X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x)...

35
X-ray absorption spectroscopy Jagdeep Singh Jeroen A. van Bokhoven

Transcript of X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x)...

Page 1: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

X-ray absorption spectroscopy

Jagdeep Singh

Jeroen A. van Bokhoven

Page 2: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8
Page 3: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8
Page 5: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8
Page 6: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Synchrotron needed

Page 7: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8
Page 8: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Absorption through matter

Page 9: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

10000 12000 140000.90

0.91

0.92

0.93

0.94

0.95

Tran

smis

sion

Energy (eV)

L3

L2

L1 Au Foil

Page 10: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Absorption as function of energy of the x-rayShape is structure dependent

Page 11: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Creation of a photo-electron

Ekin = hν - EBinding

Photo-electron has kinetic energy

EBindinghν

Page 12: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Photo-electron has kinetic energy

Page 13: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

XANES2

f ii f E EP T νδ − −Ψ Ψ h

Initial state Final state

Transition operator

Fermi’s Golden Rule

Page 14: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Outgoing wave === backscattering === interference patternConstructive / destructive interference

„wig

glin

g in

abs

orpt

ion“

Ψfinal = Ψoutgoing + Ψback scattering

Page 15: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

EXAFS is the wiggling part of the absorption

Page 16: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

2d sin θ = nλ

Tuning the energyDouble crystal monochromator

Bragg angle

sample

I0 IX-rayswhite beam Crystal [Si(111)]

SLS, Villigen

Page 17: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Experimental Hutch

BM26 (DUBBLE), ESRF Grenoble

Page 18: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Lambert Beer’s lawdI = -μ(E)I dxI = I0 exp(-μ(E)x)

Transmission through 1 cm

0 2000 4000 6000 8000 10000 12000 140000.0

0.2

0.4

0.6

0.8

1.0

Tran

smis

sion

Energy (eV)

10-3 mbar

Air @ 1 bar

2000 4000 6000 8000 1000012000140000.0

0.2

0.4

0.6

0.8

1.0

Tran

smis

sion

Energy (eV)

25 μm 1 wt% Au/SiO2

hνI0

I = I0e-μx

10000 12000 140000.90

0.91

0.92

0.93

0.94

0.95

Tran

smis

sion

Energy (eV)

L3

L2L1

X-ray absorption through matter

Page 19: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Sample environment

pressuretemperatureenvironment

Absorption of X-rays is limiting factor

Find a good window material• Size of window• Thickness• Inertness• Temperature resistance• Pressure• Safety

0 2000 4000 6000 8000 10000 12000 140000.0

0.2

0.4

0.6

0.8

1.0

Tran

smis

sion

Energy (eV)

Transmission through25 μm and 1 mm

Al

Mylar

Be

Si K Cr K Cu K Pt L3Ag L3

Page 20: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

In situ EXAFS cells for gas-solid reactions

Reaction gas mixture flows

around a pellet

Reaction gas flows through a catalyst

pellet

Small Glass Reactor with very thin

windows (0.01mm)

Large dead volumeGood for stationary

conditions

Critical d/l (smaller effectivity of the catalyst)

Small dead volumeOptimal d/lGood for structural changes Structure-activity relations

1 x 8 mm 1 x 8 mm

Page 21: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Reactor

Fluorescence detector Thermo

Couple

Exit-tube to mass spec

ID26, ESRF

Page 22: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8
Page 23: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

XANES

Dipole transition:K edge: 1s pL edge: 2s p

2p s,d

HoweverQuadrupole transition:K edge s d

p f

Quad. Trans. probability is about 10-3 smaller, but d-DOS >> p-DOSVisible in the K pre-edges!!

Δl=±1

Δl=±2

2

f ii f E EP T νδ − −Ψ Ψ h

Initial state Final state

Transition operator

Fermi’s Golden Rule

Page 24: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

What determines the shape of XANES spectra?- Pre-edge- Edge-energy- Shape over the edge

1.2

0.8

0.4

0.0

Nor

mal

ised

abs

orpt

ion

(μx)

552054805440X-ray energy (eV)

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

552054805440

1.2

0.8

0.4

0.0

V2O5

V6O13

VO2

NH4VO3

VOSO4.3H2O

K edge (1s 4p)of VOx compounds

Pre-edge - intensity- energy

…… there is not always a pre-edge

BUT…..

Page 25: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

1.2

0.8

0.4

0.0

Nor

mal

ised

abs

orpt

ion

(μx)

552054805440X-ray energy (eV)

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

552054805440

1.2

0.8

0.4

0.0

V2O5

V6O13

VO2

NH4VO3

VOSO4.3H2O

VOSOVO2V6O13V2O5NH4VO

In order of increasing distortion from octahedral

4 Distorted OctahedralDistorted OctahedralDistorted OctahedralDistorted Square Pyramidal

3 Tetrahedral

Increasingpre-edge

Increasingdistortion

Page 26: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

1.0

0.8

0.6

0.4

0.2

0.0

Nor

mal

ised

abso

rptio

n (

x)

548554805475547054655460X-ray energy (eV)

Arctangent / polynomial

548554805475547054655460X-ray energy (eV)

Isolation of the pre edgeby edge subtraction

Page 27: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Pre-edges intensity & energy varies (K edge)

Pure octahedral caseCentro-symmetry: no p-d mixing allowed: only quadrupole transition

very low intensity

Distortion from octahedralP-d mixing allowed: dipole transition in pre-edge + quadrupolar trans.

increasingly large intensity

Pure tetrahedral => largest pre-edge

Intensity pre-edge indicative of geometry

1.2

0.8

0.4

0.0

552054805440

NH4VO3

Page 28: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Vn+

P-DOS

EedgeEpre

(Pre-)edge Energy and ValenceEdge position is measure of oxidation state

1S

2p 3/2

2p 1/2

2s

1s

Ef

hν > Eo

photo-electronEkin = hν - E0

EmptyDOS

Page 29: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

1.2

0.8

0.4

0.0

Nor

mal

ised

abs

orpt

ion

(μx)

552054805440X-ray energy (eV)

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

552054805440

1.2

0.8

0.4

0.0

V2O5

V6O13

VO2

NH4VO3

VOSO4.3H2O

For L edges > 3 keV and all K edges Shape of the whiteline

“Whiteline is first intensepeak(s) in spectrum”

VOSO4 Distorted Octahedral

VO2 Distorted Octahedral

V6O13 Distorted Octahedral

V2O5 Distorted Square Pyramidal

NH4VO3 Tetrahedral

Page 30: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

E (eV) - EedgeE (eV) - Eedge

-60 -30 0 30 60 900.0

0.2

0.4

0.6

0.8

1.0

1.2

Nor

mal

ized

abs

orba

nce

bulk gold

-60 -30 0 30 60 900.0

0.2

0.4

0.6

0.8

1.0

1.2

Nor

mal

ized

abs

orba

nce

Au2O3

Au L3 edge

Whiteline reflects holes in d-band

Very small whiteline

Shape of the whiteline: L-edges

Totally different

Page 31: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

11900 11925 11950 119750.0

0.2

0.4

0.6

0.8

1.0

1.2

70 °C : Au3+

200 °C : Au0

In situ Au3+ reduction in He/H2

Isobestic points

11875 11900 11925 11950 11975 120000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Au(0)Au(III)

Nor

mal

ized

Abs

orpt

ion

Energy (eV)

Reference spectra

HAuCl4 on Al2O3

Page 32: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Shape of the whiteline: L-edgesPure metals:

Whiteline reflects holes in d-band

Mo0.5

Ru0.7

Rh0.8

Pd0.9

Ag1.0

Tc0.6

Ideal d-band filling

Alloying:

Whiteline reflects charge transfer

Page 33: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Abstract (I)Pre-edge Edge Shape over the edge- Valence - Valence - Geometry- Geometry - D-band filling (LIII-edge)

- (Non- / Anti-bonding) DOS states(- Adsorbates)

For many (many!) compounds structures and spectra are available in literature

NoteVariations in XANES may be very subtle and hardly visible in the data:

take (negative) second derivative

Page 34: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

L edgesWhiteline intensity reflects number of holes in the d band (valence)

K edges(Pre) edge position reflects valence

Shape of XANES indicative of geometry

Page 35: X-ray absorption spectroscopy - ETH Z...Lambert Beer’s law dI = -μ(E)I dx I = I 0 exp(-μ(E)x) Transmission through 1 cm 0 2000 4000 6000 8000 1000012000 14000 0.0 0.2 0.4 0.6 0.8

Typical XANES Experiment

• Catalyst samples, measured in desired conditions temperature, pressure, aggregation state

• Reference samples that likely resemble the state of the catalyst- Various oxidation states- Various coordinations

• Identification of trends, similarities in reference samples

• Comparison of trends, similarities to ‘unknowns’

• Application of theory to obtain ultimate information (expert option).