04 Billington Geohazard 2007 NEW

download 04 Billington Geohazard 2007 NEW

of 15

Transcript of 04 Billington Geohazard 2007 NEW

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    1/36

    2D MASW SURVEYS TO EVALUATE

    SUBSURFACE STIFFNESS

    Investigations of the 2004 I-40 Landslide

    and Other Projects

    Ned Bil lington, L.G., Jeremy Strohmeyer, L.G.,

    and Alex Rutledge, E.I.T., G.I.T.

    Schnabel Engineering11-A Oak Branch Drive, Greensboro, NC 27407

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    2/36

    Schnabel Engineering

    OutlineWhat is MASW?

    Quick Primer on Surface Waves Raleigh wave motion, Dispersion, SASW

    MASW Methodology

    Data Acquisition and Processing

    2D MASW Applications

    Sinkhole Investigations

     Abandoned Mine Survey

    I-40 Landslide Investigation

    Big Slow Movef Study

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    3/36

    Schnabel Engineering

    What is MASW?

    Multi-channel Analysis of Surface Waves

    The generation, recording, and analysis of

    seismic surface waves (Raleigh waves) todetermine subsurface shear wave velocities.

    Shear wave velocity is a direct indication of the

    stiffness of subsurface materials.

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    4/36Schnabel Engineering

    What is it good for?1D Shear wave velocity profiles

    Site-specific seismic analyses IBC Site Class designation

    2D Shear wave velocity cross-sections

    Investigating Karst and Sinkhole Features

    Mapping Abandoned Mines

    Determining Depth to Rock and Rock Quality

    Mapping Weak Soil Zones

    Locating Fracture Zones

    More!

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    5/36Schnabel Engineering

    Seismic Waves

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    6/36Schnabel Engineering

    Surface Wave Velocity

    and Dispersion Lower frequency components of the surface wave have

    longer wavelengths and travel deeper in the subsurface,

    producing “dispersion” or variation of velocity withfrequency.

    V2>V1

    V1

    f1 f2 f3

    V2>V1

    V1

    f1 f2 f3

    V2>V1

    V1

    f1 f2 f3

    V2>V1

    V1

    f1 f2 f3

    A B

    Frequency

       P   h  a  s  e

       V  e   l  o  c   i   t  y

    f1f2

    f3

    Frequency

       P   h  a  s  e

       V  e   l  o  c   i   t  y

    f1f2

    f3

    Frequency

       P   h  a  s  e

       V  e   l  o  c   i   t  y

    f1f2

    f3

    Frequency

       P   h  a  s  e

       V  e   l  o  c   i   t  y

    f1f2

    f3

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    7/36Schnabel Engineering

    Surface Wave VelocityThe surface wave velocity ranges from 87% to

    96% of the shear wave velocity.

    Variation is dependent on Poisson’s Ratio.

    By determining the surface wave velocit ies, and

    by estimating Poisson’s ratio, we can calculatethe shear wave velocity.

    ss R  V KV V    ⎟

     ⎠ ⎞⎜

    ⎝ ⎛ 

    ++==

    ν  

    ν  

    1

    12.187.0Relationship betweenS & Rayleigh Wave

    Velocities

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    8/36Schnabel Engineering

    MASW Data Aquisition

    Weight drop energy sources: sledgehammer, AWD,

    etc.

    Engineering seismograph and geophone array

    Energy source and array moved along ground

    surface to collect additional data

    . . .

    Seismic Energy Source

    Vertical Geophone Array

    Surface Wave

    Engineering Seismograph

    Body Waves

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    9/36Schnabel Engineering

    MASW Data Analysis

    Recognize surface wave energy

    Convert data to frequency domain

    Plot surface wave velocity versus frequency

    Select representative dispersion curve

    Dispersion Curve

    Signal-to-Noise Ratio

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    10/36Schnabel Engineering

    MASW Inversion Modeling An earth model of shear wave velocity with depth

    is generated to match the observed data.

    Final Velocity Model

    Model Dispersion Curve (solid) vs

    Observed Dispersion Curve(dotted)

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    11/36Schnabel Engineering

    1D and 2D Models

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    12/36

    Schnabel Engineering

    2D MASW Applications

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    13/36

    Schnabel Engineering

    Washington, DCStream Tunnel Sinkhole Survey

    South Dr 

    Line 1

       L

       i  n  e 

       3

    Independence Ave

    Line 2

    Low velocity anomaly

    over old tunnel

    Low velocity anomalies bymanhole and new tunnel

    Low velocity anomaly

    over old tunnel

    Low velocity anomalies bymanhole and new tunnel

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    14/36

    Schnabel Engineering

    Chisholm, MN Abandoned Iron Mine Survey

    Line A – Deep (48-channel data)

    120 140 160 180 200 220 240 260 280 300 320 340

    Horizontal Distance (feet)

    1400

    1420

    1440

    1460

    1480

    1500

    1520

    1540

    1560

    1400

    1420

    1440

    1460

    1480

    1500

    1520

    1540

    1560

       A  p  p  r  o

      x   i  m  a   t  e   E   l  e  v  a   t   i  o  n   (   f  e  e   t   )

     Approx. Nor theastBoring B1

    MINE DUMP MATERIAL

    GLACIAL TILL

    Collapsed Glacial Till?

    MINE WORKINGS

    BEDROCK

    200

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    3000

    3200

      L  i  n e

      A

      L  i  n e

       B

      L  i  n

     e   C

      L  i  n e

      A

      L  i  n e

       B

      L  i  n

     e   C

       M  o   d  e   l  e   d   S   h  e  a  r   W  a  v  e   V  e   l  o  c   i   t  y   (   f   t   /  s   )

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    15/36

    Schnabel Engineering

    Chisholm, MN

    Drilling Results, B-1

    Caved mine workings 21 feet thick

    Timbers and partially f illed voids

    http://images.google.com/imgres?imgurl=http://media.worldgolf.com/wg_blog_media/sweet-spots/DetroitTigersLogo.jpg&imgrefurl=http://www.worldgolf.com/blogs/brandon.tucker/2006/10/12/detroit_is_america_s_best_sports_town_th&h=704&w=480&sz=122&hl=en&start=9&tbnid=RjbuPJck0xvvNM:&tbnh=140&tbnw=95&prev=/images%3Fq%3Ddetroit%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Den%26sa%3DN

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    16/36

    Schnabel Engineering

    Detroit, MI

    Combined Sewer Pipe Sinkhole Study

    http://images.google.com/imgres?imgurl=http://media.worldgolf.com/wg_blog_media/sweet-spots/DetroitTigersLogo.jpg&imgrefurl=http://www.worldgolf.com/blogs/brandon.tucker/2006/10/12/detroit_is_america_s_best_sports_town_th&h=704&w=480&sz=122&hl=en&start=9&tbnid=RjbuPJck0xvvNM:&tbnh=140&tbnw=95&prev=/images%3Fq%3Ddetroit%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Den%26sa%3DNhttp://images.google.com/imgres?imgurl=http://media.worldgolf.com/wg_blog_media/sweet-spots/DetroitTigersLogo.jpg&imgrefurl=http://www.worldgolf.com/blogs/brandon.tucker/2006/10/12/detroit_is_america_s_best_sports_town_th&h=704&w=480&sz=122&hl=en&start=9&tbnid=RjbuPJck0xvvNM:&tbnh=140&tbnw=95&prev=/images%3Fq%3Ddetroit%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Den%26sa%3DN

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    17/36

    Schnabel Engineering

    Detroit, MI

    2D MASW Results (3.3 miles)

    http://images.google.com/imgres?imgurl=http://media.worldgolf.com/wg_blog_media/sweet-spots/DetroitTigersLogo.jpg&imgrefurl=http://www.worldgolf.com/blogs/brandon.tucker/2006/10/12/detroit_is_america_s_best_sports_town_th&h=704&w=480&sz=122&hl=en&start=9&tbnid=RjbuPJck0xvvNM:&tbnh=140&tbnw=95&prev=/images%3Fq%3Ddetroit%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Den%26sa%3DNhttp://images.google.com/imgres?imgurl=http://media.worldgolf.com/wg_blog_media/sweet-spots/DetroitTigersLogo.jpg&imgrefurl=http://www.worldgolf.com/blogs/brandon.tucker/2006/10/12/detroit_is_america_s_best_sports_town_th&h=704&w=480&sz=122&hl=en&start=9&tbnid=RjbuPJck0xvvNM:&tbnh=140&tbnw=95&prev=/images%3Fq%3Ddetroit%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Den%26sa%3DN

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    18/36

    Schnabel Engineering

    Detroit, MI

    Combined Sewer Pipe Sinkhole Study

    Example 2D MASW Results

    http://images.google.com/imgres?imgurl=http://media.worldgolf.com/wg_blog_media/sweet-spots/DetroitTigersLogo.jpg&imgrefurl=http://www.worldgolf.com/blogs/brandon.tucker/2006/10/12/detroit_is_america_s_best_sports_town_th&h=704&w=480&sz=122&hl=en&start=9&tbnid=RjbuPJck0xvvNM:&tbnh=140&tbnw=95&prev=/images%3Fq%3Ddetroit%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Den%26sa%3DN

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    19/36

    Schnabel Engineering

    2D MASW to Assist in I-40

    Landslide InvestigationSeptember 18, 2004 - Floodwaters from Hurricane

    Ivan cause erosion and landslide of I-40embankment near Tennessee border 

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    20/36

    Schnabel Engineering

     Aerial Photographs

    4/1992

    9/2004

    Main SlideSmaller Slide

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    21/36

    Schnabel Engineering

    MASW Survey - Main Slide

    MASW Survey in left-hand lane, eastbound

    lanes from Sta 1450 to 2225

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    22/36

    Schnabel Engineering

    MASW Data Acquisition

    24-channel land streamer, 4.5 Hz phones

    5-foot geophone spacing, 10-foot source spacing

     AWD energy source, 30-foot source offset

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    23/36

    Schnabel Engineering

    Main Slide - comparison with

    boring and tieback data

    1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

    DOT Stationing (feet)

    -80

    -60

    -40

    -20

    0

       A  p  p  r  o  x   i  m  a   t  e   D  e  p   t   h   (   f  e  e   t   )

    -80

    -60

    -40

    -20

    0

    FB-10FB-20 FB-7 FB-6 FB-5 FB-4   FB-3

    Note: Borings FB-4, FB-5, FB-6, and FB-10 are online. The other borings shown are offset to the south of the line about 18 to 39 feet.

     APPROX. EAST

    Low velocity anomaly maybe caused by fracture zoneor deeper weathering

    Boring with top of boulders (yellow) and top of rock (red)

     Approximate top of rock based on borings andshear wave velocities

    FB-10

    EXPLANATION

     5   0   0  

    1   0   0   0  

    1   5   0   0  

    2   0   0   0  

    2   5   0   0  

     3   0   0   0  

     3   5   0   0  

    4   0   0   0  

    4   5   0   0  

     5   0   0   0  

    Modeled Shear Wave Velocity (feet/second)

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    24/36

    Schnabel Engineering

    MASW Survey

    Smaller Slide

    Tunnel

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    25/36

    Schnabel Engineering

    MASW Results

    Smaller Slide

    LINE 2LINE 2

    H t C i BSM

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    26/36

    Schnabel Engineering

    Hunters Crossing BSM

    2D MASW and Seismic Refraction

    Seismic Survey Line

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    27/36

    Schnabel Engineering

    Section D-D’

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    28/36

    Schnabel Engineering

    Data Acquistion

    2D V M d l (MASW)

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    29/36

    Schnabel Engineering

    B-1

     Adjacent Scarp

    Cracks in Asphalt

     Act ive Scarp

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    1900

    2000

    2D Vs Model (MASW)

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    30/36

    Schnabel Engineering

    B-1

     Adjacent Scarp

    Cracks in Asphalt

     Act ive Scarp

    200

    400

    700

    900

    1200

    1500

    2000

    2D Vs Model (MASW)

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    31/36

    Schnabel Engineering

    2D Vp Model (Refraction)

    -340 -330 -320 -310 -300 -290 -280 -270 -260 -250 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

    800

    810

    820

    830

    840

    850

    860

    870

    880

    890

    900

    910

    920

    930

    940

    950

    960

    970

    0

    1500

    2500

    3500

    4500

    5500

    6500

    7500

    8500

    9500

    10500

    11500

    12500

    13500

    14500

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    32/36

    Schnabel Engineering

    Vs and Vp Models

    B-1

     Adjacent Scarp

    Cracks in Asphalt

     Act ive Scarp

    -340 -330 -320 -310 -300 -290 -280 -270 -260 -250 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

    800

    810

    820

    830

    840

    850

    860

    870

    880

    890

    900

    910

    920

    930

    940

    950

    960

    970

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    1900

    2000

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    33/36

    Schnabel Engineering

    Closing RemarksMASW is well suited to highway

    investigationsCan be collected next to traffic

     Acquisition relatively quick on pavement

    Not affected by buried, overhead utilities

    Provides a physical property useful for design

    (shear wave velocity – stiffness)

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    34/36

    Schnabel Engineering

    Thank you !Thank you !

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    35/36

    Schnabel Engineering

    Example Soil Boring

  • 8/19/2019 04 Billington Geohazard 2007 NEW

    36/36

    Schnabel Engineering

    Roadway Embankment Fill:

    Silty Sand

    Roadway Embankment Fill:

    Gravel, Cobbles, and

    Boulders

    Crystalline Rock:

    Quarzite and Meta

    Graywacke

    Example Soil Boring