Voltage Gated Ionic Current - Freie...

23
Voltage Gated Ionic Current Eryk Wolski (Free University of Berlin) ([email protected]) Supervisor: Wilhelm Huisinga 15.05.03

Transcript of Voltage Gated Ionic Current - Freie...

Page 1: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Voltage Gated Ionic Current

Eryk Wolski (Free University of Berlin)([email protected])

Supervisor: Wilhelm Huisinga

15.05.03

Page 2: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Contents

• The Membrane Model

– Current through Resistance∗ Models for Voltage Dependent Gating

– Basics of Ionic Battery– Capacitive current

• The Volt Clamp

1 15.05.03

Page 3: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

The Membrane Model

C - Capacitance; R - resistance of ion channel; Vr - Nernst Potential;Image Source: Christof Koch Sep-21-97: http://www.klab.caltech.edu/ koch/biophysics-book/

2 15.05.03

Page 4: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Current through Resistance

• Current caused by Ion i: Iioni= Vi−V

Ri= −gi ∗ (V − Vi)

• sum of the individual ionic currents: Iion =∑

i−gi(V − Vi)

• Vi - reversal potential at which no current are flowing through channel i.

• gi - conductance. gi = gi ∗ f0

gi are the conductance if all channels are open. f0- fraction of open channels.

3 15.05.03

Page 5: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingIon Channels

• Channels are selective for ions of a particular type.

• Individual channels switch among states very rapidly, often more ra-pidly than detectable by commonly used electrophysiological me-thods.

• Switching probabilities of many channels depend upon membranepotential (voltage dependence) or upon the binding of neurotransmit-ters to the membrane (ligand dependence).

4 15.05.03

Page 6: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingA simple molecular Channel

• Switching between an open O and closed C State

• Law of mass action.C ⇀↽k+

k− O

• This transition is called a uni-molecular process because involve on-ly one channel molecule. It is Reversible what is indicated by thearrows.

5 15.05.03

Page 7: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingA simple molecular Channel

• Law of Mass Action The rate of a process is proportional to theproduct of the concentrations of the molecular species involved inthe process

• [O] = fo = No/N

– fo fraction of the open channels.– N total number of channels– No number of open channels– (similarly, fc and Nc refer to the closed state).

• k+ - rate constant. units s−1

6 15.05.03

Page 8: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingA simple molecular Channel

• flux O → C = j− = k−f0

flux C → O = j+ = k+(1− f0)

• Description of the transition from closed to open channels.

df0

dt= j+ − j− = −k−f0 + k+(1− f0) = −(k− + k+)(f0 − k+

(k− + k+))

– f0 fraction of open channels.

7 15.05.03

Page 9: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingA simple molecular Channel

Lets define:

• Fraction of channels open at the equilibrium (dfdt = 0) at the membra-

ne potential V. f∞ = k+

k−+k+

• Factor determining the half time of reaction. τ = 1/(k+ + k−)

The fraction of open channels satisfies the differential equation.

df0

dt=−(f0 − f∞)

τ

8 15.05.03

Page 10: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingThe Voltage dependent channel

• Show image of Voltage dependent potassium channel.

• Voltage dependent Ionic channels are composed of proteins withcharged amino acid side chains

• The potential difference across the membrane can influence the rateat which the transition form the open to closed state occur.

9 15.05.03

Page 11: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingArrhenius Equations

• Ilia has already introduced the Arrhenius Equation !

• The membrane potential V contributes to the energy barrier for thetransitions O ⇀↽ C.

k+ = k+0 e−αV k− = k−0 e−βV

Where k+0 and k−0 are independent of V.

10 15.05.03

Page 12: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingThe Voltage dependent channel

f∞ =k+

k− + k+τ =

1k+ + k−

Substitute:k+ = k+

0 e−αV k− = k−0 e−βV

into the expression of f∞ and τ .

S0 =1

α− β

Determines the steepness of thedependency of f∞ on V

V0 =ln(k−0 /k+

0 )β − α

Determines the voltage at whichhalf of the channels are open.

11 15.05.03

Page 13: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingThe Voltage dependent channel

f∞ = 1

1+e−(V−V0)/S0

it is a sigmoidal function

τ = e(αV )

k−0· 1

1+e−(V−V0)/S0

Sigmoidal function combined with exponential function.

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

V(mV)

f_in

f

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

V(mV)

T(m

s)

12 15.05.03

Page 14: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Models for Voltage Dependent GatingExcitability and Action Potential

A system is excitable when small perturbations return to steady state,but larger (i.e, above a threshold V0) perturbations cause large transientdeviations away from the steady state.

For the voltage dependent ion channel excitability means that the chan-nel are switching from the open to the closed state or vice versa only ifthe voltage transcends V0. How fast this switching occurs depends onS0.

13 15.05.03

Page 15: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Basis of the Ionic Battery

• Equilibrium Potential - where the electrical and osmotic forces arebalanced is given by the Nernst Equation .

• It is derived from the change in Gibbs Free Energy4G. At equilibrium4G is zero. Rearranging gives the Nernst Potential.

4V = VNernst =RT

zFln

[ion]out

[ion]in

Nernst Potential is determined by the concentration gradient acrossthe membrane.

R Gas constant; F Faraday constant; T temperature in kalvin ;z valence of the ion

14 15.05.03

Page 16: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Capacitive Current

• Given C-capacitance, Vm - membrane Potential, Q-Charge.

Q = Vm · C

• CurrentI =

dQ

dt

• capacitive current

Ic = CdVm(t)

dt

15 15.05.03

Page 17: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

The Membrane ModelKirchhoffs Law

The sum of all currents flowing into or out of any electrical node mustbe zero.

0 = −Icap + Iion + Iapp

Iapp - any current that might be applied.

CdV

dt= −

∑gi(V − Vi) + Iapp

16 15.05.03

Page 18: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Voltage Clamp

Image Source: Christof Koch Sep-21-97: http://www.klab.caltech.edu/ koch/biophysics-book/

17 15.05.03

Page 19: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Voltage Clamp

Equations:

• C dVdt = −fog(V − Vrev) + Iapp Differential equitation of membrane

potential.

• We keep the Potential constant by applying Iapp

Iapp = gfo(V − Vrev)

• df0dt = −(f0−f∞)

τ Gating Equation with f∞ = 1

1+e−(V−V0)/S0and τ =

eV (α+β)/2

2√

k+0 k−0 cosh((V−V0)/2S0)

18 15.05.03

Page 20: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Voltage Clamp

df0

dt=−(f0 − f∞)

τ

With g = 2,Vo = −25,So = 5;A = (e(V (α+β)/2))/(2√

k+0 k−0 ) = 10 , V = −40,−30,−20,−10, 10 respectively

19 15.05.03

Page 21: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Voltage Clamp

Iapp = gfo(V − Vrev)

With g = 2; Vrev = −65mV and V = −40,−30,−20,−10, 10 and inserting fo we can compute Iapp.

20 15.05.03

Page 22: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Voltage Clamp

A different channel with S0 = 1 and V0 = −15 will react in a different wayto the same experimental conditions.

Iapp = gfo(V − Vrev)

With g = 2; Vrev = −65mV and V = −40,−30,−20,−10, 10 and inserting fo we can compute Iapp.

21 15.05.03

Page 23: Voltage Gated Ionic Current - Freie Universitätpage.mi.fu-berlin.de/huisinga/lehre/SemCellBio_SS03/talks/Wolski... · Eryk Wolski Voltage Gated Ionic Current Models for Voltage Dependent

Eryk Wolski Voltage Gated Ionic Current

Thank you

22 15.05.03