Solar cell innovations by nanolayerssundaynl.nl/u/files/a2 erwin kessels.pdf · crystalline silicon...

Post on 19-Aug-2020

1 views 0 download

Transcript of Solar cell innovations by nanolayerssundaynl.nl/u/files/a2 erwin kessels.pdf · crystalline silicon...

Solar cell innovations by nanolayers

Erwin Kessels

w.m.m.kessels@tue.nlwww.tue.nl/pmp

Presentation prelude• In the Netherlands, we have a rich tradition and a strong position in the field of thin film materials 

o Also for the field of solar energyo Both academically and industrially

• Many technological innovations driven by advances in “materials”o Also true for solar cellso Currently strong focus on nanoscale materials

• In this presentation: discuss how solar cell innovations have been enabled by nanolayers and will continue doing so!

• Will do so from a personal perspective and by taking big leaps

Outline – trends to be discussed#1 From Al‐BSF to PERC cells

#2 PECVD and ALD Al2O3 passivation layers

#3 Towards n‐type silicon cells

#4 Towards silicon heterojunction cells

#5 Towards interdigitated back‐contact cells

#6 Towards silicon based tandem cells

#7 Towards perovskite solar cells

The Al-back-surface-field (Al-BSF) solar cell

The Al-back-surface-field (Al-BSF) solar cell

SiNx antireflection coating

Diffused n+ region

Textured p‐type silicon 

Al back‐contact

Ag front‐contact

PERC enabled by passivating Al2O3 nanolayers

Bram HoexJunior Einstein Award

2008

Hoex et al., Appl. Phys. Lett. 89, 042112 (2006).Review paper: Dingemans et al., J. Vac. Sci. Technol. A 30, 040802 (2012).

Excellent passivation: breakthrough by ALD Al2O3

Department of Applied Physics – Erwin Kessels

Injection Density n (cm-3)1012 1013 1014 1015

Effe

ctiv

e Su

rface

Rec

ombi

natio

n Ve

loci

ty S

eff (

cm/s

)

1

10

100

1-2 cm FZ p-Si

SiNx

a-Si

Al2O3

Al2O3

1.5 nm SiOx

c-Si

Al2O3 nanolayers (~5 nm) lead to excellent passivation of silicon surfacesDue to: 1) passivation of Si defects by H; 2) shielding of electrons by fixed charge

H H H H H

Qf― ― ― ― ―

Hoex et al., Appl. Phys. Lett. 89, 042112 (2006).Dingemans et al., J. Vac. Sci. Technol. A 30, 040802 (2012).

HH

H

Atomic layer deposition of Al2O3

Department of Applied Physics – Erwin Kessels

First PERC cells with Al2O3 nanolayers

Front metal grid Random pyramids

n + emitterN

P p -Si base

Point contacts

AluminiumAl O or Al O /SiO stack2 3 2 3 x

SiNx

n+ emitter

p-Si base

Front metal grid Random pyramids

n + emitterN

P p -Si base

Point contacts

AluminiumAl O or Al O /SiO stack2 3 2 3 x

SiNx

n+ emitter

p-Si base

Schmidt et al., Prog. Photovolt. Res. Appl. 16, 461 (2008).

Worldwide PERC capacity 2017

Department of Applied Physics – Erwin Kessels Courtesy of Morgan Ku (March 2, 2017)

PERC (Passivated emitter rear cell)

Performance loss induced by LeTID in the field | Friederike Kersten | 33rd EU PVSEC Amsterdam, September 27, 201712

Hanwha Q CellsGlobal Operation for R&D and Production

Germany- Global R&D Center (>210)- Global QM- VDE Lab (in-house)

Germany- Global R&D Center (>210)- Global QM- VDE Lab (in-house)

Malaysia- Capacity (2016YE):

Cell 1,800MWModule 1,800MW

Malaysia- Capacity (2016YE):

Cell 1,800MWModule 1,800MW

China (QD)- Capacity (2016YE):

Cell 2,400 MWModule 2,400 MW

China (QD)- Capacity (2016YE):

Cell 2,400 MWModule 2,400 MW

China (LYG)- Capacity (2016YE):

Ingot 1,500 MWWafer 900 MW

China (LYG)- Capacity (2016YE):

Ingot 1,500 MWWafer 900 MW

Korea- Capacity (2016YE):

Cell 2,100 MWModule 2,100 MW

Korea- Capacity (2016YE):

Cell 2,100 MWModule 2,100 MW

Engineering- Continuous improvement- Product development

Engineering- Continuous improvement- Product development

Engineering- Continuous improvementEngineering- Continuous improvement

Engineering- Crystallization- Continuous improvement

Engineering- Crystallization- Continuous improvement

Engineering- Continuous improvementEngineering- Continuous improvement

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500

CELL MODULE

6.3 GW* 6.3 GW*

* As

per e

nd o

f Q2,

201

7

*Capacity in South Korea belongs to affiliated and non‐listed company Hanwha Q CELLS Korea Corporation

Gijs DingemansWinner Solar Thesis Award 2012

Spatial ALD for Al2O3 - SolayTec

Department of Applied Physics – Erwin Kessels SolayTec B.V. ‐ www.solaytec.com

Top viewSide view   Wafer moves hence and forth

Spin‐off from TNO (2010)Now part of the Amtech group

System throughput:Up to 4800 wafers/hr

Spatial ALD for Al2O3 - Levitech

Department of Applied Physics – Erwin Kessels Levitech B.V. ‐ www.levitech.nl

Cross‐sectional viewSide view   Wafer from one side to the other

Spin‐off from ASM International (2009)

System throughput:Up to 6000 wafers/hr

First cell with p+-emitter passivated by ALD Al2O3

Hoex et al., Appl. Phys. Lett. 91, 112107 (2007).Benick et al., Appl. Phys. Lett. 92, 253504 (2008).

Article in newspaper NRC Handelsblad

STW perspectief project: Flash

ALD of high‐mobility transparent conductive oxides (TCOs)

1.5 2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

12

Photon energy (eV)

Abso

rptio

n co

effic

ient

(104 c

m-1)

0

10

20

30

40

50

Free-carrier absorption

Photon flux (mA/m

2/eV)

Solar spectrum In2O3:H

ITO

1.12Eg,c-Si

1.5 2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

12

Photon energy (eV)

Abso

rptio

n co

effic

ient

(104 c

m-1)

0

10

20

30

40

50

ZnO:BZnO:H

Free-carrier absorption

Photon flux (mA/m

2/eV)

Solar spectrum

ZnO:Al

1.12Eg,c-Si

ALD In2O3:H

ALD ZnO:Al75 nm 40 nm

Macco et al., Phys. Status Solidi RRL 8, 987 (2014).Macco et al., Semicond. Sci. Technol. 29, 122001 (2014).

Application of ALD ZnO:Al at rear side SHJ cell

Department of Applied Physics – Erwin Kessels

AZODMAI (low)

ITO

η (%) 21.30 21.33

Voc (mV) 731.9 733.7

Jsc(mA/cm2) 36.67 36.47

FF (%) 79.38 79.71

Si heterojunction cellwith ZnO:Al at the rear

Abundant ZnO:Al as good as more expensive ITO 

(but not yet at the front)

Niemelä et al., to be published (2018).

Passivating contact cellsCells with metal contacts separated from silicon through passivation layer

A simple concept: “Just depositing stacks of thin films on silicon”

Passivating contact cells

c-Sic-Si

SiOxSiOxTiOxTiOx

Many new materials: doped poly‐Si, metal fluoriudes, metal oxides, …

TKI Urban Energy projects: Compass, Miracle, Radar, …

Cells with metal contacts separated from silicon through passivation layer

Preferably with highly transparant and stable nanolayers!

A simple concept: “Just depositing stacks of thin films on silicon”

TU/e solar family car “Stella Vie”

See our blog post at: www.AtomicLimits.com

IBC cells from

SiNx antireflection coatings prepared by the DEPxDEPx fast deposition system with expanding thermal plasma source

(developed at TU/e)

OTB Solar B.V.  Roth & Rau B.V. Meyer‐Burger B.V.(known from SiNA & MAiA)

2010 2011

See our blog post at: www.AtomicLimits.comwww.meyerburger.com

Joint Solar Programme IIINew project on high‐efficiency hybrid tandem solar cells 

started in September 2017

Metallization & light management

Organic and inorganic perovskites

Nanolayers & passivation

Tandem architecture & silicon cell

Note: project focuses on 4‐terminal cell with IBC silicon bottom cell

Silicon-perovskite tandem cells with ALD

Department of Applied Physics – Erwin Kessels Bush et al., Nature Energy 2, 17009 (2017).Koushik et al., to be published (2018).

Stanford‐ASU‐MIT‐etc.

2‐terminal devicewith ALD SnO2:

23.6% efficiency (certified)

4‐terminal devicewith ALD In2O3:H 

22.6% efficiency

ALD SnO2/ZTO

Top cell:‐ Triple cation perovskite ‐

glass

ALD In2O3:HNiO NPs

Perovskite

PCBM/ZnO NPs/ZnO

ITO

Bottom cell:‐Metal‐wrap‐through c‐Si(n) cell ‐

Perovskite cells with nanolayers

TCOIn2O3, ZnO:Al, ZnO:B, …

Electron transport layerTiOx, SnOx, …

Passsivation layersAl2O3, …

Hole transport layerNiOx, CuOx, MoOx, WOx, …

Zardetto et al., Sust. Energy Fuels 1, 30 (2017).

Perovskite with ALD Al2O3 nanolayer

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

Cur

rent

Den

sity

(mA

/cm

2 )

Voltage (V)

Pristine 8 cycles 10 cycles 15 cycles 18 cycles 20 cycles

Glass

TiO2

CH3NH3PbI3-δClδ

Spiro-O-MeTAD

ITO500 nm

Au

No. of cycles Voc(V)

Jsc(mA/cm2) FF PCE

(%)

0 1.03 21.3 0.69 15.1

8 1.07 20.8 0.78 17.4

10 1.08 21.7 0.77 18.0

15 1.07 21.7 0.77 17.9

18 1.02 19.5 0.69 13.7

20 0.96 16.0 0.63 9.7

3% absolute increase in efficiency with 10‐15 cycles Al2O3

Koushik et al., Energy & Envir.Science, 10, 91‐100 (2017).Koushik et al, Advanced Mat. Interfaces 1700043 (2017).

Perovskite with ALD Al2O3 nanolayer

Glass

TiO2

CH3NH3PbI3-δClδ

Spiro-O-MeTAD

ITO500 nm

Au

Koushik et al., Energy & Envir.Science, 10, 91‐100 (2017).Koushik et al, Advanced Mat. Interfaces 1700043 (2017).

0.0 0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

25

Cur

rent

Den

sity

(mA

/cm

2 )

Voltage (V)

pristine 10 Al2O3 cycles

0 10 20 30 40 50 60 700

5

10

15

20 pristine 10 cycles Al2O3

PCE

(%)

no. of days

Ageing studies: Al2O3 significantly delays cell degradation

Roll-to-roll ALD

Poodt et al., J. Vac. Sci. Technol. A 30, 01A142 (2012)Meyer‐Burger B.V. ‐ www.meyerburger.com 

Summary• Nanolayers have enabled important innovations in the field of crystalline silicon photovoltaics most prominently: Al2O3!

• Many more opportunities exist for (ALD) nanolayers:o Crystalline silicon (e.g. passivated contacts)o Perovskiteso Tandem solar cellso …

Passivated contacts solar cell Perovkite solar cell

Passivating contact workshop ‐ January 31, 2018 – TU/e Eindhoven

Department of Applied Physics – Erwin Kessels

Acknowledgments

Plasma & Materials Processing groupPhD students/postdocs/faculty involved:Willem‐Jan BerghuisDibya KoushikDr. Bas van der LooDr. Yizhi WuDr. Bart MaccoDr. Sjoerd SmitDr. Gijs DingemansDr. Bram Hoex

Dr. Jimmy MelskensDr. Yinghuan KuangDr. Lachlan BlackDr. Janne NiemeläDr. Diana GarciaDr. Valerio ZardettoDr. Adriana CreatoreDr. Marcel Verheijen

Plasma & Materials Processing group