2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … ·...

20
PHYSICS AND ASTRONOMY Ph.D. Preliminary Examination, Part I Time: 9:00 a.m. 1:30 p.m. Tuesday, September 2, 2014 INSTRUCTIONS: 1. Answer a total of five questions. You must answer: 2 out of questions 1, 2, 3, 4 or 5 (Mathematical Methods and Astrophysics) 2 out of questions 6, 7 or 8 (Electrodynamics) 1 out of questions 9 or 10 (Mechanics/Relativity). 2. Use a separate answer book for each question. Write your name and the question number on the front of each book. 3. Indicate below which five questions you wish to have graded, sign your name, and turn in this cover sheet. ****** Circle the numbers of the five questions to be graded: 1 2 3 4 5 6 7 8 9 10 Signed ______________________

Transcript of 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … ·...

Page 1: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

PHYSICS  AND  ASTRONOMY    

Ph.D.  Preliminary  Examination,  Part  I    

Time:   9:00  a.m.  -­‐  1:30  p.m.       Tuesday,  September  2,  2014    INSTRUCTIONS:    1.   Answer  a  total  of  five  questions.    You  must  answer:  

2  out  of  questions  1,  2,  3,  4  or  5  (Mathematical  Methods  and  Astrophysics)     2  out  of  questions  6,  7  or  8  (Electrodynamics)     1  out  of  questions  9  or  10  (Mechanics/Relativity).    2.   Use  a  separate  answer  book  for  each  question.    Write  your  name  and  the  

question  number  on  the  front  of  each  book.    3.   Indicate  below  which  five  questions  you  wish  to  have  graded,    

sign  your  name,  and  turn  in  this  cover  sheet.               ******    Circle  the  numbers  of  the  five  questions  to  be  graded:    1   2   3   4   5     6   7   8     9   10          

Signed  ______________________      

Page 2: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #1       a)  For   𝑐 < 1  show    

11− 𝑐 −   1+ 𝑐 + 𝑐

! +⋯+ 𝑐! =  𝑐!!!

1− 𝑐          .       b)  Using  Cauchy’s  integral  formula  show  that  the  Taylor  series,      

𝑓(𝑧) = 𝑓(𝑧!)+ 𝑓′(𝑧!)(𝑧 − 𝑧!) + 𝑓′′  (𝑧!  )(𝑧 − 𝑧!  )!/2!+⋯          

=𝑓(!)(𝑧!)

𝑗!

!

!!!

(𝑧 − 𝑧!)!  

  converges  to  𝑓(𝑧)  in  the  disk   𝑧 − 𝑧! < 𝑅  .  

     

Page 3: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #2       Show  that  the  equation         !

!!!!"

𝑟! !"!"

= !"!"  

 admits  solutions  of  the  form  f(r)g(t)  which  are  bounded  at  r=0  and  zero  at  r=a.  Find  the  solution  V(r,t)  which  is  bounded  at  r  =  0  and  satisfies  the  conditions       V(  a,  t  )  =  0          (t  >  0)     V(  r,  0  )  =  1        (0  ≤  r  <  a)  .      Show  that       𝑉 0, 𝑡 = 2 (−1)!!! exp(−𝑛!  𝜋!  𝑡/𝑎!).!

!!!        

Page 4: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #3       Let  𝐴  be  an  𝑛  ×  𝑛  hermitean  matrix.  Consider  the  function      

 𝑓! 𝑧 = Tr 𝑧𝐼 − 𝐴 !!    

  where  𝐼  is  the  identity  matrix.    

a) What  is  the  location  and  nature  of  the  singularities  (if  any)  of  this  function?    

b) If  it  has  poles,  what  is  the  meaning  of  the  residue  at  each  pole?      

c) Find  this  function  for  the  case  𝐴 = 1 22 4 .  

     

Page 5: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #4    

a) Suppose  the  data  𝑥!,𝑥!,… , 𝑥!  are  drawn  from  a  Gaussian  distribution  with  unknown  𝜇  and  𝜎    

 

𝑃 𝑥 =  12𝜋𝜎

exp −  𝑥 − 𝜇 !

2𝜎! .  

 Find  the  maximum  likelihood  estimators  𝜇  and  𝜎!.    Show  that  the  estimator  for  the  mean  is  unbiased    

        𝐸 𝜇 = 𝜇,    

and  that  the  estimator  for  the  variance  is  biased           𝐸 𝜎!  ≠  𝜎!,       and  is  in  fact  underestimated.    

b) Define  the  quantities  chi-­‐squared   χ!  and  number  of  degrees  of  freedom  𝜈  that  appear  when  a  comparison  is  made  between  a  set  of  data  points  and  a  model.    

c) Explain  how  to  evaluate  the  goodness-­‐of-­‐fit  for  both  the  maximum-­‐likelihood  and  least-­‐squares  cases.  

     

Page 6: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #5                    

The  figure  represents  a  spherical  shell  of  radius  𝑅  surrounding  a  star  of  radius  𝑟 << 𝑅  and  effective  temperature  𝜏! .  The  shell  absorbs  radiation  from  the  star  with  absorption  coefficient  𝛼(𝜔) ≤ 1.  Outside  of  the  shell  is  empty  space  into  which  the  shell  radiates.  

 a) If  𝛼 = 1  for  all  𝜔,  find  the  equilibrium  temperature  of  the  shell  

𝜏! 𝜏! ,𝑅, 𝑟 .    b) Now  suppose  that  𝛼 = 1  for  𝜔 < 𝜔!  , but  𝛼 = 0  for  𝜔 ≥  𝜔!  .  

 Determine  the  total  power  (=energy/time)  absorbed  by  the  shell  assuming  that  hω! 2𝜋 << 𝜏!  .  

 c) Find  the  equilibrium  temperature  of  the  shell  𝜏! 𝜏! ,𝑅, 𝑟  assuming  

that  hω! 2𝜋 << 𝜏!  .          

 

     

Page 7: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #6    

A  thin  circular  disk  of  radius  𝑅  lying  in  the  𝑥𝑦-­‐plane  and  centered  at  the  origin,  has  on  it  a  fixed  surface  charge  density  

        𝜎 𝑟,𝜑 = 𝐴𝑟sin2𝜑    

where  𝑟  and  𝜑  are  usual  polar  coordinates  in  the    𝑥𝑦-­‐plane.  Use  the  multipole  expansion  to  compute  the  electrostatic  potential  at  all  points  in  space  up  through  the  electric  quadrupole  term.  Express  the  answer  in  spherical  coordinates.  

     

Page 8: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #7    

Consider  a  semi-­‐infinite  dielectric  with  a  real  positive  dielectric  constant  𝜀 > 1  and  magnetic  permeability  𝜇 = 1.  The  surface  of  the  dielectric  is  the  𝑥𝑦-­‐plane  at  𝑧 = 0  and  the  dielectric  fills  all  of  the  space  below  this  plane  (𝑧 < 0).  The  region  𝑧 > 0  is  a  vacuum.  A  plane  polarized  simple  harmonic  electromagnetic  wave  of  frequency  𝜔  is  traveling  inside  the  dielectric  in  the  𝑥-­‐direction.    

                           

a) Give  the  boundary  conditions  that  determine  how  the  amplitudes  of  electromagnetic  fields  are  related  at  the  interface  between  the  dielectric  and  the  vacuum.  What  do  the  boundary  conditions  imply  about  the  relation  between  the  frequencies  and  wavevectors  of  the  electromagnetic  fields  inside  and  outside  the  dielectric?    

b) Show  that  the  electromagnetic  fields  decay  exponentially  as  one  moves  in  the  𝑧-­‐direction  away  from  the  surface  of  the  dielectric  into  the  vacuum.  

     

vacuum  

                                                 k  dielectric              

𝑧  

𝑥  

𝜀 > 1  𝜇 = 1  

Page 9: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #8    

Consider  a  classical  model  of  the  Helium  atom  as  shown  below.  Two  electrons,  each  with  charge  – 𝑒,  orbit  together  on  opposite  sides  of  a  nucleus  of  charge  +2𝑒.  The  radius  of  the  orbit  is  𝑎!  and  the  electrons  orbit  with  speed  v,  giving  an  angular  velocity  𝜔! = v/𝑎!.  

                   

a) Show  that  there  is  no  electric  dipole  radiation  in  this  model.    

b) Show  that  there  is  no  magnetic  dipole  radiation  in  this  model.    

c) Compute  the  electric  quadrupole  tensor  to  show  that  there  is  electric  quadrupole  radiation.  What  is  the  frequency  of  this  radiation?  

     

+2e  

v  

-­‐e  -­‐e  

v  

Page 10: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #  9    

Consider  a  particle  of  electric  charge  𝑒  and  mass  𝑚  interacting  with  a  magnetic  monopole  of  magnetic  charge  𝑔  which  is  fixed  at  the  origin.  The  magnetic  field  is  

 𝐁 𝐫 =  𝑔 𝐫

!!  .  

 a) Obtain  the  equation  of  motion  of  the  charged  particle.  

 b) Show    that  the  orbital  angular  momentum  𝐋 = 𝑚𝐫  ×  !𝐫

!"  is  not  a  

constant  of  the  motion.      

c) Find  a  modification  of  the  angular  momentum  that  is  conserved.  What  is  the  physical  meaning  of  this  modificiation?  

     

Page 11: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #10    

Consider  a  time-­‐like  curve  in  space-­‐time.  Define  the  proper  time  𝜏  by  the  condition  that  !!

!

!"    !!!!"

= 1.  Define  the  acceleration  by  𝑎! =!!!!!!!

.  Find  the  trajectory  in  space-­‐time  of  an  observer  moving  with  constant  acceleration.  What  is  the  region  of  space-­‐time  not  causally  connected  to  this  observer?    

   

Page 12: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

PHYSICS  AND  ASTRONOMY    

Ph.D.  Preliminary  Examination,  Part  II    

Time:   9:00  a.m.  -­‐  1:30  p.m.       Wednesday,  September  3,  2014    INSTRUCTIONS:    1.   Answer  a  total  of  five  questions.    You  must  answer:     3  out  of  questions  11,  12,  13,  14  or  15  (Quantum  Mechanics)     2  out  of  questions  16,  17  or  18  (Statistical  Mechanics)    2.   Use  a  separate  answer  book  for  each  question.    Write  your  name  and  the  

question  number  on  the  front  of  each  book.    3.   Indicate  below  which  five  questions  you  wish  to  have  graded,    

sign  your  name,  and  turn  in  this  cover  sheet.               ******    Circle  the  numbers  of  the  five  questions  to  be  graded:    11   12   13     14   15       16   17   18                       Signed  ______________________  

Page 13: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #11    

Two  noninteracting  distinguishable  particles  of  mass  m  are  in  the  ground  state  of  an  infinite  square  well  of  width  L.  What  is  the  mean  square  separation  distance  of  the  two  particles?  What  is  the  average  separation  distance  if  the  particles  are  indistinguishable  bosons?    

 

Page 14: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problelm  #  12    

An  isotropic  two  dimensional  simple  harmonic  oscillator  is  described  by  the  Hamiltonian  

 

                                                         𝐻 = ℏ𝜔 1+ 𝑎!!𝑎!!!!,!

 

    where                   𝑎!  ,𝑎!! = 𝛿!"       and         𝑎! 0 >= 0.      

a) Show  that  the  kets    

𝑎!!𝑎!!

!!!,!

!

𝑎!  ! ± 𝑖𝑎!! ! 0 >                𝑛,𝑚 ≥ 0  

 are  eigenkets  of  𝐻.    What  are  the  eigenvalues?    

 b) What  is  the  degeneracy  (if  any)  of  the  eigenvalues?    

 c) What  operator(s)  could  be  included  with  𝐻  to  comprise  a  complete  set  of  

commuting  operators  (CSCO)?        

Page 15: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

   Problem  #13    

a) Prove  the  Hellmann-­‐Feynman  Theorem    

𝜕𝜕𝜆  < 𝑛, 𝜆  𝐻  (𝜆)    |𝑛, 𝜆 >    =  < 𝑛, 𝜆│  

𝜕𝜕𝜆  𝐻   𝑛, 𝜆 >.  

 where  the  kets   𝑛, 𝜆 >    are  eigenvectors  of  H  and  where  𝜆  is  a  parameter  of  the  system.    

 b) Use  a)  to  evaluate  the  quantitites  

 𝑛ℓ𝓁𝑚 1 𝑟 𝑛ℓ𝓁𝑚  

    and      

𝑛ℓ𝓁𝑚 1𝑟! 𝑛ℓ𝓁𝑚  

    for  the  Hydrogen  atom.      

Page 16: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

 Problem  #14      

Consider  the  Stark  effect  for  the  ground  state  of  Hydrogen.  The  Hamiltonian  is  given  by  

      𝐻 = 𝐻! − 𝑒ℰ𝑧    

where  𝐻!  is  the  usual  Hamiltonian  of  the  Hydrogen  atom  and  ℇ  denotes  the  magnitude  of  a  uniform  electric  field.    

a) Show  that  the  lowest  nonvanishing  correction  to  the  ground  state  energy  must  be  of  the  form  

 

Δ  𝐸 = −12  𝛼  ℰ

!                  where  𝛼  is  a  positive  real  number.      

b) Derive  an  upper  bound  for  𝛼.        

Page 17: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #15    

Consider  scattering  by  a  repulsive  𝛿  function  potential  of  the  form           !!

ℏ!𝑉 𝑟 = 𝛾𝛿(𝑟 − 𝑅)  

 with  𝛾 > 0.  Find  the  scattering  cross  section  𝜎  in  the  low  energy  limit  𝑘𝑅 << 1  .  

     

Page 18: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

 Problem  #  16    

An  ideal  gas  is  confined  to  a  cube  of  volume  𝑉 = 𝐿!.  Each  atom  of  the  gas  has  an  internal  degree  of  freedom  with  one  excited  state  at  energy  𝜀  above  the  ground  state.  The  gas  is  above  a  perfectly  smooth  surface  of  area  𝐿!  .  The  atoms  may  attach  to  the  surface  with  a  binding  energy  𝜑  and  then  are  free  to  move  on  it.  The  whole  system  is  in  thermodynamic  equilibrium  at  temperature  T.  

 a) What  is  the  fraction  of  the  atoms  on  the  surface?      b) What  fraction  of  the  atoms  is  not  on  the  surface  and  is  in  the  excited  

state?      

c) Find  the  value  of  the  fractions  computed  in  a)  and  b)  in  the  limits  𝑇 → 0  and  𝑇 → ∞  .  

     

Page 19: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #  17    

Consider  a  container  separated  by  a  wall  into  two  chambers.  The  wall  is  free  to  move  but  is  a  thermal  insulator  and  impenetrable  to  particles.    The  gas  in  the  left  chamber  (see  picture  below)  is  an  ideal  classical  gas  obeying  Maxwell-­‐Boltzmann  statistics  and  consists  of  𝑁!  particles  of  mass  𝑚!.  The  gas  in  the  right  chamber  is  an  ideal  Bose  gas  consisting  of  𝑁!  particles  of  mass  𝑚!.    The  system  reaches  equilibrium  keeping  constant  the  temperatures  𝑇!and  𝑇!,  of  the  two  chambers  respectively.    

 a) Assuming  that  𝑇!  is  extremely  high  (such  that  the  Bose  gas  behaves  as  an  ideal  classical  gas)  what  will  be  the  ratio  𝑉! 𝑉!?    

b) 𝑇!  is  set  to  a  somewhat  lower  temperature  where  quantum  effects  are  present.  What  will  then  be  the  ratio  𝑉! 𝑉!?  Should  this  ratio  increase  or  decrease  as  𝑇!  is  lowered?  Explain.    

c) Now  assume  that  𝑇!  is  lower  than  𝑇!  the  critical  temperature  of  the  Bose  gas.  What  is  the  ratio  𝑉! 𝑉!  in  this  regime?    

   

𝑉!     𝑉!  𝑁!     𝑁!  𝑇!     𝑇!              

       

Page 20: 2014 Prelim Final - University of Rochesterpassage/resources/prelim/Past Prelims/By … · PHYSICSANDASTRONOMY ’! Ph.D.PreliminaryExamination,PartI!! Time:! 9:00a.m.8!1:30p.m.!

Problem  #  18    

A  gas  of  volume  𝑉  consists  of  diatomic  molecules  A!  and  atoms  A  undergoing  the  chemical  reaction  

 2A ↔ A!  

 The  mass  of  an  atom  A  is  m  and  the  binding  energy  of  an  A!  molecule  is  𝜀!.  The  gas  is  in  thermodynamic  equilibrium  at  temperature  T.  Find  the  number  of  dissociated  atoms  A  relative  to  their  total  number  (in  atomic  or  molecular  forms).