MOSFET Review and Wrap-Up - nanoHUB/uploads/30... · inversion capacitance in a diode? 3) What is...

Post on 24-Feb-2021

1 views 0 download

Transcript of MOSFET Review and Wrap-Up - nanoHUB/uploads/30... · inversion capacitance in a diode? 3) What is...

Bermel ECE 305 F15

ECE 305: Fall 2015

MOSFET Review and Wrap-Up

Professor Peter BermelElectrical and Computer Engineering

Purdue University, West Lafayette, IN USApbermel@purdue.edu

Pierret, Semiconductor Device Fundamentals (SDF)

Chapter 18 (pp. 645-658)

111/20/2015

Outline

Bermel ECE 305 F152

1. Review of Key Principles

2. Major Failure Modes

3. Short Channel Effects

4. Device Variability

5. Improved Mobility

6. Conclusion

11/20/2015

Key Principles in MOSFETs

11/20/2015 Bermel ECE 305 F15 3

• MOSFET basic geometry

• MOS band bending

• MOS junction capacitance

• MOSFET transfer and output characteristics

• MOSFET square law

• MOSFET velocity saturation

MOSFET Geometry

4

gate oxidemetal

p-Si

n+-Si

sourcen+-Si

drain

MOS capacitor

VG

VD > 0VS = 0

ID

“channel”

L

equilibrium e-band diagram

5

EC

EV

Ei

EF

metal

∆VS

∆Vox

Vbi = −φmsφ x( ) = 0 in the bulk

φ x = 0( ) = φS surface potential

V metal( ) = ∆Vox + φS

φS

V metal( ) = Vbi

11/20/2015

dE

dx=

ρ x( )ε

band bending in p-type MOS

6Fig. 16.6, Semiconductor Device Fundamentals, R.F. Pierret

Flat band Accumulation Depletion Inversion

′VG = 0 ′VG < 0 0 < ′VG < VT ′VG > ′VT

φS = 0 φS < 0 0 < φS < 2φF φS > 2φF

7

s.s. gate capacitance vs. d.c. gate bias

C

VG′

C =Cox

1+KOW φS( )

KS xo

depletion

VT′

flat band

Cox

11/20/2015 Bermel ECE 305 F15

inversion

accumulation

VG

Cox

CS

φS

Example: 32 nm N-MOS technology

Bermel ECE 305 F1511/20/201510

MOSFET device metrics

VGS

log10 ID

mA µm( )

VDD

transfer characteristics:

ION

VDS = 0.05 V

VDS = VDD

subthreshold swing:

mV decade( )

DIBL (drain-induced barrier lowering)

mV V( )off-current

VT

11/20/2015 11

threshold voltagesupply voltage

on-current (mA/µm)

ID VGS = VDS = VDD( )

Bermel ECE 305 F15

MOSFET device metrics

VDS

ID

mA µm( )

VDD

on-current (mA/µm)

ID VGS = VDS = VDD( )

transconductance

gm ≡∆ID

∆VGS VDS

µS µm( )

on-resistance

RON Ω − µm( )output resistance:

rd Ω − µm( )

VGS

Bermel ECE 305 F1511/20/2015 12

Why does the curve roll over?

Bermel ECE 305 F1513

( )2

2

µ= −o

D G T

W CI V V

mL

ID

VDS

VGS

VDSAT = VGS − VT( )/ m

( )≈ − − −i o G TQ C V V mV

VG VD>00

Q

loss of inversion

11/20/2015

ID and (VGS - VT): In practice

…..

Bermel ECE 305 F1514

ID

VDS

VGS

( )( ) ~α

= −D D DD G TI V V V V

1 < α < 2

Long channelComplete

velocity

saturation

11/20/2015

2D energy band diagram on n-MOSFET

Bermel ECE 305 F15S.M. Sze, Physics of Semiconductor Devices, 1981 and Pao and Sah.

a) device

b) equilibrium (flat band)

c) equilibrium (φS > 0)

d) non-equilibrium with VG and VD > 0 applied

FN15

Review Questions

Bermel ECE 305 F15 16

1) Why is the small signal conductance and diffusion capacitance

absent for MOS capacitors?

2) What is the expression for inversion capacitance? Why isn’t there

inversion capacitance in a diode?

3) What is the difference between flatband voltage vs. threshold

voltage?

4) When would you use deep depletion formula vs. small signal

formula?

5) Explain why there is a difference between low frequency response

vs. high-frequency response for a MOS-C, but there is no such

distinction for MOSFET.

11/20/2015

Outline

Bermel ECE 305 F15 17

1. Review of Key Principles

2. Major Failure Modes

3. Short Channel Effects

4. Device Variability

5. Improved Mobility

6. Conclusion

11/20/2015

Warranty, product recall and other facts of life

Bermel ECE 305 F1518

In this course, you are learning to analyze/design MOSFETs that go in an IC …

… because the ICs operate in incredibly harsh conditions, turning on and off trillions of timeduring its lifetime ….

… therefore the properties of the MOSFET keep changing. Eventually, S/D can be shorted, the gate oxide can break, etc ….

11/20/2015

How to Calculate Built-in or Flat-band Voltage

Bermel ECE 305 F1519

χs

Φm

Vacuum level

EV

EF

EC

( )= + − ∆ −

=

Φ

bi g p

FB MS

s MqV E

qV φ

χ

qVbi

( )= −i o G TQ C V V

Therefore,

= − −

BT F

o

FB

QV

CV

( )

( ( ) )

φ

χ

= ≡ Φ − Φ

= − Φ − − −bi MS M s

M s c F bulk

qV q q

E E

11/20/2015

Interpretation for Bulk Charge

Bermel ECE 305 F1520

0

1,

0 0

1,

0

1

( ) ( )1

( )

ρ δ= −

= −

−∫x

T T ideal

o

T i e l

o

a

o

x

Md

V V xC x

x

x x x dx

Q xV

x C

C/Cox

VG

Ideal VT

New VT

11/20/2015

Acceptor and Donor Traps Combined

Bermel ECE 305 F15

C/Cox

VG

21

Donor-related stretchout

Acceptor-related stretchout

11/20/2015

SiO and SiH Bonds

22

Broken Si-H bonds

Negative Bias Temperature Instability (NBTI)

Hot carrier degradation (HCI)

Broken Si-O bonds

Gate dielectric Breakdown (TDDB)

Electrostatic Discharge (ESD)

Radiation induced Gate Rupture (RBD)

11/20/2015 Bermel ECE 305 F15

Negative Bias Temperature Instability

23VD (volts)

I D(m

A)

before stress

after stress

0 1 2 3 4 0

4

3

2

1

Stress Time (sec)

% d

eg

rad

ati

on

101 103 105 107 109

5

10

15

Spec.

Warr

anty

Dielectric Breakdown

Bermel ECE 305 F1524

ln (time)

Gate

Curr

ent

Breakdown

ln(-

ln(1

-F))

VG1>VG2>VG3VDD6420-2-4-6-8

-10

-2 0 2 4 6 8 10log(TBD)

11/20/2015

Time-dependent Bulk Trap

Bermel ECE 305 F1525

C/Cox

VG

Ideal VT

Actual VT* 1 1

0

( , )oxth th

ox

x Q xV V

t

x C= −

11/20/2015

Radiation Induced Charge Buildup

Bermel ECE 305 F15 26

C/Cox

VG

Ideal VT

Actual VT* 1 1

0

( , )oxth th

ox

x Q xV V

t

x C= −

50 Mrad(Si) 8MeV elec

11/20/2015

Outline

Bermel ECE 305 F1527

1. Review of Key Principles

2. Major Failure Modes

3. Short Channel Effects

4. Device Variability

5. Improved Mobility

6. Conclusion

11/20/2015

Short Channel Effect: Vth Roll-off

Bermel ECE 305 F1528

Vth

Lch

2 2B A Tth F F

ox ox

Q qN WV

C Cφ φ= − = +

Lch∆Vth ?!

Lmin

11/20/2015

How to reduce Vth roll-off …

Bermel ECE 305 F15 29

min

0

21 1

α

= + −

A T

o J

TJ WqNL

r

rW

C

Reduced substrate doping NA

consider WT and junction breakdown

Shallow junction/geometry of transistorslaser annealing of junctions, FINFETs

Thinner gate oxides Consider tunneling currentHigher gate dielectricConsider bulk trapsHigh-k/metal gate MOSFET

11/20/2015

Advantages of High-k Dielectric

30

0

0

21 1

ox

A T J Tc

J

qN W r WL

r

x

ε ακ

= + −

High-k/metal gate MOSFET

2

,( )2

µ= −D G T idea

olVI V

L

CZ

Thicker oxide (x0) for same capacitance …

… ensures the drive-current is not reduced

, but tunneling current is suppressed.

Solution: Ultra-thin Body SOI

Bermel ECE 305 F15 31

EF

VG

VG

tox

tSi

N A

11/20/2015

Example: FINFET, OmegaFET, X-FET

Bermel ECE 305 F1532

Gate

Source Drain

Cross-section

11/20/2015

Outline

Bermel ECE 305 F1533

1. Review of Key Principles

2. Major Failure Modes

3. Short Channel Effects

4. Device Variability

5. Improved Mobility

6. Conclusion

11/20/2015

Variability in Vth at Low Doping

34

2 2B Tth F F

ox ox

AQ qN W

VC C

φ φ= − = +

IBM Journal of Res. And Tech. 2003.

Variability in Threshold Voltage

Bermel ECE 305 F1535

2 2B Tth F F

ox ox

AQ qN W

VC C

φ φ= − = +

If every transistor has different Vth and therefore different current, circuit design becomes difficult

2

,( )2

µ= −o

D G T idealI V

LV

Z C

11/20/2015

Vth control by Metal Work-function

36

χs

Φm

Vacuum level

EV

EF

EC

qVbi

( )= −i o G T

Q C V V

φ

= − + −

BT s

o

FBV

QV

C

High-k/metal gate MOSFET

( )bi g p M

FB

qV E

qV

χ= + − ∆ − Φ

=11/20/2015

Tunneling Current

Bermel ECE 305 F1537

2

( ) ( )GqViT i G th

A

nJ Q V e T E

N

β υ− = −

EC

EV

EF

EG

T

11/20/2015

Ge for PMOS, Si for NMOS

Bermel ECE 305 F15 38

Gatep-MOS

Active Area

n-MOS

[1’10]

[001]

90°

(110)-Plane

Gate

135°A

B

p-MOS

[1’10]

[100]

n-MOS

(001)-Plane

B

Strained-Si

Pillar

Takagi, TED 52, p.367, 2005

11/20/2015

Outline

Bermel ECE 305 F15 39

1. Review of Key Principles

2. Major Failure Modes

3. Short Channel Effects

4. Device Variability

5. Improved Mobility

6. Conclusion

11/20/2015

Basics of Strain ..

Bermel ECE 305 F15 40

Compressive

biaxial strain

Enhances mobility in the channel …

Larger lattice

Smaller lattice

11/20/2015

Uniaxial Compressive Strain to Enhance Mobility

Bermel ECE 305 F15 4211/20/2015

Biaxial Strain to Enhance Mobility

Bermel ECE 305 F15 43

Adapted from Chang et. al, IEDM 2005.

11/20/2015

New Channel Materials for improved mobility

Bermel ECE 305 F15 4411/20/2015

Conclusion

Bermel ECE 305 F15 45

1) The basic behavior of MOSFETs can be captured by

band diagrams, transfer & output characteristics

2) There are a variety of failure modes that can degrade

performance over time

3) Short channel effects + variability are a serious concern

for MOSFET scaling, but many novel approaches have

been proposed to solve them, resulting in effective

MOSFET channel lengths < 15 nm

11/20/2015