.69 Req (Cint + CL)

≈ K 0.69 ReqCg (1 + CL /Cg)

= tp0 (1 + CL /Cg)

where K depends upon VDD, Vth, etc.

Gate capacitance Intrinsic capacitance

Page 19: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 1919

RReq eq , , CCg g , , CCint int , , andand Width Width SizingSizing

RReq eq : equivalent resistance of “on” transistor, : equivalent resistance of “on” transistor, proportional to proportional to L/W; L/W; scales as scales as 11/S, S /S, S = width = width sizing factorsizing factor

CCg g : gate capacitance, proportional to : gate capacitance, proportional to CCoxoxWLWL; ; scales as Sscales as S

CCint int : intrinsic output capacitance : intrinsic output capacitance ≈ ≈ CCg g , for , for submicron processessubmicron processes

ttp0 p0 : intrinsic delay = : intrinsic delay = KK 0.69 0.69RReqeqCCg g , , independent of sizingindependent of sizing

Page 20: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2020

Effective Fan-out, Effective Fan-out, FF Effective fan-out is defined as the Effective fan-out is defined as the

ratio between the external load ratio between the external load capacitance and the input capacitance and the input capacitance:capacitance:

FF == CCL L /C/Cgg

ttpp == ttp0 p0 (1 + (1 + F F ))

Page 21: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2121

Sizing Through an Inverter Sizing Through an Inverter ChainChain

Cg1 Cg2 CL

1 2 N

Cg2 = f2 Cg1

tp1 = tp0 (1 + Cg2/Cg1)

tp2 = tp0 (1 + Cg3/Cg2)N N

tp = Σ tpj = tp0 Σ (1 + Cgj+1/Cgj)j=1 j=1

Page 22: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2222

Minimum Delay SizingMinimum Delay SizingEquate partial derivatives of tp with respect

to Cgj to 0, for all j

1/Cg1 – Cg3 /Cg22 = 0, etc.

or Cg22 = Cg1× Cg3, etc.

or Cg2/Cg1 = Cg3 /Cg2, etc.

i.e., all stages are sized up by the same

factor f with respect to the preceding stage:

CL/Cg1 = F = f N, tp = Ntp0(1 + F1/N )

Page 23: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2323

Minimum Delay SizingMinimum Delay SizingEquate partial derivatives of tp with respect to N to 0:

dNtp0(1 + F1/N) ───────── = 0

dN

i.e., F1/N – F1/N(ln F)/N = 0, or ln (f N) = N

or ln f = 1 → f = e = 2.7 and N = ln F

Page 24: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2424

Further ReadingFurther Reading

B. S. Cherkauer and E. G. Friedman, “A Unified DesignMethodology for CMOS Tapered Buffers,” IEEE Trans.VLSI Systems, vol. 3, no. 1, pp. 99-111, March 1995.

Page 25: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2525

Sizing for Energy Sizing for Energy MinimizationMinimization

Main idea: For a given circuit, reduce energy consumption by reducing the supply voltage. This will increase delay. Compensate the delay increase by transistor sizing.

Ref: J. M. Rabaey, A. Chandrakasan and B. Nikolić,Digital Integrated Circuits, Second Edition, Upper SaddleRiver, New Jersey: Pearson Education, 2003.

Page 26: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2626

Sizing for Energy Sizing for Energy MinimizationMinimization

Cg1 CL

tp = tp0 [(1+ f ) + (1+ F/f )] = tp0(2 + f + F/f )

F = CL/Cg1 , effective fan-out

tp0 ~ VDD /(VDD – Vth) for short channel

Energy dissipation, E = VDD2Cg1(2 + 2f + F )

f1Minimum sized gate

Cg1 fCg1 fCg1Req /f

Req

Page 27: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2727

Holding Delay ConstantHolding Delay Constant Reference circuit: Reference circuit: ff = 1, supply voltage = = 1, supply voltage =

VVrefref

Size the circuit such that the delay of the Size the circuit such that the delay of the new circuit is smaller than or equal to new circuit is smaller than or equal to the reference circuit:the reference circuit:

ttpp t tp0 p0 (2+(2+ff++F/f F/f ) ) V VDD DD VVref ref - V- Vth th 2+2+ff++F/fF/f── ── == ──────── ──────── == ── ──── ───── ── ──── ───── == 11ttpref pref ttp0ref p0ref (3(3 ++F F ) ) V Vref ref VVDDDD- V- Vth th 3+3+FF

Page 28: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2828

Supply Voltage Vs. SizingSupply Voltage Vs. Sizing

1 2 3 4 5 6 f

VD

D (

volts

)3.5

3.0

2.5

2.0

1.5

1.0

F=1

2

5

10

fopt ≈ √F

Vref = 2.5VVth = 0.5V

Page 29: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 2929

EnergyEnergy

E VDD2 2 + 2f + F

── = ─── ──────Eref Vref

2 4 + F

Page 30: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 3030

Normalized Energy Vs. Normalized Energy Vs. SizingSizing

1 2 3 4 5 6 f

Nor

mal

ized

Ene

rgy

1.5

1.0

0.5

F=1

2

5

10

fopt ≈ √F

Vref = 2.5VVth = 0.5V

Page 31: Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6 1 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.

Fall 06, Sep 19, 21Fall 06, Sep 19, 21 ELEC5270-001/6270-001 Lecture 6ELEC5270-001/6270-001 Lecture 6 3131

SummarySummary

Device sizing combined with supply voltage Device sizing combined with supply voltage reduction reduces energy consumption.reduction reduces energy consumption.

For large fan-out energy reduction by a For large fan-out energy reduction by a factor of 10 is possible.factor of 10 is possible.

An exception is An exception is F F = 1 case, where the = 1 case, where the minimum size device is also the most minimum size device is also the most effective one.effective one.

Oversizing the devices increases energy Oversizing the devices increases energy consumption.consumption.