USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

121

Transcript of USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Page 1: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

I

REFERENCE USE ONLY

REPORT NO. FAA-RD-76-217

USERS' MANUAL FOR ILSS (REVISED* ILSLOC): SIMULATION FOR DEROGATION EFFECTS ON

THE INSTRUMENT LANDING SYSTEM

G. Chin

L. Jordan

D. Kahn

S. Morin

D. Newsom

M. Scotto

DECEMBER 1976

FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC

THROUGH THE NATIONAL TECHNICAL

INFORMATION SERVICE, SPRINGFIELD,

VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Systems Research and Development Service

Washington DC 20591

Page 2: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Govern ment assumes no liability for its contents or use thereof.

Page 3: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Technical Report Documentation Page

1. Report No.

FAA-RD-76-217

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

USERS' MANUAL FOR ILSS (REVISED ILSLOC): SIMULATION FOR DEROGATION EFFECTS ON

THE INSTRUMENT LANDING SYSTEM

5. Report Date

December 1976

6. Performing Organ! lotion Code

Author(s) o. Chin, L. Jordan, D. Kahn,

S. Morin, D. Newsom, M. Scotto

8. Performing Orgonilotion Report No.

DOT-TSC-FAA-7 6-7

9. Performing Orgoni zotion Nome end Address

U.S. Department of Transportation Transportation Systems Center

Kendall Square

Cambridge MA 02142

10. Work Unit No. (TRAIS)

.FA607/R7143 11. Contract or Grant No.

12. Sponsoring Agency Name ond Address

U.S. Department of Transportation Federal Aviation Administration

Systems Research and Development Service

Washington DC 20591

13. Type of Report and Period Covered

Final Report

August 1973-March 1976

14. Sponsoring Agency Code

ARD-741

15. Supplementary Notes

16. Abstract

This manual presents the complete ILSS (revised ILSLOC) computer

program package. In addition to including a thorough description of

the program itself and a listing with comments, the manual contains

a brief description of the ILS system and antenna patterns.

'To illustrate the program, a test case has been created and the figures of the case are incorporated in the report. Program DYNM

and program ILSPLT are included as appendixes. The ILSPLT, complete

with sample graphs, is a plotting routine for ILSLOC.

For a technical mathematical analysis of the system, see report

FAA-RD-72-137 (AD754517), "Instrument Landing System Scattering."

This report revises in part an earlier report FAA-RD-73-76, "Users' Manual for ILSLOC: Simulation for Derogation Effects on the

Localizer Portion of the Instrument Landing System." The revisions

include the treatment of triangular scatterers and glide slope antenna systems.

17. Key Words

ILS

Derogation

CDI

Localizer

18. Distribution Statement

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC

THROUGH THE NATIONAL TECHNICAL

INFORMATION SERVICE, SPRINGFIELD,

VIRGINIA 22161

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pago*

122

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed pago authorized

Page 4: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

PREFACE

As part of the ILS Performance Prediction program, a first

phase ILS Localizer performance prediction computer program package

has been prepared. This package consists of the computer program

and the present document which describes the capabilities and

limitations of the computer model as well as the step by step

running of the computer program.

The computer program is intended primarily as an aid in pre

dicting the performance of different ILS antenna candidates for a

proposed runway instrumentation or for the upgrading of an already

instrumented runway in a known airport environment. It is also

intended to provide a relatively inexpensive means by which the

effect of proposed changes to an airport environment (addition of

terminal buildings, hangars, etc.) on ILS performance may be pre

dicted. Another computer program has been devised to treat the

effects of terrain on glide slope performance.*

This document was prepared for the Transportation System Center

(TSC) by D. Newsom who was assigned as a full-time programmer to

the ILS Performance Prediction program. A. Watson and M. Scotto

helped in the writing and editing. The report itself and the

attached computer program are based on the theories and analyses

which were developed by the TSC group (G. Chin, L. Jordan, D. Kahn,

and S. Morin). The ILS program was sponsored by H. Butts of the

Systems Research and Development Service of the Federal Aviation

Administration. ' ( .

The present report revises in part an earlier report, FAA-RD-

73-76. The revisions include the treatment of triangular scatters

and glide slope antenna systems. The revised ILSLOC program has

been renamed ILSS-FOR (Instrument Landing System Scattering-

Fortran). The use of the term ILSLOC in the body of this report

refers to the generalized program, ILSS.

S. Morin et al, ILS Glide Slope Performance Prediction, Version A

Report No. FAA-RD-74-157 A. U.S. Department of Transportation,

Transportation Systems Center, Cambridge MA 02142, September

1974.

in

Page 5: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

METRIC CONVERSION FACTORS

Approximate Coavtrstecs to Matric Mttsorts

Wko Ym Km- Mdii^ kT Tt fM Syatol

LENGTH

23

30

0.9

1.6

AREA

Apyroiiwstt Coavtrtiaes fro* Mitric Mnmrat

Wfcts V«i Kn« ««Hi»ly kr T« FM

LEB6TH

0.4

3.3

1.1

0J

AREA

0.09

0.8

2.6

0.4

MASS

short tens

(2000 Ibi

28

O.«6

0.9

VOlUtlE

fluidi

cup*

PMtf

cubic tot

s

IS

so

0.24

0.47

0-95

1JB

0.03

0.7*

mtllihum

mlliliws

TEMPERATURE (trap

Ctltwt SC

*c

Man

littr*

cub*

cubic

MASSjwtiihl)

VOLUME

0.03

Z.1

1.0S

o_»

36

TEMFEBATUBE (•net)

cubic Imi

cubic v«tfs

floe

Pi

ft'

32

-4O -20 0 tO to «O tO ^

Page 6: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

CONTENTS

Section Page

1 DEFINITION OF INSTRUMENT LANDING SYSTEM 1

2 ANTENNA PATTERNS 3

3 ILS SIMULATION DESCRIPTION 6

4 TEST CASE FOR THE ILSLOC COMPUTER PROGRAM 8

APPENDIX A MAIN PROGRAM LISTING INCLUDING COMMENTS

EXPLAINING THE PROGRAM 31

B DYNAMIC SIMULATION PROGRAM DYNM LISTING 93

C ILSPLT PLOTTING ROUTINE 96

Page 7: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

ILLUSTRATIONS

Figure

1 ANTENNA PATTERNS SKETCH 4

2 SIMULATION AIRPORT 9

3 PATTERN CARD TEST CASE LISTING 15

4 ILLUSTRATION OF ORIENTATION NOMENCLATURE FOR RECTANGULAR SURFACE . . ............. 21

5 FLIGHT CASE INPUTS 29

VI

Page 8: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

1. DEFINITION OF INSTRUMENT LANDING SYSTEM

The ILSLOC program has been written to simulate certain air

port conditions which affect the localizer portion of the Instrument

Landing System. The ILS is used to provide signals for the safe

navigation of landing aircraft during periods of low cloud cover

and other conditions of restricted visual range. Separate systems

are used to communicate vertical and horizontal information; the

horizontal system is called the "localizer."

This system operates by the transmission of an RF carrier,

amplitude modulated by two audio frequencies, beamed to approaching

airborne receivers. In an instrumented aircraft, the localizer

receiver serves to demodulate the RF signal, amplify and isolate

the corresponding audio signals and derive a signal to drive the

ILS horizontal display in the cockpit. The pilot, by reading the

display, can determine if he is on course, to the left of the

runway, or the right of the runway. These signals must be strong

enough to cover a radius of twenty-five'-miles around the antenna.

The directional information is determined by the relative

strengths of the transmitted sideband signals. The audio frequency

modulations, which are fixed at 90 Hz and 150 Hz, are radiated

in different angular patterns with respect to the runway centerline

extended. The "course" is defined as the locus of points where the

amplitudes of the two modulations are equal. The display of a

difference of the amplitudes (90 Hz and 150 Hz) of the sidebands

is referred to as the Course Deviation indication. Thus, the

CDI is the pilot's indication as to what his bearing is relative

to the center line of the runway. The CDI is measured in microamps.

The actual course generated by any particular ILS installation will

deviate from the ideal due to the interference of spurious re

flections from buildings present in the range of the transmitting

antenna. The deviation, caused by these buildings, or | scatterers

of the CDI from what the receiver should read ideally at that

point in space (e.g., on the center of the runway and CDI reading

other than 0) is the derogation effect.

Page 9: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

The Localizer system transmits an asymmetrical pattern by

beaming a "carrier plus sideband" pattern and a "sideband only"

pattern, the composite of which gives the desired effect. If a

specific localizer system uses two antenna arrays, four sets of

signals will be transmitted; if the system uses a single antenna

array, two sets will be transmitted.

Page 10: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

2. ANTENNA PATTERNS

The proper angular variation of the transmitted 90 Hz and

the 150 Hz modulation is achieved by the radiation of two independent

sideband patterns by the transmitting antenna arrays. Equal

magnitudes of 90 Hz and 150 Hz modulation are transmitted in each

of these patterns, however with different relative phases. One

of the patterns is symmetrical with respect to the prescribed

course. An unmodulated carrier wave is transmitted with the same

pattern and the combination is commonly referred to as the "car

rier plus sidebands" (C + S) signal. The other signal is trans

mitted in an "anti-symmetrical" pattern and is referred to as the

"sidebands-only" signal.

Figure 1 illustrates how these features are used to obtain

the desired directional CDI. The magnitudes of the C + S and SO

sideband patterns as functions of angular deviation from the

course are illustrated in Figures la. The sideband amplitude of

the C + S pattern represents 20% modulation of the carrier wave

(or a "depth of modulation" of 0.2) at both 90 Hz and 150 Hz.

Considering the phases of both modulations of the C + S signal to

be positive, the relative phases and typical amplitudes of the two

SO modulations are as shown in Figures lb. The resultant 90 Hz

and 150 Hz modulation patterns in the total ILS signal are obtained

by algebraically combining the respective C + S and SO sideband

patterns (Figures lc). The evident consequence is that the depth

of modulation is greater for 90Hz than for 150 Hz to the left

of the course as seen from an approaching aircraft, and the op

posite is true to the right of the course. This difference when

properly calibrated in relation to the total modulation (90 Hz

+ 150 Hz) reaching the aircraft receiver gives the CDI as appears

in Figure Id.

Since the strength of C + S and SO signals fall off at the

same rate with distance from the transmitting antenna, the CDI

is independent of range.

Page 11: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

AMPLITUDE

c

CD

P

CD

to

CO

n>

o o

p

r+ D

? CD

(/}

c

rt

P

r+

O

P r+

rt

fD

CD

1

P-CD (A

P

T3

P to

CD

CO o

AMPLITUDE

AMPLITUDE

VD

Page 12: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

FAA standards for the ILS specify that within a certain nar

row angular range about the course, the CD! should be closely

proportional to the aircraft's angular deviation from course. This

sector near the ideal approach is termed the "course sector" and

usually extends between 1-1/2° and 3° to either side of the runway

centerline. The wider sectors on either side of the course sector

are called the "clearance sectors." In these sectors, which extend

a minimum of 35° from the course, the CDI is required to always

exceed a certain minimum magnitude. The presence of structures

in the clearance sectors which scatter spurious signals into the

course sector is the primary cause of derogation of the localizer

CDI. Such structures are illuminated by carrier and sideband

signals. The ratios of 150 Hz modulation to 90 Hz modulation in

these signals are determined by the angular position of the:

structure with respect to the runway. In general these ratios are

different from those transmitted toward the aircraft, due to the

difference in angular position. The signals transmitted toward

the scatterer will be reflected toward the aircraft. Thus the

aircraft will receive the summations of the direct and scattered

signals. Since, in general, the scattered signals will have im

proper ratios their effect is to distort the CDI. To combat this

problem several new antenna systems have been designed. Two basic

systems are used: the single antenna, and the "capture effect

system."

The single antenna system radiates two patterns from one

antenna array. The signal generated in the course sector is

stronger than that generated in the clearance sector. However,

because of the derogation effects, the signals are often not ac

curate enough to meet category II or III requirements and the

more accurate "capture effect system" is used. This system uses

one antenna array to broadcast a very narrow, powerful beam in

the course sector. The second antenna array broadcasts a broader

pattern, at a slightly different carrier frequency, which covers

the clearance area. This system diminishes the derogation effects

because of the dual frequency. The term "capture effect" has

been used to describe this two-antenna array system because the

airplane receiver is "captured" by the stronger transmission signal.

Page 13: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

3. ILS SIMULATION DESCRIPTION

The ILS simulation program makes it possible for airport

planners to determine what the effects of potential airport

buildings on the ILS performance are going to be. Thus, for

example, if a new terminal or hotel is planned, the information

as to size and location of the building can be input to the program

and the derogation effect of that building can be determined.

Because the derogation effect of these scatterers is so important,

the program can warn the planner ahead of time to change the

orientation or location of the building, or it can assure him

that the building would not jeopardize the airport's current

FAA rating.

The output of this program is a magnetic tape of values of

the CDI. Graphs are generated by a plotting routine (using the <>

values derived from the ILSLOC program) to show the CDI in micro

amperes, along a flight path, for the scattering surfaces input.

These generated graphs would serve the same purpose as the FAA

strip charts which are generated for a certifying flight. The

simulation graph differs from the actual recorded measurements

due to limitations of the program which will be explained later

in the text.

The ILSLOC program simulates: transmission from the various

types of localizer antenna systems; the trajectory of an aircraft

flight over which the CDI is to be determined; and the scattering

from rectangular and cylindrical surfaces. The program permits

various simulated flight paths.

The program is not an exact simulation of the certifying

flight, due to certain simplifying assumptions which were made.

These assumptions include: k

a. A flat perfectly conducting ground plane

b. Perfectly conducting reflectors

Page 14: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

c. I Far-field scattering-- all scattering from a surface

is assumed independent of all other surfaces; thus,

multiple reflections from walls and near-field

interactions are ignored

d. A noise-free environment

e. Relative field strengths-- the absolute field strengths

involved are not calculated; thus while we can calculate

the CDI's in microamperes, we do not ascertain the

absolute electric-field intensities, and

f. An idealized ILS receiver model.

In addition to these assumptions the approximations of the

scatterer can lose accuracy when the dimensions approach less

than a few wavelengths. Since the program determines the scat

tering from a surface independently from all other scatterers, the

shadowing of one structure on another is not included. Thus if

one building is between the antenna system and another building,

it will shield the second one from some of all of the ILS signal.

The amount of energy reaching the second building will depend upon

diffraction effects which are, in general, too complicated to

analyze. It may be noted, however, that diffraction effects

themselves are included as part of the physical optics approxima

tion used.* By using rule of thumb approximations the

analyst can determine roughly how much power will reach the

second building. If the level is small the building may be

ignored completely. If on the other hand the power level is

large then the structure should probably be included as though

there was no shielding effect. This will give a conservative

CDI estimate (i.e., larger derogation than actual), but this

will serve for most purposes. If the situation is critical,

that is near category limits, then other means of analysis must

be used.

Chin, G., L. Jordon, D. Kahn, and S. Morin,

TSC, "Instrument Landing System Scattering,"

FAA-RD-7 2-137, AD754517 (Dec. 1972).

Page 15: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

t\, TEST CASE FOR THE ILSLOC COMPUTER PROGRAM

To illustrate how the computer program is operated a very-

simple test case (with only 2 scatters) has been created and run.

For this simulated airport the program computed the course width

as 4.01 degrees. Both antenna arrays were set at an elevation

of 13 feet above the ground plane. The clearance antenna array

was used as the origin for the coordinate system. An 80 x 100 x 60

ft hangar and 75 x 110 ft cylinder were placed on opposite sides

of the 9,3 50 ft runway. In this case the threshold is 10,000 ft .-'y

from the course antenna. (See illustration—Figure 2.) Based on

the size and locations of these two buildings, the model pre

dicted the CDI on the runway centerline and for a clearance run at

10,000 ft range.

Using this model for input values, the following section

presents a detailed follow through of the main program steps.

The Mode Card

The first input is the mode card. This card contains informa

tion on the type of localizer antenna used, the frequency of the

ILS, the length of the runway, and the height of the antenna. The

mode card format is shown immediately following Figure 2. In order

to use the mode card, it is important that the user understand the

coordinate system used. The x-axis is along the centerline of the

runway, the threshold being in the positive direction. The z-axis

is vertical, positive z being in the up direction. The y-axis

completes a right-hand coordinate system; so that when one is

standing at the origin facing in the x-direction, positive y is

to the left. The origin is used as a reference to define the

location of scatterers, antenna system components, and flight

path sample points. The antennas are located along the x-axis,

they need not be at the origin. As in our test case, it is

usually convenient to place the course antenna at the origin.

Page 16: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

13

FT.

\

6,000' 60'

80'

1,100'

10,000'

-7,500'

1,000

110" 1^ -^1'

L75J

THRESHOLD

50' ALTITUDE

Figure 2, Simulation Airport

Page 17: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Model Card Format:

Col.

1-2

Symbol

Mode

3-4 IET

11-20

21-30

FRQ.

XTH

31-40

41-50

51-60

ZA(1)

ZA(2)

SLP

Use

= 1 (V-Ring)

= 2 (8-Loop)

= 3 (Wave Guide)

= 4 Not Used

= 5 (Measured Pattern) = 6 (Measured Capture

Effect Patterns)

= 7 (Theoretical Patterns)

= 8 (Theoretical Capture

Effect Patterns)

=-1 (V-Ring Clearance

=-2 (8-Loop Clearance)

=-3 (Waveguide Clearance)

=-4 (Measured Clearance

Patterns)

=13 Null Reference

=14 Sideband Reference '

= 15 N-Array (Capture Effect)^

Indicates

Localizer

Antenna

Type

Glide Slope

Antennas

= 0 (Half-wave dipole)

= 1 /30° width pattern as from \ I double wave reflector used] \with glideslope antennas 1

Frequency of ILS in MHz

Distance from the origin to

the threshold of the runway,

in feet. This number is used

for both flight path orienta

tion and for course width de

termination. The distance is given in feet.

There is always a non-zero

antenna height, and it is

input here.

This will be the clearance

antenna height if a two-

antenna system is used.

Slope of runway in degrees

used to adjust the flight

path at threshold for

runway slope.

Antenna

Element

Pattern

10

Page 18: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Modes 1, 2, and 3 provide for standard localizer antenna

types. These antennas are predetermined, the only variable being

course width, the adjustment of which is controlled by the course

width card.

When any antenna type other than mode 1, 2, or 3 is used,

additional antenna description cards must be included. Mode 5

permits the input of a measured pattern for special cases on

theoretical studies. When this mode is selected additional pattern

cards are required. One pattern card must be used for each measure

ment. The angles must be given in ascending order. A maximum of

50 measurements may be given; if less than 50 cards are used a

termination card with an angle greater than 360 degrees must be

inserted.

Format of Pattern Card(s)

Col. Symbol Use

1-10 ANG Angle of measurement, in degrees

11-20 AFPP Amplitude of sideband only pattern,

in relative units

21-30 AGPP Amplitude of carrier plus sideband pattern,

in relative units.

Mode 7 allows the generation of a theoretical array pattern

from assumed element contributions. The antenna is to be a linear

array of elements with identical radiation patterns. Each element

has an arbitrary magnitude and phase for both carrier plus side

band and sideband only currents. The arrays are assumed to be

alligned parallel to the y-axis. All elements have the same height,

as given in the mode card. All elements have the same x-coordinate

as given on the course width card. The y-coordinate, in wavelengths,

is given for each element on the element description card. There

must be one card for each element in the array, to a maximum of 26

elements. The element description card has the following format:

11

Page 19: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Col. Symbol Use

1-10 DT Element displacement in the y-direction

given in wavelengths

11-20 CT Carrier plus sideband amplitude, in :

relative units

21-30 PC Carrier plus sideband phase, in

degrees

31-40 ST Sideband only relative amplitude

41-50 PS Sideband only phase, in degrees.

The phase of the sideband only currents is ideally in quad

rature to the carrier plus the sideband currents. This 90-degree

shift is added by the program. Thus a "PS" inputted as zero degrees

is internally converted to 90 degrees out of phase with the sideband

portion of the carrier plus sideband. To indicate termination when

there are less than 26 elements used, an element card is placed with

a carrier plus sideband phase value (PC) of more than 500.

The next step for this mode must be the input of the horizontal

radiation pattern for the individual element. This pattern will be

used for each of the elements previously described. The input is

the relative signal strength measured every 10° starting at 0 and

proceeding until 180°. This is total of 19 amplitudes; the values

are read in, in records of 8F10.4 format, for a total of 3 records.

This gives the pattern for angles from 0 to 180° and since the

pattern is assumed to be symmetric the value for the negative angle

will be the same as a positive one of equal magnitude.

There are two methods of inputing capture effect system

descriptions. The most general way is to input each antenna

separately. When using this method the clearance antenna must be

input first. This input will follow the same steps as a single

antenna system except that the mode number will be a negative.

The negative mode card and the pattern or element cards (if any)

must be followed by another mode card. This mode for the course

antenna must be positive, and followed by the necessary pattern or

element cards.

12

Page 20: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

There are two cases for the second method of inputing antenna

descriptions. The first case is used if both course and clearance

antennas are to be given as measured patterns; a single mode 6

card is used followed by two sets of pattern cards: the first set

is for the course antenna and the second set for the clearance

antenna. In the second case, for a capture effect system which

uses two theoretical array antennas, a mode 8 is used. This card

is followed by the course antenna element description cards and

the element radiation cards; a second set of array description

cards is used in the clearance antenna.

In the above localizer antenna cases, IET has no effect on

the simulated individual element patterns and may be input as

zero.

FRQ is set to the frequency (in MHz) of the carrier for the

antennas system.

XTH is the distance (in feet) from the orgin to the runway

threshold. The flight path is set to cross the threshold at an

altitude of ZUP (as given on flight path card).

ZA(1) (course) and ZA(2) (clearance) are the heights in feet

of the antennae.

SLP is the slope of the runway in degrees. It is used with XTH

in setting up the flight path. The ground plane assumed for the

signal scattering is not tilted.

Modes 13, 14, and 15 are used for glide slope antennas. Al

though this program is intended for localizer simulation, it may

be also used to study the effects of buildings on the glide slope

system. The simulation will assume a perfect flat horizontal and

infinite ground plane. If a glide slope antenna is chosen on the

mode card, the next card must be as follows:

Col Symbol Use

1-10 YA Antenna Offset (in feet)

11-20 TGS Glide path angle (in degrees)

13

Page 21: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

YA is the antennae offset (Y-coordinate) in feet. Positive is to

the left from the origin facing the threshold. If the magnitude

of YA is less than 300, YA will be defaulted to 1500, the sign

depending on the sign of YA input. TGS is the intended glide path

angle in degrees.

The measured pattern of a capture effect localizer is used

in our test case:

Mode Card:

Col- 1-2 6

11-20 110.

21-30 10000.

31-40 13.

41-50 13.

Pattern Cards: See attached Figure 3 for test case listing.

The antenna description cards are followed by the course

width card. The format for this card is:

Col. Symbol Use

1-10 XXA(l) Course array x-coordinate, in feet > :

% 11-20 XXA(2) Clearance array x-coordinate,

in feet

31-40 CW Course width in degrees

41-50 CLS Clearance signal strength

relative to the course signal.

If CW is greater than 3° this value is used as the course

width and the signal strengths of the course antenna are auto

matically adjusted to produce this value.

If CW is less than 3° the course width will be set to the

FAA specification for a threshold to antenna distance, given by

XTH, and the signal levels will be set accordingly.

CLS is the ratio of clearance signal strength to course

signal strength.

14

Page 22: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

15

Page 23: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Figure 3. Pattern Card Test Case Listing (Cont'd)

16

Page 24: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

The test case course width card would read:

1-10 0

11-20 -200

31-40 0 0

41-50 0.315

The label card follows the course width card. This card is

put on the output tape ahead of the CDI records for this flight.

It serves as an identifying record and is the label placed on the

graph. Columns 180 are used. In our test case this card reads:

THIS IS A DEMONSTRATION CASE OF STRAIGHT LINE FLIGHT.

The program calculates the CDI at a point in space: for

convenience, the program will permit calculation for a series

of points. This set of points represents samples of a simulated

flight path.

The program allows two types of flight paths. A straight

line flight and a circular orbit. The flight path card has one

of the following formats:

Straight Line Flight

Use

Starting distance from origin,

in feet

Ending distance from origin, in

feet

Spacing between sample points,

in feet

Angle of approach, in degrees

Glide angle, in degrees

Height of aircraft at threshold,

in feet.

XMIN is the x-coordinate of the starting location of the

aircraft and XMAX is the x-coordinate of the ending location.

The sample points are spaced along a straight line so that the

difference in x-coordinates between successive samples is DXR.

17

Page 25: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

The sign of the DXR will be set by the program so that the

flight goes from XMIN to XMAX regardless of flight direction.

If the DXR value would require more than 500 points the program

will adjust the magnitude of DXR to give only 500 points. In

some cases a flight will require more than 500 points. If this

is necessary the flight must be broken up into smaller segments

of not more than 500 points each. The procedure for doing this

is explained in the control card section. The flight path is

oriented in space so that an extension of the path crosses the

threshold at the altitude of ZUP and intersects the z-axis. PHIR

is the angle between the flight path and the vertical plane through

the runway centerline. It is zero for a flight path along the

centerline of the runway and is positive for an incoming flight

(XMIN greater than XMAX) with decreasing y-displacement. PSIR

is the glide angle between the flight path and the horizontal

plane. It is zero for level flight and positive for a normal

landing approach. The flight path is a straight line as de

scribed above except when the x-component is less than XTH, that

is if the aircraft is on the antenna side of the threshold. In

that case the aircraft altitude will be set up to ZUP.

Thus the values used in the test case would read:

Col.

The arc flight is a series of points at a constant height

of ZUP and at a constant horizontal distance from origin of R.

MIND is the starting angle for the arc, that is, the line of

sight from the origin to the point makes a horizontal angle of

MIND degree with the x-axis. The sample points are spaced at

equal angles of DXR until the termination angle of MIND is

reached. As in the straight line flight the sign of DXR will

be adjusted appropriately. Likewise the magnitude of DXR will

be set to yield not more than 500 points. Column 74 must be

set to 1 to indicate a circular arc.

18

Page 26: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Circular Orbit Case

Col. Symbol Use

1-10 MIND Starting angle, in degrees

11-20 MA.XD Ending angle, in degrees

21-30 DXR Angular spacing between samples,

in degrees

51-60 R Radius of orbit, in feet

61-70 ZUP Height of orbit, in feet

74 icF Must be set to 1 to indicate

orbit case.

Following the flight path card must be the velocity card

in the following format:

o , -. Use Col. Symbol

1-10 VEL Velocity of aircraft, in feet/sec. This is used for the Doppler Effect

on the receiver. The sign of the

velocity will be made to agree with

the directional motion from DXR. Test

case assumes velocity of 200 ft/sec.

At this point we have described the antenna system and the

trajectory of the aircraft; the derogating surfaces in proximity

to the ILS must now be described. The program will simulate

scattering from rectangular or cylindrical surfaces. We will now

describe the method of inputting scatterers to simulate derogating

structures.

The next card describes either the scatterer(s) or output and

control. The usage is determined by the value of the ID field

in columns 1 to 2. An ID of -1, 1, or 2 is used for scatterers,

while the other values are used for control.

19

Page 27: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Col. Symbol Use

1-2 ID Must be 1 for rectangle

3-8 XW(1) x-coordinate of reference point, in feet

9-14 XW(2) y-coordinate

15-20 XW(3) z-coordinate

26-30 ALPHA Angle between base and x-axis, in degrees

31-35 DELTA Angle of tilt, in degrees

36-45 WW Width of rectangle, in feet

46-55 HW Height along rectangle, in feet.

The scatterer is a rectangle with the reference point at the

middle of the base. The rectangle is assumed to be of infinite

conductivity and zero thickness. It also has only one side. This

can be thought of as the front surface of a metal wall. A wall

with zero x-, y-, and z-coordinates and an alpha of zero is located

at the origin with surface of the wall facing in the negative y

direction (Figure 4, case I). A positive increase in alpha rotates

the wall about the z-axis in a counterclockwise direction when

viewed from above. Thus an alpha of 90 degrees faces the wall

in the positive x-direction (Figure 4, case II). Alpha is the

angle between the vertical projection of the base of the wall in

the xy-plane and the x-axis, measured in degrees. Delta is the

angle between the surface of the wall and the vertical direction,

in degrees. A delta of zero is a wall perpendicular to the ground

and a decrease in delta rotates the wall about the baseline in a

direction so that a delta of minus ninety is a horizontal wall

facing down (Figure 4, case III). WW is the width, in feet, of

the wall measured along its base and HW is the height measured

along the surface at right angles to the base. If the wall is

20

Page 28: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

X

• X

CASE I

z

CASE III

A = -90

Figure 4. Illustration of Orientation Nomenclature

for Rectangular Surface

21

Page 29: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

oriented in such a fashion that the line of sight from the antenna

to the wall passes through the back and not the front of the wall,

the program will ignore the wall in the simulation.

An ID of -1 is used with the above format to describe a

negative wall. This ID is used, for example, to create a wall

with a rectangular hole in it. The entire surface is used; the

hole is then subtracted by inputing a second card with an ID of

-1 and the size, location, and orientation of the hole.

An ID of 2 is used for a cylindrical scatterer with the

following format:

Col.

1-2

3-8

9-14

15-20

36-45

46-55

Symbol

ID

XW(1)

XW(2)

XW(3)

ww

HW

Use

Must be a 2

x-

y-

z-

coordinates of the

reference point, in feet

Diameter of cylinder, in feet

Height of cylinder, in feet.

The reference point is located at the base of the cylinder on

the axis of rotation of the cylinder. The diameter is WW feet, with

the base parallel to the xy-plane at an altitude of XW(3) feet. The

cylinder extends upward for HW feet with the axis of rotation in the

vertical direction. The cylinder is assumed to have infinite

conductivity.

22

Page 30: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

An ID of 3 or -3 is used for triangular scatters with the

following format:

Use

Must be 3 or -3

Y- Coordinates of the reference

point, in feet.

z-

Angle between base and x-axis, in degrees

Angle of tilt, in degrees

Width of base of triangle, in feet

Height along side of triangle, in feet.

The variables have the same use as for the rectangular scat-

terer, with the exception of HW 4 WW. The magnitudes of WW § HW

determine the size of the triangles, the signs of HW 4 WW are

used to determine the orientation of the hypotenuse. The

convention is as follows:

Sign of Sign of

Triangle Orientation HW WW

+

23

Page 31: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

If the size of the triangle exceeds the limits imposed by the

Fresnel approximation the scatterer will be omitted and an error

message given in the output. If this happens and one wishes to

include scattering from this surface, the triangle must be broken

up into triangular and rectangular pieces, for example:

The values for IH and IV will indicate the number of pieces horizon

tally and vertically the triangle must be broken up into. *■"

24

Page 32: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

After an ID of 1,-1, 2, 3, or -3, the program will calculate

the electric field at the surface of the scatterer. This will be

calculated from the signal from the transmission antenna array

and from the ground reflection of the transmitted signal. Then,

for each receiver point along the flight path, the program will

calculate the electric field at that location from the scattered

signal: from both the scatterer and reflected from the ground.

Thus, the signal is received from four paths: (a) transmission

antenna to scatterer to receiver, (b) antenna to ground to scat

terer to receiver, (c) antenna to scatterer to ground to receiver,

and (d) antenna to ground to scatterer to ground to receiver. This

signal is decomposed into complex components induced in the

receiving antenna at the different carrier and sideband fre

quencies. The program then loops back to read in another ID

card, permitting the summation of the effects of many scatters.

This allows the simulation of complex structures by breaking

them up into cylinders and rectangles.

In the test case, we have only inputed three scattering

surfaces. This was done because only two sides of the hangar

and the cylinder are illuminated. The values for the scatterer

cards read:

25

Page 33: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

After all the scatters have been input, a control card is

inserted to terminate the run. The control card format is:

Col. Symbol Use

1-2 ID not -1, 1, or 2.

When a control card is read in, the program will add the direct,

and ground reflected, signal from the transmission antenna to the

scattered signal summations, thus giving the total received signal.

The program then calculates the CDI that would be seen at each re

ceiver point, and outputs the label, a header record describing

the flight path and the values of the CDI on output tape. If the

ID is equal to zero the program also outputs additional records for

the strengths of sideband and carrier signals from course and

clearance (if any) antenna arrays. The field summations are then

cleared for the next run.

The program, having finished the previous run, now proceeds

with the next input. The next run is generated by looping back

to a point in the input stream, determined by the value on the

control card.

Once an input sequence has begun the inputs following in the

standard order must be given. The user must also keep in mind

that all values on cards given before that entry point, in the

previous run are still in effect. The following order is

standard:

MODE CARD

(measured pattern for modes 5 and 6 or current description for modes 7 and 8)

(second mode card and patterns of currents if first mode was negative)

COURSE WIDTH CARD

LABEL CARD

FLIGHT PATH CARD VELOCITY CARD

(set of scatterer cards) CONTROL CARD.

26

Page 34: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

The value of the ID on the control card guides the looping

in the following manner:

Next card to be read in

MODE

SCATTERER

LABEL

MODE

COURSE WIDTH

WILL CAUSE THE PROGRAM TO

TERMINATE AFTER OUTPUTTING

THE LAST CDI.

The looping permits the repetition of a run with changes in

some or all of the variables. For example, ID values 3 through 10

permit a run with the same antenna system and flight path as the

previous case, but with a new set of scatterer inputs.

ID values 11 to 15 permit a new flight path description and

scatterer set to be input. This looping method can also be used

for flights that would require more than 500 points. For reliable

simulation, the spacing between receiver points (DXR) should be

small enough so that the change in CDI between successive points

is not more than ~20% of the peak value. Thus for long flights the

flight path must be broken up into shorter segments. If the number

of segments of this path does not exceed 4, the plotting program will

connect them on a single graph. The control for this joining is the

ID number. If the flight path finishes with an ID of 11 to 13, the

graph of the next flight will continue the line of the graph. A

long flight may be broken up into as many as four segments: with

three segments terminating in 11 to 13 and a fourth, and final seg

ment, terminating in 14 or 15. The flight segments must appear in

the order in which they are to be flown, so that the XMIN of one

section is the XMAX of the previous section. For each segment

the programmer must re-input the same scatterers. If only one

segment is to be plotted the control card should read 14 or 15.

27

Page 35: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

ID's 16 through 20 start inputing at the mode card, thus

allowing a completely new run.

An ID of 21 through 50 uses the same antenna description, but

starts the inputing at the course width card. This permits the

course width, clearance strength and antenna location to be

varied.

The program is terminated after an ID greater than 50 is en

countered. The direct signal will be added, and the CDI will be

outputed before the program stops. The program will also stop

if an end of file is encountered while the program is attempting

to read any input card, or if certain of the variables are of im

proper value. In these cases the program terminates immediately,

without outputing the last case.

The input of the test case flight path was done in four

segments. The first segment is from 40,000 to 20,000 feet, the

second segment is from 20,000 to 12,500 ft, the third segment is

from 12,500 to 11,000 ft and the last is from 11,000 to 10,000 ft.

An additional case for a simulated clearance flight by a circular

orbit has also been included. The input cards for these test case

flights are shown in Figure 5.

28

Page 36: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

THIS IS A DEMONSTRATION CASE OF STRAIGHT LINE FLIGHT

4000O. 200nO. -4-0. 2.5 50.

200.

16000. 1100. 10. 100. 80.

15950. 1130. -80. 60. 80.

27500. -1000. 0. 0. 0. 75. 110.

13

THIS IS A DEMONSTRATION CASE OF STRAIGHT LINE FLIGHT

20000. 12500. -15. 2.5 50.

200.

16000. 1100. 10. 100. 80.

15950. 1130. -80. 60. 80.

27500. -1000. 0. 0. 0. 75. 110.

13

THIS IS A DEMONSTRATION CASE OF STRAIGHT LINE FLIGHT

12500. 11000. -3. 2.5 50.

200.

16000. 1100. 10. 100. 80.

15950. 1130. -80. 60. 80.

27500. -1000. 0. 0. 0. 75. 110.

13

THIS IS A DEMONSTRATION CASE OF STRAIGHT LINE FLIGHT

11000. 10000. -2. 2.5 50.

2nn.

lftooo. 1100. 10. 100. 80.

15950. 1130. -80. 60. 80.

27500. -1000. 0. 0. 0. 75. 110.

15

THIS IS ORBIT CASE WITH SIGNAL STENGTHS

IPO. 180. 0.72 1000°* 50* 200.

16000. 1100. 1O« 15950. 1130. "80. 27500. -1000. 0. 0. 0'

Figure 5. Flight Case Inputs

29/30

Page 37: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

APPENDIX A

MAIN PROGRAM LISTING

INCLUDING COMMENTS EXPLAINING

THE PROGRAM

31:

Page 38: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

1 c

US SINGLE REFLECTION INTERFERENCE PROGRAM RSS

2

C THIS PROGRAM SIMULATES THE EFFECTS Of RECTANGULAR

3 C

AND CYLINDRICAL SCATTERERS ON LOCALIZE" »ND SLIDE SLOPE

4 C

ILS SIGNALS. THIS PROGRAM IS AN EXTENSION OF THE ILSLOC PROGRAM

5

C WHICH TRI-aTEO LOCALIZER SIGNAL SCATTERING BY BUILDINGS.

*

C TH£SE_EO.fM£NTi S£fi«E AS THE PROGRAM-DESCRIPTION

7

C FOR THE USER,

A USER'S MANUAL HAS BEE'I WRITTEN A«

B C THIS COMMENTARY IS WRITTEN ASSUMING THE USER HiS REAO IT,

9

C

10

C

12

-C

iLfl

j. IS

11SE11J& IDENTIFY TM£_SLGiUL-SI3EM6K OUTPUTS-J^

13

C TO TYPE »NO SOURCE.

THE FIRST CHARACTER I?

'5

' FCR

It

C SIDEBAND ONLY SIGNALS OR «C FOB

CARRIER PLUS SI

DEBA

ND,

jjj

c THE SECO*O PAIR ARE »C

R' FOR COURSE ANTENN* OR «C

L' FOR

U>

C CLEARANCE.

17

C

19

C

%Z

C

21

C

92

OHE^SION HEh0(14),0F(3B1)

?3

COMPLEX BEBF.FACiCE

»i

COMPLEX EP*£EiEH.E(UZEi4)»HD(i)»EHR.rPP,6P.P

25

2

CS(25,?>,S0<25,2>

36

COMPLEX ZjMiZjP.lJPCl2)iZjiCC2>

27

COMPLEx

2P(5Bf )i2pC(5BB.Z)ZM(

20

COMPLEX Ce.ICiCLAM.LK.CEXPT

29

DlMEMSION XXRY15BB.4)

Jfl

OlMEVSI0'< VC0{5fl^.2).VPDt5aa.2>iVMD<!lez,2>

31

OJMESSlON

XW<3>,XWS(3>

32

DIm£»SI0M AN(3>

33

OlMEVSION AF00(9)iPHS(9)

54

DIMENSION XY(10>

35

REAL LAH90A *

3a

CDHMCN /A0/ !JM,!JP.?JPC.ZJMC

39

COUHPN

ZP,ZPC»?H,ZMC,VCD.VPD.VHD

40

COMMON /VAR/ SM.SNeUT,SNCUO.SNCUC(2>iVPC(2)»VMCC2>

4,

CO^HnN /SUB/ HOOE.ICP.ICM.IET.FRO.LAHBDA.Pl^RACO.P

•2

1.XTH..SLP. XXi(31,YA(3J,EA(3),RAl3>.TGS,BT,SIG.CB,M

. 43

COMMON /*NT/ toC.rPPiFPH.GPP.GPH.EwR(4.4>,CHA(!J,AS,CLS.OE(25.2).

44

, CS,SO.ET(?0,2).ND(2).1UMXXXM8)

45

EQUIVALENCE <iP(D ,1D<1)). (XXRVd.i) ,2P(l))

4*

DATA 1LBL/4HC CR.4HS CR.4HC CL.4HS CL.4H CDI/

47

DATA RAD/57.295779!*/

4B

C

49

C

58

C THE OUPUT OF THE SIMULATION IS

ON UNIT 8.

A

TAPE fcHH

91

C WRITE RI"G SHOULD BE PLACED THEREON,

*2

C

*3

REUIMD B

Page 39: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

94 ' C

?| C NC IE THE COUNT Of THE CASE BEING SIMULATED fT7s'yALUE IS yRJTTEN 97 C ON THE TIP? WITH THE.OUTPUT "ECORO. ThU WOUUD " '-" 96 C SEARCHING FOR a PARTICULAR CASE BY NUMBER,

C

-fl-a C THESE CONSTANTS ARE FIiTER FACTORS FOR THE ASSUMED MODULATION

63 C FILTERS. 64 C

65 . .

66 PTA ■ P1*TA

67 W6AT » 6B.«PTA 66 W9PT • 99.*PTA

„«« W190T « 150,»PTA

76 C

J^_ .C .. - -

73 C THIS IS THE STARTJWC POINT FOP. A SIMULATION, IT IS ALSO 74 C ENTERED FOR A RESTART FOLLOWING AN ID OF 0 OR 16 TC |0.

76 1 \CPma

71. . *"*•« • .TRUE,

79 C NEL IS T«£ NUHBER OF ANTENNAE IN THE SVSTE". OEFACLT 60 C CONDITION IS ONE ANTCNK'A «1 C

82 NEL ■ 1

11 C Ews IS A COHPLEX MaTRIk CONTAINING THE SIDEBAND ELECTRIC FIELD «a C DESCRIPTION PROOUCEO BV THE ANTENNA SUBROUTINE, EVRH#J) *7 r IS THE FIELO FOP THE 'I»TH ANTCNNa. A*'O THE 'J1 VlLUES 116 C HAVE TW£ FOLLOWING SIGNIFICANCE*

SI" c 1 S"IOSBA»jD PORTION 0? CARRIER PLUS SIOEBAND 91 C FOR THE COURSE SECTION OF ThJS ANTENNA

92 C Z SI0E8AMD ONLY FOR THE COURSE Q3 C 3 SIOEBANO PORTION OF CARRIER PLUS SIDEBAND 94 C FOR THE CLEARANCE SECTION

95 C 4 SIOE8ANQ ONLV FOR THE CLEAPANCE

97 C THIS SUBROUTINE CALL IS USED TO CLEAR E«R BEFORE 96 C STARTING THE SIMULATION

99 C

100 CALL ClEAR<£UR,16> 1E)1 C

""132' 2 CONTINUE

109 C

135 C THIS IS THE INPUT FOR THE MODE CARD. THE VARIABLES HAVE 1P6 C THE FOLLOWING USES,

Page 40: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

127

C

108

C

SYMBOL

USE

129

C

HPDE

ANTENNA TYPE

1

V-RING COURSE

7

8-L00P COURSE

3

HAVECU1OE .COURSE

4

NOT USED

5

MEASURED COURSE PATTERN

« MEASURED COURSE AND CLEARANCE PATTERNS

7

THEORETCAL COURSE ARRAY

A

THEORETICAL COURSE AND CLEARANCE ARRAY

•1

V>R1NS CLEARANCE

-2

6-LOOP CLEARANCE

■3

WAVEGUIDE CLEARANCE

-5

MEASURED CLEARANCE PATTERN

»7

THEORETICAL CLEARANCE ARRAY

lie

c

111

C

112

c

113

C

114

C

115

C

116

C

117

C

ua.

. c

119

C

120

C

121

C

122

C

123

C

.121

_

C £LIDE. SLOPE. AMTEBSa.COOES.

125

C

13

NULL REFERENCE

126

C

14

SIOEBAND REFERENCE

127

C

19

M ARRAY

( CAPTURE EFFECT

>.

12S

C GS ELEMENT PATTERN COOES

1"

C IET •

fl

HALF MAVr nlPOLE

120

C

1 M OCa PATTERN

131

CC

132

C

F"O

FREQUENCY OF TRANSMISSION

133

C

XTH

DISTANCE TO THRESHOLO

134

C

ZA(I)

'1'TH ANTENNA HEIGHT

135

C

.136.

-_C Ofitc^N IS AT ThE^CEnTER OF-CQORDiMAlE. SlfSTE.iV

137

C X-AXIS ]S ALONG RUMHAy

13a

C 2-AXIS IS STRAIGHT UP

139

C Y-AXIS COMPLETES A RIGHT HANDED SYSTEM

140

C

141

READ (5.1001|END«5B) MODE.lET.FRQ.XTH.ZA.SLP

-14Z

...

C

__.._.._....

. 143

C

144

C THIS IS THE INITIALIZATION SECTION.

LAMBDA IS THE WAVELENGTH

145

C IN FEET AND AK IS THE PHASE SHIFT/DISTANCE IN RAOlANS/FOOT,

146

C VA IS THE v,COORDINATE OF THE ANTENNAE.

T«IS 15 ASSUMED TO

147

C BE ZERO IN ALL LOCALtHCR CASES.

146..

C

.

149

t*MBru»11888,/FRO/12.

13B

AK»2.»PI/LAMBDA

151

VA(1).0.0

152

. YA(21 ■ B.B

193

It m B.

159

C ~~

196

C THIS IS

i TEST FOR INVALID ANTENNA TYPE,

The PROGRAM ABORTS IN CASE

157

C OF ERROR,

THIS |S USUALLY CAUSEO BY OMISSION OF OTHER CARDS

Ufl

C WHICH CAUSE SOMETHING OTHER. THAN A MODE CARO TO BE READ AT

H9

C THIS POIMT.

Page 41: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

c

If{ HODC .LT, -7) GO TO 98

!F( "ODE ,EQ, 0) CO TO 98

1F{ HODE .IT, 11

> GO TO S

C

_ S CfLANQ JC

X. AftTTHt AMOUNT.S..or MODULATION ON THE CARRIER

C FOR THE CARRIER PLUS SIDEBAND.

CP IS THE COURSE MODULATION

C AND C" THE CLEARANCE.

C

SM ■ 857.14

CP ■

e.4

. CH ■ B.45

C

C

TGS • COMMISSIONED GLIDE PATH ANCLE STATE" IN DECHECS,,

C

READ (Sil80fl|END«58) YAtTGS

CO TO 6

C

3 CP • 0.2

CH ■ 0.2

SM ■ 387.

C

C THIS IS TEST FOR NEGATIVE MODE

INDICATING CLEARANCE ANTENNA,

. C IF Mnor IS POSITIVF EJ.QHL IS TO. SUI£I1£.N.T.4

c IF{ "ODE i8T, a

i GO TO 4

C

C ICP IS T"E iNTKNNA TYPE POR THE CLEARANCE ANTENNA

C

. ._

J.CP I • MQOE ...

. .

.

C

C C IF THERE 19

A CLEARANCE ANTENNA THEN THE NUMP£R OF AKTENNAE

C IS SET TO 2,

C

_.N|L 1.2

. C

C

C IF THE CLEAftENCE ANTENNA IS SPECIFIED BY A HEASUREO PATTERN IT IS

c now reao in

f"y subroutine pattrn,

e

JF{ ICP ,EO, 9

> CALL PATTRNtBRAD,nFJ?PiBCPP)

C

■-

--

C

C IF ThE CLCaRCNcE ANTENNA IS SPECtFtEO BY aBRay PaRaHETERS THE INPUT

C DATA FOR

THE ARRAY t5 NOW REAO IN BY CRTS

C

_

JFjICP ,E0. 7j CALL .CRRNT

C

C

C THE FLOW IS NOw BACK TO STATEMENT 2 TO REA* IN

C MODE CARP FOR COURSE ANTENNA,

Page 42: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

etcc

ox

X. X X * -I

t-KXUU

jin«if>. anq rtcMio •rn<oi-.<

MMMPKM^MM NNNN NnNNNn|NN« NM(M:MMMMMM'MNMMMoJmCVMNM NNMN MMMMM«M MM

36

Page 43: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

266

6 READ (5(100B.E'iD«58) XXA.CW.CLS

267

C

268

C

269

C SET THf DEFAULT CONDITION ON CLS OF 1,

270

C

_271

_ I^( CLS tLEt 0,0 j

CLS ■

.1.1

0 272

C

273

C

274

C C»A(t)

I* THE COURSE HlOTH ADJUSTMENT ON T"E U'TH AKTENNA

275

C IT SETS The SIDEBAND TO CARRIER RATIO, THE CLEARANCE ANTENNA

276

C <CWAC2)> IS ALWAYS 1,6

. THE COURSE WIDTH IS ADJUSTED

?.7.7_

C BY VaRINR THE COURSE. ANTENNA (CW.AC1M.

278

C

279

CWA(5> •

1,0

286

Cw»(?>«1.0

23}

C

282

IF( MODE .GT, 10

) GO TO IS

293

C

2M~

C THE pfln*cP»H'WlLL NOW CALCULATE THE CD I FOR 2,5 OEGfiEE COURSE

235

C OFFSET,

THIS IS USED TO NORMALIZE THE SIDEBAND LEVEL TO

296

C ACHIEVE THE OESlftEO COURSE WIDTH.

LOC IS THE TYPE OF ANTENNA

2*7

C USED BY THE ANTENNA SUBROUTINE, PS!<1> IS THE ANGULAR ALTITUOE

29b

c of The reference point and phud is the azimuth of the point,

J89_

C

290

"

PSi(i>

■ 5.E-03

291

PHI(1>

■ 2,5»ftAOO

292

LOC

■ MODE

293

C

294

C

295

C THE MODE IS USED TO DETERMINE. jjHJcH ANTjrNNA JUBROUTJfcE TO ?ALL,

2"96

C TSTfS THE StA~NDAR0' ANTENNA ROUTINE, IT CfiVERS THE V-RlNC

297

C 8-L00P AMD WAVEGUIDE,

L«AR IS THE ARRAY ANTENNA SUBROUTINE,

296

C ANTP IS The MEASURED p*ttE«N SUBROUTINE, THE SUBAOLTINE WILL

299

C RETURN FPP A'

'O GPP FOR THE POIK'T aT PHI.PSI AND UNIT RANGE,

320

C FPP IS THE SIDEBAND ONLY LEVEL.

GPP IS THE SIDEBAND LEVEL

301

' C FOR THE CARRIER PJLUS SIDEBAND,

AFTER THE "ETUPN, FLOW IS TO

302'

" C STATEMENT 9,

303

C

334

IF ("ODE ,GE. 7> GO TO 6

335

(FcnOOE ,GE, 5) GO

Tfl

7

3U6

CALL CSP

307

fiO TO 9

TJ3B

7 CALL AmTP (Ppp'.GPPiARAO.AFpp.AGpp)

3>)9

GO T» 9

310

6 CALL LVAR

< FPP,0PP,PHI.DE.CS,SO.ET,ND)

311

CO T^ 9

312

C

313

C

314

C THE SIGNAL LEVELi'iRE !'n'fpP~AND GPP.

TEHP IS

The APPARENT

315

C COURSE WIDTH WITH CWA'S OF 1,0.

317

9 TEMP. i,9375/REAL<FPP/GPP>

310

C

Page 44: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

319

" c"

' '

* ■■"""

■—

•"

Si

c ?g

T?Si

K oWBYftSUlF0-

TH£

CDUR

SE H

IDTH

1S UMI

TE0

K o

224

X.

_

«F<

ew -

3.0

> iBiiBiii

' "

-324.

IB CM «-2.tATAN(3J0./XTH 1

i fiAO

'"

l" en .L

T, s.

e )

cw .

3.o

326

iftCU »CT. 6.0] CHI6.0

3?9

C

-330

...

. _C

. _

"1

C THE CH*M> I'

ADJUSTED TO PRODUCE THE OESIREOCOUBSe"

3!S2

. C

333

11 CM*(t) n TCHVCK

314

.,.

t

.

335

gO TO 13

3J4

12 !F( CH ,LE, O.f

) CM • 1.4

-•---.... ......

Ji«

CALL CSCAL(CH)

339

13 CONTINUE

340

C

.

\*\

f, "[■

».*,

LUF.

S' BE1° In

1No

calc

ulat

ed,

for

the

ante

nna

svsten<s>

.342.

C ARE OUTPUT OH THE LIME PRINTER (ASSUMED TO B£.UNIT 6)

343

c

344

WRjTC(5i10B3) MODE. lCP,rRQiXTu>EA.XXAiCH

349

WRjTt(6.1B0fl> TEHP.CWA

|4A

WRITE(6.1fla2i CL8

350

C INPUT DATA FOR FLIGHT PATH*

3'1

C X«IN

STARTING POINT

392

C X"AX

ENDING POINT

3>3

C

OVR

SAMPLE POINT SPACING

-|3A

C PHIR

ANGLE OT APPROACH

3«9

C PSlB

GLIDE ANCLE

356

C R

RADIUS OF ORBIT

3"

C ZUP

ALTITUDE AT THRESHOLD OR OF ORBIT

Mg

c ICF

FLAB 0

FOR STRAIGHT LINE. 1

FOR ORBIT

--1A

B.

14 CONTINUE

361

READ (S,1BB9iEND«9B) MEMO

*«2

WRlTE(6tl084) MEMO

"3

READ <5,iBB6.END»5e) Xm|N,XH*X.OXR.PHjB.PS|R,B,IUP. ICp

369

C

-S44-

C-tHE. SUM-Or QxR.IS. AI1JUSTEQ FOR FLICHT Ff

lOM

x»1l

N TC xMAx.

3»7

C

369

C

370

C

-*'l

C THE VELOCITY OF THE AtPCRAFT IS

INPUT,

Page 45: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Q« €9

trxn o

~o ■

a. uic

zoz a: «-r*

Z X

bv

Obi

« _»

Z cr ¥-

O X

b. U

CO •«

o o

— 3 t-

o z

i u —or. si

• uo z — o«o~J . -1 UJOC XririSX bl <r b >c — b X— » 3 •— t« I.CE •- kill — »- W - MM

z oou kjo<<o>iu

— cr b. • >«a in z bi |i/> Mi. u Ma a y*«(L •■*

i»- z !■ axq »zz»-■-«»»-• •- 43 -I Il3 WW.-HT.*- 2 rOC — |i« 3I-I-, ZbUHKLlIO

CI UI j> 7 -( 2>.HJa-;u

ui s uico t> m « I ' 3 UI ^ •"! ■rt

ou u ouoouu c

3-JU

IH •-•

Jar—cr cr or a or «>-</>

H«> »Domoi xuiniii »«z ««»< «x«a. u>il a. a.a.CL a. «uo can os a «»^•-•• »• m^* oz>aR» »*»* »<W Z~CO Z COCO'Z O Z,£E>-'• -««»<ino»>oo!»< _fbi>-m «o»u«MHnnunuul«u ►-•« u >u «»)D — T</» V) ■«••!• 3 U7X"O 3 o z Q. a, « ■ or cc _i _«_i z x «. u z mucxuii a •-—ujbjib) •- »- »•- » -j»-»-»-i-otflc~«n».a »>!>»- njoz t-'►• S""— •« ►)» r bi z » ■. u x ui3i»~bi y

L,soaitiwa.4a»x>.NO — ol»-r o e

—•3 OU3 ■ l> •-> 4 b>

w xxpz

39

Page 46: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

425

NC * NC ♦ 1

it6

WRITE (6.1810)

427

WRIT* (6ilBll)

*26

C

429

C

«3ft_

C XY J5 AK AF.RAY fi

f QATA OH JUt. AHTEJUlA_A.ia. FLLfiET.PAJH

431

C OUTPUT AS PART OP THE HEADER RECORO ON THE OUTPUT TAPE.

C

?33

XY<1!

434

XT(2I

435

XY(3>

436

XYiAl

437

XY<5J

436

Yl

9

7

«4g

XY<9>

441

XY(B>

PHIR

PSIR

HUF

ELflAIlMCl

VEL

PLOAT<ICP>

DXR

XMJN

_

..

..

.

.-

.

-.

444

C THJS IS THE INPUT FOR A NE« SCATTERER OR. CONTROL C*RD.

THE

445

C FORMAT A"O USAGE OP THE VARIABLES HILL BE POUND IN THE USER'S MANUAL,

446

C

4«7

21 READ (5,10l2,ENDt58) ID.XHCl),XH(2),XM(3),ALPHA,DELTA,WH.HW

14a

C

490

C A NEGATIVE 10 IS USED ON A SCATTERER TO CAUSE THE FIELDS TO

491

C BE SUBTRACTED PROH THE SUH,

THUS IDA IS USEO TO OETCRHJNE

492

C THE TYt»E Or SCATTERED AND THE SIGN OF ID IS USEO FCR THE

493

C SIGN OTERHINATION OF THE FIELDS,

494..

C.

_....-..

495

!0A.U3StI0>

MO

C

497

C

458

C THE RECEIVER POINT LOCATION VARIABLES »RE INITIALIZED,

xR IS

499

C THE X-COORDINATE OP THE LOCATION, ZR IS THE Z*COORCIhAT£

460

_C AM CttEG IS THE A.ZIMUTH.

THE USE OF THESE VARIABLES IS CONTROLLED

461

C BY THE VALUE Of ICF,

462

C

463

C

444

C

465

IF (ICF) 23,23.22

_?W

22 CDEGlXHlN-QXR

467

ZR.ZUP

448

GO TO 24

469

23 RXSi*HIN.OXR

42fl

.-

24 CONTINUE

471

C

.512....

C

..

. ...

. .

473

C

474

C IF IDA I* NOT 1, 2, OR 3 THEN THIS CARD IS A CONTROL CARO

475

C AND PLOW PASSES TO STATEMENT 43 To OUTPUT THE COI AND FOR

4.76

C LOOPING CONTROL.

477

C

Page 47: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

!F<idA .C

T, 3)"60 TO 43

1F(IOA .EQ, 0) 60 TO 43

_

C

C THIS SECTION SETS CERTAIN yARIABLES TOR THE CYLINDER CASE,

C AKA IS A CONSTANT USSP IN THf SCJLTTERERING. AND OJUa |S SET

C IERO FOR A

VERTICAL CYLINDER.

C

IF<IOA ,NE, 2) 60 TO 29

DELTA,0,

AKA*WW«AK/2,

_

25 cONTiNllt

C

c

C THE INPUT ANGLES ARE CONVERTED TO RADIANS ANQ

C THEIR SI^ES ANO COSINES ARE CALCULATED.

c

. -

_

ALPilA"ALPHA/RAD

.. ..

. .

DELTAaOELTA/RAO

COSD«C0S<0CUTA>

CA^CO8(L>

SIMA«SIN(ALPHA>

C

C

' "

■ -

-

C BECAUSc OF CERTAIN APPROXIMATIONS MADE |N The ANALYSIS

C THERE IS A LIMIT ON THE 8J2E Of THE SCaTTEHEBS THAT PAY

C BE SIMul*TEO.

TO AVOID THIS PROBLEM AS MUCH AS

C POSSIBLE, TOR THE RECTANGULAR SURFACE.

C THE PROSIAH WILL BREAK

{^P

TpQ LARgE A «4tt l}>10

C SHALLE"? PIECES,

To AVOID PROBLEMS HITH OTHER TYPES

C OF ScATTERERS THE VARIABLES INVOLVED ABE SET TO DEFAULT

C VALUES A*>0 THE BREAKING UP SECTION IS SKIPPED.

C

IH.l

....

tVnl

DX.B.

D*|fl»

OEi0.

O.XHf?.

OYf.?,

. l£il!?A ,NE. t) WRITE (6.^Bi3>

, 10,XW(1>.XU(2),»H(3>,ALPHA,OELtA.WHiHU

cO TO (62.27,63) JOA

C C TEMP IS

The MAXIMUM DISTANCE FROH THE "ErERENCE POINT ON THE

C WALL THAT WILL GIVE A REASONABLE ERROR IN THE APPROXIMATION,

" C'

" 62 TE

C

C

C IH IS THE NUMBER OF PIECES H0RI20NTALLY IN*O WHICH THE HALL MUST BE

Page 48: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

931

C DIVIDED,

?32

C

933

IH.iriX(VH/2,/TCHP)*l

?34

C

935

C

?lft

C_Iv.U THE IMC NUMBER 0/ PIECES

937

C

?36

939

C

?40

C

941

H(l

»XwaXW

JtiZ.

JFl

lfll_..£tt».3

1 CQJfl-46..

943

C KU AND H* ARE SET TO NFM VALUES, THESE ARE THE SIHES OF THE

94.4

C PIECES.

OX AND OY ARE TuE ChAN^E jN X* AND Y-COOflCJKATES BETWEEN

945

c PIECES I" THE HORIZONTAL ROMS.

02 IS THE CHANCE IN ELEVATION

946

C BETWEEN "OHS VERTICALLY.

0X2 ANO DYE A.RE

THE CHANGE IN X AMD Y

947

C BETWEEN ROUS,°

THIS CHANGE OCCURS ONLY IN TILTED CALLS (SINO

94fl

r NOT fQ"^ to zrROI.

-_

_ ..

949

C

9.90. AlalH

9S1

WH«WU/*I

992

TEHPaHM*(AI-l,)/2.

993

0K.AD8 (COSA*HW)

924.

miUXHtt)-ABSCCOSA»TE*Pl

915

Oy«SIG>l(SINA*HU,SlNA*COSA)

996

XH(2)iXH(2)-6ISN(6lNA*TEMP.SINA*C0SA>

997

HWiHW/rLOATdV)

?J.S

26 DZfCPSOtHH

999

DXZaaSINO*HH«SlNA

?ftfl OT2«S1ND«HH»COSA.^

961

CLaH«CHPLX(B,,1./LaHB0A)

962

lF( |0A ,NE."

3

> 60 TO 27

963

|F( (IH ,EQ, 1

> .AND.

( IV .EO,

1

) i CP TO 27

964

WRITE (6.1019)

9«5

CO T" 21

9A&

C

967

e

966

C XU IS THE COORDINATE VECTOR USED FOR THE LOCATION CF THE

»69

e REFERENCE POINT OF EACH PIECE OF THE HALL.

*We IS USED

970

C AS OBlGI-J OF THE HALL.

AS EACH PIECE IS U<ED FOR THE

971

C SCATTERING

XU IS INCREMENTED.

XHO IS USE* TO RESET XU

t>U

C FOR LOOPING ON ROHS.

973

C

974

27 XWp(l)«XV(l)-DX-0X2/2.

979

2a

976

XHa(3)aXH(I).0Z/2.

977

C

971

. C

979

C THIS LOOP IS FOR THE ROuS

980

C

991

00 47 IB'l.IV

982

93

Page 49: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

•-S8 C THls"UidP~Ts"wl"TMTM~tACH ROLAND Ts FOR C PIECES.

00 41 UBlilH C

_c .. „., ... _ „ _

c xw is THt coordinate vector of the reference point ok thI C PIECE BEING SIHULATTEO.

c . ._ .. _. _. __

c

C SUBROUTINE FlC IS USED TO CALCULATE THE FlCiPS GENERATED BY THE C ANTNNAE SYSTEM AT THt REFEREMCE POINT- AFT

THE IS T T c antnnae system at the reference point, after the C THE FIELDS AT THE REFERENCE POINT FOR ALL ANTENNAE ARE IN C EWR,

CALL FLC(XHm,XW(2).XW<3))

C THIS LOOP IS ON THE ANTENNAE. FOR EAC« PIECE THE PROGRAM C CALCUUKS THEL..SCATICRED FIELD FROM ALL *NTehna£, C IEL IS TN£ NUMBER OF TME ANTENNA BEING SIMULATED,

c" " ' " ~ ' DO 4? IEL'liNEL

C

C

C XAtrAi"A ARE THE X-.Y- AND Z- COORDINATES OF Th£

C XA • XXA(IEL)

HAi24(IEL> IF( <XU(1>,LT,XA) .AND, (MODE.GT. IS) > QO TO 34

c this" Section iNiftALiirs The receiver point C LOCATION VARIABLES, IR IS THE NUMBER OF THE RECEIVER POINT,

O.B) GO TO 29

_ COCC . XXIN - JJXR

CO TO 30

29 RXR 9 XMlK - 0X8 30 CONTINUE

tF(Hroc,eT,0) U

Page 50: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

C QH J3 THE HORIZONTAL DISTANCE FROh THE ANTENNA TO THE

! 5TT?g olirlAeE r.0M the antenna to m C POINT

OH • SORT((XW(1)<*XA)*«2 • (XW(2)-YA< A2XH2>A(IIU

64fl r^JiiLlL-13. XHE ftNpL*" nrTHFrN THE HnHTJflWTtL PLANE

I49 c and the Cine between the ahtenn* and the reference 690 C POINT ON THE SCATTERER. CTH ANfl STH ARE THE COSINE 651 C AND THE Si ME OF THETA RESPECTIVELY.

_6«4_ SlHilXlliD-HAl/Rl. . - -"695 -■■

656 C 9B AND CCXPT ARE USED IN THE SECTION HhICh 697 C COMPUTES THE SAjN FOR THE SCATTERING. SINCE THEY CO 6?8 C NOT OEPE»'O 0* THE LOCATION OF THE RECEIVER POINT, 699 C THEY ARE COMPUTED HERE,

6*1 C ^ «XPT ■ 0 THE AMTENNA IMAGE IS TREATED *S A SEPARATE ELEMENT, 6A2 Q0.CTH-8IKO*COSC*STH«COSD

C

C AN IS i VECTOR"WHOSE COORDINATES APE THE DIRECTION COSINES C FROM THE REFERENCE POINT ON THE SURFACE OF THE SCaTTERER TO C THE ANTENNA. THE REFERENCE SYSTEM USED IS ALICNEO WITH C THE Sl!)h OF THE RECTANGLE AND THE THI*O AXIS IS C THE 0UTH4R0 NORMAL. I« THE CASE OF THE CJLJNJER T« t »iORMA«. Is AS5WME0 TO LIE IN A HORIZONTAL PLANE AND C TO POINT AT THE ANTENNi.

C IFUOA ,NE, 2) CO TO 32 W<)>/OW

ANfSlvS*

CO T° S3 32 CONTINUE

3S.

C

C THE HORiaONTAL ANGLE BEwTEEN THE NORMAL TO THE SURFACE AND C THE LINE OF SIGHT TO THE ANTENNA IS GAMHA. SING AKO COSIS C ARE THE SINE AND COSINE OF GAMMA.

Page 51: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

690 C

$91 C0SG«()JXW<>X*<»<XH<>Y(ln0w *92 SING * (•ANC2)*(XW<1>-XA) * AN(!>•<X«(2);YMICL)J)/Dw 693 C

$94 C

_t?5 ... _ C IF THE CPSS IS NEGATIyg THgN THg LINE Of..? t G_HT_ J$ 096 C THRU THE BACK OF Twf SCATTERED AND THE ILLUNINATIOK OF 697 C THE FRONT SURFACE IS ASSUMED TO BE OF ZERO INTENSITY

69fl C AW) THE F1EL0 FROH THIS SCATTERING IS IGNORED,

790 IF (C0SC1 34*34.35 . A91. ... .34 HB1TE (6il0l7> tAitB,IEL 732 GO TO 40 733 3S CONTINUE 794 C 705 C 706 C THIS IS The LOOP B*C« POINT rOfi THE RECEIVER PQINT5,

727 C FOR EACH PIECE OF SCATTERER.AND FOR EACH ANTENNA 706 C THE PROGRAM CALCULATES ALL THE FIELDS AT ALL THE 799 C RECEIVER POINTS BEFORE GOING ON TO THE NEXT PIECE 710 C OR ANTEN'U, XR.YR, AND JR ARE THE COORDINATES

1il C OF THE RECEIVER LOCATION, VX.W AND VZ A*E THE 712 C VELOCITIES I* THOSr DIRECTIONS. THE LOCATION

7li. £ IS PE!ERM|NEO SY SJ.UHTLY OlFFERENT HeTHOQS DEPENDING 7i4 c ON THE FLIGHT TYPE. THE VALUE OF ICF IS THE CONTROL, ?15 C IR IS THf RCCEIVCR POINT NUHeER AND IS USED TO

716 C DETERMINE WHERE THE FIELDS F*OH THE SCATTERING 717 C ARE TO BE SU«MCO.

718 C

71.9 36. CONTINUE 720 IF(ICF ,LE, 0} GO TO 37 7?X 0E6X«

7?4 72S

7?X C0EGPCDE6»0X« 732 IF( (CoEG"XHAX)«oXR .G£. B,) GO TQ 40 723 RSE6 xRCnS(CDE6/RA0)

VR-R»SINfC0£6/AAD> VX * . VJY«^R

i£ VY VELXR/R 727 VZ • 0,0 728 GO TO 39 729 37 CONTINUE 730 RXRaPXR*DXR

731 IF( (RXR*XHAXUDXR ,GE. 0.) GO TO 40 732 XRaRXftftCOSPIR 733 YR.RKR.SjNPjH 7 733 IF(T«:np ,LT, 0.) GO TO 39 716 !R*ZUP*TANSR*TEHP

VZ •_ VEL«SPSJ_ __

GO TO 39 739 39 Vg • 0,0 740 ZR»ZUP

742 IF(1» ,GT. 499) GO TO 40

Page 52: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

7«3

!R.l"*l

7*4

C

749

C

74«

C Rh IS THF DISTANCE FfiOP THE RECEIVER POINT TO THE

747

C SCATTE9E* REFERENCE POINT.

1A&.

C

..

749

RWiS<»RT({XR«XW[i))#,2«(Yfl-XW<2))«»a»czR»*M(3j)««2)

790

C

791

C

792

C RR IS THE HORIZONTAL DISTANCE FROM THE RECClvCR TO THE

793

C REFERENCE POINT,

Z3A

C.

. 799

RR>SQRT((XR-XW(l))»«2»(Ya-XW<2)>««?)

796

C

797

C

790

C BETA IS THE HORIiONTAL ANCLE BETWEEN THE SURFACE NCRMAL AND

799

C THE LINE OF SIGHT TO THE RECEIVER POINT,

SlhB AND CDSB

.7^a_.

..c_are the. aim and cos4NE-or aeit«._.

761

C

7«2

COSB*CAN<i)#<X«J-XW(l)>«AN<2)»<YR-XH<2)M/RR

763

SIMB«(-AM(2>*(XR-XW(1>>*AN(1)«<VR-XW(2)))/RR

764

C

769

C

766

C OR IS THE DISTANCE FROM THE ANIEJUU TO THE

767

C RECEIVER POINT,

768

C

•P»

769

OR • SORT((XR»XA)*«2 ♦ I»R-YA<IEL))«»2 • (?R-Z«)«»2

) O\

770

C

7?|

C THIS S

ECTION e

VAU-

UAT£

S THE .S

CATT

ERIN

5 TROM THE

SURFACE.

773

C THE COMPLEX VARIABLE 'FAC* REPRESENTS THE GAIN FACTOD

774

C FROM THE REFERENCE PO!«T OM THE SURFACE TO THE

779

C RECEIVER POINT,

776

C

777

C

776

C

779

C PHIO AhO PHIJO ARE THE RELATIVE FREQUENCY SHIFTS OlE TO OOPPLER

76B

C EFFECT F»OH THE AIRCRAFT VELOCITY.

7«ll

C

782

PHID ■ AK»(VX*(XR-XA) ♦

VY«(YH-YA(1EWJ 1

V2a(ZRtt2Z))/0R

7^3

PHIjn • tK«(VX«(XR.XW(i)>»VY*(YR.XV(2)).V2*(en-Xb(3)n/RH

7 44

C

51 THESE CONSTANTS ARE THE GAIN FACTORS FOR The VAR10LS CROSSTaU

CASES,

UT.{PHIJ0-PH10)»TA/2.

SNCUC(l) ■ SINC(UT*JJWTJ«tJ

SNcUC(?) « SINc(UT*H19jiT>««2

SNCUT ■ SJNC(OT)

SNClin « •HNC(UT*h6?T)

Page 53: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

J»6

C THE CAIN FOR THE ACTUAL SCATTERING IS COMPUTED BELCH,

?«7

C THERE ARC FQUR TYPES Or TRIANGLES, THEY ARE EKCOOEC

"a

c ry the use or minus signs on their widths

T99

C AND HE1CHTS,

THE CA«ES ARE AS FOLLO"St

000

C

M

C

. _ _ _

8*2

C

ORIENTATION OF THE RIGHT ANGLE

SIGN HEIGHT

SIGN

803

C

»?4

C

LOWER RIGHT

*

835

C

UPPER LCFT

,

8«6

C

LOWER LEFT

§47

^fi_

. UPP£R.RIGHT

.

038

C

839

C

810

C

?U

29 rAC«CHPLX(0,i0.)

"12

IF (I0A,EQ,3> LK«S!GN(l,,WU.HW>«CHPLX(?.»rfU/*K>

JOJ

RP.BJL

81«

SE2«<ZR-XW(3

e15

DO 65 M»l,2

8t6

B»BS*CEe0$BSI)Se2

BPP>PP«g.»HA«CnSfi/pH

IF CtOA.tQ,3) GO TO 61

Cl Sl(A/2.) CEXTHSlC

IF< tDA ,E0,

1 )

IC ■

IC.SlNC(AK,AP«H«/2,)

IF( IDA .EO. 2

) IC h

lC«BESr(AKA,C0SBiSIN8)/2.

CO TO 63

61 HiAK»(CTH»81|NG.eEg«5lNa)

WPlH*(AK*8PP«HU)/WU

A/W

ICLK*(S|NC(AK»aP«WU/2, |«(CEXP(CMPUX(B, ,^AK*

TCEXeT«CEXP{CMpLX{0,,-AK«8pP»HH/2,))/ppp)

SlNCHWW/2/PXPtSl<U

2,)CElC(/

63 CB»CLA"»CEXP(CHPLX<fl..AK»RP)>«lC/RP _

rAC«iCE2*(CTH«C0SD»COSB-STH»SlN0«(C0SB»COSG-SlKB»SINC>)»CB»rAC

If (H.e0.2)

GO TO 69

RPS0RTRRRRWi

2(Z

65 COVTINUE

c

C C IF 10

IS NEGATIVE THE CAtN IS TAKEN IN THE OPPOSITE

C SENSE,

C

31 I/( ID .LT^ 0) FACa-FAC

C

" "

C C THE GAIN IS MULTIPLIED BY THC SIGNALS At fu£ REFERENCE

C POINT TO GIVE THE SIONaLS aT THE RECEIVER,

THESE SIGNALS ARE COMPLEX

C MAGNITUDES.

EP IS THE SIDEBANO PORTION OF THE CARRIER

Page 54: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

C PLUS SIDEBAND FOR THE COURSE ANTENNA AMD EC THE SlCEBANO C ONLY, E" IS THE SIDEBAND PORTION Of THE CARRIER PLVS SIOEGAND C FOR THr CLEARANCE ANO EC THE SIDEBAND ONLY,

EP • PAC«EUR(IELil)

E C,

EC .* FAC»eHR(lEU4)

C THESE ARF THE COMPLEX PHASORS FOR THE SIGNALS AT Tt-E RECEIVER BtrrrREtiT AwTrwwir and FREQUENCIES^ ttfta C PJJliil .EQR-1HE

061 C THEY HiVE THE FOLLOWING SlGNtFIGANCEt

0&£ C SYMBOL USAGE B63 C 2JP CARRIER PROH THE COURSE ANTENNA 064 CL 2JPCU! 90 »i SIDEBAND FQfi .CQURSI 865 C SJPC(2) 19B HE SIDEBAND FOR COURSE H66 C__ gjM CARRlfR FRflM fl^CARAMCt

067 ~ C " ZJHC(l) 90 »l FROM CLEARANCE Z( {

C E4MC12) 150 HI. FROM CLEARANCE

969 C 070 ZJP.f EP/CHPLX(CPiB.0) 071 IJPC(l) « CP • EE

. _ «2i. - 1JBC121 t^F.t. EE - .. _ ■^ B73 HJM ■ £M/CHPLXtCM#0.0) 00 074 ?JMC(1» • EH . EC

075 ZJMC(21 ■ EH • EC fi7«. C

_|lft _ C SMBffQVTI^E YARgA^ AnPS TH£ FIELDS TO. TJffi-f JtLDS. ._ .. (»79 ' ' " c ACCUMULATED FOR THE MR'TH RECEIVER POINT,

BU C OBI CALL VARCAL (IR)

flP2 C 093 c

B34 C THE PRQCA.H J.OOPS.BACK TO THE NEXT RECEIVE" P01HT. 065 C 096 SO TO 36 087 40 CONTINUE

033 41 CONTINUE 069 42 CONTINUE

090 C

B92 C THIS IS THE TRANSFER BACK TO PICK UP THE

093 C NEXT SCATTERER OR CONTROL CARD,

094 C 099 CO TP 21

... ..OS*.... . C -097 C 896 C AT THIS P9l*iT THE PROGRAM HAS ACCUMULATED THE SCATTERED FIELDS 099 C AND HAS >»EAO IN A CONTROL CARD TERMINATING THE RUN, 930 c THE PROCAM WILL ADO In THE Dt*CCT UNSCATTEREO FIELD. BOTH 98i C DIRECTLY FROM THE ANTENNA ANO REFLECTED FftOH THE GROUND.

Page 55: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

ID

»B2

C THEN THE APPROPRIATE RECORDS WILL BE OUTPUT,

«"'

C ™4

43 COMTINUE

»35

JR.0

•96

SNCUT ■

1,0

•!£_

. SN

fiUD

. •

«UB.

. „

•88

SNCUC<1)

■ 0.

9rf9

SNr)

»ie

c »u

c •«

C FROM THIS STATEMENT THROUG" JUST BEFORE 8TATEMENT 51 IS

|13^

. -C

THE.J.PQP

ON »»EKiyEB.fDINT..IHE LOOPING IS

BONE TkE

SAME

91*

C AS THE SECTION FOLLOWING STATEMENT 39,

*16

44 tF(ICF .O

T, 0)

60 TO 46

?17

RXq iRKR ♦ QXR

*lfi

Iff (RXR.XMAX>»OXR ,CE. 0.

> 60 TO 5<

SH

HRRXfiiCOSPlR

1 T£MP>SQRT<RXRRXR,2S*XTH

•82

IF(TEH«> ,LT, 0.> CO TO 49

?23

ZRZUPTANSRTEP

,CE. 0.

) 60 TO 5i

6

C

_ ???

C v"

C THIS CALL TO FLC CAUSES THE CaLCULaTIO') OF THE FIELD LEVELS

?39

C AT THE RrCEIVER POINT,

V«0

C

•41

C*LL FLC«XR,VR,ZIU

942

c

94J

C _

f'*

C TH

IS IS

THf

LOOP FO

B THE

DIFFERENT AN

TENN

AE,

!EL

IS THE

*4'

C ANTENNA 'JUM8ER,

NEL IS

TOTAL NUMBER OF ANTgNNAE BEING

•46

C USED.

»47

c

•*6

00 4« IEL'IiNEL

»«9

C

990'

c THIS SECTION CALCULATES THE

FIELDS FOR THE

v*RlOUS SIGNALS "

•«1

C AT THE RECEIVER POINT,

952

C

•S3

HA . iA(|EL>

•*4

XA ■

XXA(IEL)

Page 56: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

0.r

1F( lHi.CC J_

DO 59 J ■ Ii4

50 2E(J)>2E( HJfc ■ URlLD

ZJPCtl) p tWR<lEL.l) • EWRflEL.2) ZJPC121 f CHRtiEUll * EWfitl£u2) jJm ■ CHKtClE1..3)/CMPLX(CH,0(fl)

L rwR»i> cwacirLi EWR(IELiS) * £HR(IELt4>

966 C 969 C

yfl CL THIS CALL TO. YARCAL ADOS T«E FIELDS TO THE ONES ACCUMULATED 9fi C FROM THE SCATTERERS.

972 C . — - -V73 "" CALL VARCAL (I«> 97.4 49 CONTINUE ?75 C

|?7 C DETEC TAKES THE COUPLE* FIELD PHaSORS AND EV*LUaT£S 97fl C THF ffr'F*r PfvlATtnn iMplCATiflN ICDJ1,... lfi_lS-THE .-RECEIVER VTo" c NUMBER AWD IS USED IN THE SUBROUTINE TO SELECT WHICH FIELDS III C ARE TO BE USED. OFUR) IS THE LOCAtlO" !•* THE ARRAY WHERE 9B1 C THE GDI IS TO BE PLACED,

»B3 C CALL OETEC tlR.DF(IR)) 9S4- . - ..lF-tlR ^61«-4fl9*.Cfl 10-St-9a5 60 n 44

9fi6 51 CONTINUE

?QB WRITE(6*101B)

C THIS SECTION OUTPUTS THE COI ON UNIT S. THE*OUTPUT IS A LABEL C RECORD (MEMO). TWO RECOROS OF FLIGHT AND ANTENNA DESCRIPTION, C AND THE TDt RECORDS.

lF(in VEO. 0)

.. HP.ITE (6*1001) -R4>

HR1TE(B«1016I

C IF THE ID IS NOT 0 THE FLOW IS TO STaTEHENT 97 TO PROCESS C THE 10 VALUE FROM THE CONTROL CARD. OTHERWISE THE SIGNAL .C STRENGTHS ABE-OUTEUT,-. „.._..-

IF( 10 .HE. e > 80 TO *7

C

C IX IS THE NUMBER OF SIGNAL TyPES THAT ARE TO BE OUTPUT, ThO

Page 57: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

omoo,o

NMNnn NnnKnnnnHnnt <• ♦ «i« ♦:» •»■•• ■» a slaos s a <a a1 a s aa a a'a a*s aja'O^ a>a sla<&i9 aia aja a'a si! a ala aia a ■a aja-aia ajaa

51

Page 58: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

IFU*A ,LE. 10) 00 TO 20 .If(IDA tLE. 15) QO TO 14

IFUDA *LE* 20) 00 TO 1 IRIDA .LE, 90) QO TO fi

98 CONTINUE

8

.. 1548 STOP 1969 1000 FORMAT («Fl0i3t

!»?£. 1081 FOQHAT<2I2i6*i7F10.3) 1071 1602 F0RHAT(5X,4HCLS«*F9.4) 1B7JJ lfl9S F0RMATr9MBMQBE » . ZLA/tSH FBO ■ F7»2V

4B73 1 8H XTH « F9.2/ 8» EA a 3^9.2/

___ 3.074 2. PH. XA e 3F9.2/14H COURSE WIDTH F7.2.6M DECREES > 1004 FORMAT (3Xil3A5tA2)

(13A5.A2)

10,0.21 vn .rm.4)

1006 FORMAT <7F],0I0,2X,3I2)

100B FORMATt26H pVER 900 RECEIVER POINTS E POINS I,til,4,7 xHAx«.Clli4iTN 0x»««Ell.4.7H

X.4.7M P5IRalEti,4.6N XTH«,Ell,4.5H IUP«,EtltO

le<i2 lflla FORMATtlftHa. STRUCTURE DATA) 1U10 FORMAT(lftHE STRUCTURE DATA) 1011 FORMAT156H 10 XW YH fU ALPHA

X.*AHDEi.TA. i^UasH- UH HJ< «*X*lHH

X.SX.13H V SECTIONS ) 1012 FORMAT (12,3F6,0,9x,2F5ta.3Fl0.0) 1013 FOPH*T (T3*lXi7El2.4,9Xif3«4Xf3) 1013 FOPH*T (T3*lXi7El2.4,9Xif3«4Xf]3) 101f fORHATilX^flO^*./ SFlft.9,115.10X.2110) 1015 FORHAT(6M0HlNOa.Eli,4.7H H*XD«,Ell,4,7H 1

XFll.4.TH iUe7

1016 cO^MAT( 7E15.8 )

1017 F0RHAT(27H SURFACE IS NOT ILLUMINATED

l0lB

1019

?ORHAT(2xl!HlOii3f5x3Hlci!ls!5Xl3Ml»t iI3,SX,4HICF. FORMAT (' •*• ABOVE TRiARJglE TOO LARqE, SCATTERER >,

lBflft ..1, t.OHLTTUJ #••!! ....

1»97 END

CONSTANTS

i 1754210421*4 1 000000800020 2 216560600000 3 204600000000 * 2il622!J52!2

A_RAD jCO /»« - AEPP /CD /*62 ABPP. /CO /*144 BRAO /CD /*226 f-^- ---/Cg- /»S1B B6PP /CO /*372 »J« /AB /♦« HJ»» /AB /*2 iJPC /AB /*4 2JHC /A.B f*& JP /,COHM,/*0 2PC /tCOMH(/*i750 ZM /«COKH,/*SA70 ZHC /iGQ*Ki/+7640 »C0 /tCPMH|/*j,39d0

VPO /.COMH /*1*930 VHO /.COHM,/«17500 SM /VAR /*B SNCUT /VAR /*t 8NCU0 /VAR /*t /VAR /*3 VPC /VAR /«5 VHC /VAR /*7 *ODE /SUB /*0 IGP /fU9 /♦! /SUB /*2 IET /SUB /*3 FR0 /SUB /*4 LAMBDA /SUB /*5 pi /1UB /*6

Page 59: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

7SUB >*7~ /Sub /*2f /SUB /*3* /ANT /*0 /ANT /«li

/ANT

/.CQNM,/«,a

SUBPROGRAMS'

PHI /SUB /♦ID PSI

XXA /SUB /*21 YA BT /SUB /*36 SIC

CWA /ANT /*31 AS

SO /AWT /*303 _ET. _

XX«Y /,COHH./*0

irtx

cfm.2

/SUB /*13 _/SU3 /*24 /SUB /*37 /ANT /*3 /ANT /*53

/ANT /M4Z.

ANTP

MEL IA

QPP

CLS

/SUB /AMT /ANT

1

/*27 4

/*54

XTH

ak dPn /AaT_ DC /ANT /*59 PUMXXX /ANT /»99<

/$UB . /1U8 /»:

/•U9 /•

CLEAR CNO, PATTRN CRRNTS

.CPJ. FLOAT AkBS Sflfll CFMM.2 OETEC CABS EXJT FLOUT, FLIRT,

LN*H REAL EC*? sinc

INTO, INTI,

CFD.2 aTaN GSCaC J efM.H efMt4 cFKM.p pglr

SCALAR?

RAO

W60T

NEL

3753 3787

NC

en

16

20 3764

3770

3775

3754

SPSI

■H8h-RXR

sTna • oz

—40{4 4fl21 4626

40S3

IB

VR OR-

SNCUD

4041 4B_46

4053 4061

4066

4108"

♦105 4115

4123 2 7

ARRAYS

ILBL 4131

CS 137 gPC 1750

VPD 15530 *f.9P_ 516?

AGPP 144 VPC 5

VA 24

_ a

TA

AK

TGS FPP

OXfi

cospTr

CQSO iv it

3795

am. 4004 4011

4016

4023 4030

4B89

PTA 3756

FRO ~4~ 22 3U3 CW 3766

ALPHO,

PI 6 IHACE

XTH

SN

bn

CEXPf f>R

4043 4050

4055 4063 4070

4009 ALPHA 4012

coee 4ci7 SIND 4624 OX 4031

_aj 4jea*_ XA 4044

CTH 4031 SINS 4057

•H^-HBr

WP

ec j

SIG

4102

4110 4121

41S2 41*0

4127 40

Of 4154

2JPC 4

.?«£._ . 141? «•< 5151 XY 5204

ofpp 310 PHI 10

R* 32

ZC 9141

2JMC 10

Jt*JLl-. 0. XH0 9154 ARAD 0

BGPP 372 PSl 13 EHR U

2UN

rPM

IP

4|13

I

413* s

AFPP

SNQUC

XXA CHA

3

U 9}

Page 60: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

_ .- .- ^. ----- £T ^ NQ 5i7 OUHXXX 521

Afl _ gft ' ~*

AB5 " 390 553 594

A?P?37 227 306 ACP? 3J._ 222_

5W ?!i III &64 «2 783 612 821 822 826. 626 I2I_ Jtt _... JU--^K 4j 150 48J ^4 782 783 612

60S 6V1 692 762 263

828

BPP 61? _ _ On BflAlT 37 201 234

1025 1B27 1B2? 1031

* *VL . .631 721 722 755 724 W« WO 931 jjp. Is '956 958 960 «2 fllfi 517 Blfl 825 832 CEX? 664 " 828 831 *XPT 2B fifil - -- AA4 CLA«28 561 831 CWE*« 1B0 .424 935 CIS 43 266 271 346

Sk« -Hi -fi!- SI! «1 "» «j ;n |" S_ 9M *4f •""

ggis :;; iu ni ;n ».« •» ,9i 700 632

r32 919

#_^ .._«!_-J-L

43 207 2«7 254 310

Sii SIJ H? SI! 3« »» *• '« 279 gS0 333 J4J

_?07 247 254 31?

Page 61: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

497 496 319 541

677 691 «9Z fli»

3B9 398 4P2 4C5 440 466 469 631 633 721 918 929 9J8 _ .

875

872

310

834 655 856 960 961 962 963 9.6.4 965. 966

flSS 834 659 .696 ....

9S7

317 in

-Mh ... . 24 "43 317

819 953 955 957 557 558 559 560

1027 1026 1029 1030 1031 104 ?« »? «? ?« 8U «i 826 B27

82fl 831

630 720 916 9*8 997 1B41 _ .

2B7 241 256 344 419 . 843 988 9«5 997 1004 1041 519 521 542 562 675 &l2 820 822 823 106$

645 646 677 6«l 692 781 769 762 85? 6SJ

954 955 956 960 961 962 963 964 965 966

9JS S34 973 963 964 SB? . 980 «9fi. JJ24 102

IV 513 538 541 557 563 561

Page 62: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

U-l

1036 961 1036 1039

150. 52? 626

1042

41

623 635

1041

946

413

_2? 1011

433.

414

933

226 141 295 262

917

933

434

931

916

996

919 920

SORT

1*1 2" 31«-924 734 749 755 769 634 921 999

Page 63: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Cn

736 921 922-

822

919

749

in

826

921

512_

755

1041--

941

932

762

927 941 959

Page 64: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

76 1B60 1S63 102 213

16J 171-- - -

233 242 253 266 1064

Jil_ 317 .

jaa. ..... —

J9i .

963 .. _aw_

10U7P 374 1076 10BBP 3»8 10.79 lift? 405 1080

- - - 101CP 424. . 1062 7U 10UP 427 1083

oo . -

" ~ IS14P 997 104*1 10B8

m », ..7 HP? ill S ien- -181BP 966 169J

ifllOp 564 1095

986

175 ■ - 26r S6T 3*T 373 390 447 1669

1076

Page 65: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

set* ui— <

at —•

x ■«

xf <oa>««

3~d,

59

Page 66: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

z —

ZO rt

—ttn -«ar *• z o uu ■ 3 •3 jr we

kouvu

60

Page 67: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

c

c _...._-. C THIS ROUTINE CONVERTS PLANE POLAR COO»OIN»TES TO PLANE RECTANGULAR CO-

C ORQINATCS.

SUBBOUTJME.P2R-t comple* a

Y. Ri T )

t n *ZMt Z ) Y « MMABt 2 )

RETURN

O\

CONSTANTS

e 00B0090930P0

X 51 Y

SUBPROGRAMS

.&*£ cflpui. .ere.* real

5CALARS

52

P2R Y

60

93

S3

94

S4 91

P2R

real" T

t

8

9

-A 1B-7 6 IB

Page 68: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

2 SUBROUTINE GSCAL(Cu) - -

)S{l)0C5

f ^eOHHAN /SUB/ SooKlcfcl^T.FRO.LJ;^^

"if"'""' "i lICp,ICM.FROfLANBOA,Pt.HlfFPP.QPP.M.AS,E

\l TTS(X) ■ siN(x«RAOO)/COS(x«RAOO) - SLP t* icp ■ hqoe — " TCM • MODE

... . 11 p«a"Si n i7e

21 ?F( XA(1>.6T.(XTH-3BB0.) ) GO TO 2P 22 IF( M0Q£ LCT. 12.). 60 TO Z 23 EA(1> « AHAXK 39*(«.EA(1) I

?4 Jll S-lAiil -jg 60 T0 3

CT\ 95 2 Ml ■ 8* . to 27 3 xA(l) ■ XTH - t 50. • HI )/TTS<T<»S>

29 1F( MODE - 12 ) 22.22.23

5a „ jLJfMJJ-j-f " "* "" " 111 GO TP 3D

32 2? 33" 30

5J ^^ 37" " "32 Mi ■ >.85«L*Hani/SlN(TG9«"RA00) 36 tf( hqoC -.14 ) 33,34.35 f9 c NULL REFCRCNGE MODE • 13 40 33 JAU» • Hi

B*RErCRlNCC MODE ■ 1' 44

45 46 If v P v wn

47 C H - AR1AY HQOC ■ 19

34 BM1 • Ml-|A(2) ■ 3.(

$o to «g

c ■"■"

H " 5rfTies(Sioi .ot. i.»t-es > to to «i

Page 69: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

*-■

94

SIC «

ATAN8((XA(l);XTH)«TTS(TGS)*5fl.*lA(i),-YA<l))/RA00

55

. .61 XA12X • XAtll

. .

. .

*6

VA(2>

■ VA(1)

M

lAIZi i iUUl

. .

. 98

CALL P2R( BMU.1).8H(3.1).1.0,TGI*RADD>

5B

»Hf9:n » at

»0

CALL P2R( TH(l,i),TH(2,l).l,0,-S!G*RAOO)

61

THUiil l BHH-tfTwit-i'

62

THUill ■ -BH(3,1)«TH(1,1)

69

mtzi.n. a»a

64

CALL P2R( RH(1),RH(3)tl.Bt(TBs-B.5«rR*CM)«RA0D)

ah

c*n eMCt r>»«i>lep»"n,"H»TuiP"

> 66

CALL P2R( RH(U#BH(3J,l,e,TC8tBADD

) 47

. g*LL QHG' rPMtCPHrPH>THf^H I

66

6*8 ■ RCAL{ fPH/OPM

) 69

OHi I fllALt PPPtll/CPPtl)

>

je

bt

a tos . et9«rR«cH*oM0/( o«i . one

>

71

_

_ CALL P8R< BH<l«t>fBH<3't>'l

72

CwA(l) • e,2l8tFt/( OHI -

O«0

>

73

CMA(2) ■ CHA(l)

74

BH(1,2) • BH(1,1)

76

9H«3,2) • -BMI3.1)

77.

CALL pg*t T"tltl)rTH(2il) il.0,-ftIC»»AOO)

78

tH(3,l) ■ BH(1,1)»TH(1,D

TtUlllJ

il i8H(3,i)»TH(l,l>

. .

..

._..

80

THil

Ti)

f TH

(l.l

) 81

tMtaizi ■ THU.li

_ .

. .. „_

82

tH(3,2> •

-TM<3.1>

S3

_C

CL? MAV It ugtP A« AM f^TfUMuL cftMTHftL or Cbm>CN8aTOB AN>LtTuPK HCE,

84

CALL 6«6( rPP(l),GPPtRH.TH(1.2)iiH(l»I>)

85

CMP p

0.I*(B,B.l.0)tCLStPPP(l)/SI(l(AKi8P(RHjTH(lt2})taiaBi)

86

8(28) • CMP

87

SliJ

■ «CH?

-86

CO TO 9*

. 39

7B XA(21 t-XAtH

. -

40

XA<31

p KAI1)

91

IF

( HOOt ,C0. IS

) CO TO 71

_..

.

92

NEL • 2

93

60 T" 72

. .

94

71 NEL p

3

9i

. C. OFFSET. AOJU8.TJ!£NTS-.Eflfl.JMXUim

96

C

97

72 RA • SQRT( ZA(1)«!A(1> ♦TA(1)»TA(1>

) 96

YA(2> p SI0N(S0RT(RA«RA«lA(2>*>A(2>)|YA(i>)

99

100

C

104.

-.

C

102

CALL P2R1 X,l,i,0e»04i(T6S*0.9«rR*CW)*RAOO

)

103

CALL PLCt X • XA(D. B.i Z

) 104

gP P

(0.10.)

105

pp p (8,«e,>

106

00 78

I p iiNEL

2

22|i

\rt H\. ,E0, 3

) YA(3) p St6N(SQRT(RA*RA>lA(S)*lA(3)},yAXl))

THfS SrCTION CALIBRATES THE COURSc HlDTH OP IHAQc TYPc ARRAYS TO THE

spccirlto. ay cw.

Page 70: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

107 RD a 2.«AK«ZA(I)»1/X 10A _.. CE s ( i,-CEXPtCHPLXJfl.jRO)))

109 6P • SP • E(!,1)»CF

110 73 rP • fp • eUi2i*cc

113 "" " " RETURN tNO

CONSTANTS

m™"j"ti 5 160517426542 6 201400008000 7 176676S55442 10 010000000000 11 •li'JimSZSZ U llVvltlilll 13 ?BiS00000000 14 00S08000B000 IB aB1400CS000J 15 fllfllUIMfli

GLOBAL QUHM.1E8

JJM 111B

^... ,,„ ... /ANT /•! GPP /ANT /*J e /ANT /*5i 0 /ANT /*55 C /ANT /*i37 S /^NT /«S17 MQBg . ^JlUa. ^*ft - 1£P— - ^*UB- - A** " /SUB /»4 LAH80A /SUB /*5 PI /SUB

"v!1 ',1% 'All «l »S £8 !K «S ^:JJ ?« mb >.» bt /jw. z^. FRO /SUB £T LAHBOA /SUB /*5 Pi /SUB /♦& »*» '•"» J*J_ Jjt J«J <* dci isiin j.<i 8n jqur /*u XTH /SUB /*17 SLP /BUS /*20 XA /1UB /♦

AU10, SIN COS AHAX1 ABS SIGN ATAM2 P2R GwG REAL CFO',2 SP crn.2 8Q*T ^LC CEXP CHPLX NHLST, —

w r r ;• sl k g r f * J till Z 1182 « 1123 RJOO 7 « Ull FPH s. 5.PH 7. .. OHC .. ._llt4 . Q«l-.. 4O5_ . ._ fijt Ct5" *4 AK 41 NEC 16 «A 1130 GT^ FP 1133 1 1135 «O 1136

09 40

ARRAYS

C 137" S * 303 FPP 1

■"} -U «I S 8* ''I YA 24 I* 32 TH 0 W 6 CJA 14 C/JS

h

20

1

is,

Page 71: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

p&Ui*?

I •

I S

awMH

a ui im o •> (5

S IS

Page 72: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

.1

9

10 11 12.. 13

14

13

H

C TK] C PAl

C

IS USED TO IWPUT niT* FBW CALCULATTHB THEOftgCTtfiAL

AY TYPE ANTENNAE.

SUBROUTINE CHRNTSc 0# Ct S, ET

COMPLEX CC1>,SC1>

COHHON /SUe/ HOpgi l.XTH.SLP i

t ■ i

NE )

.rRQiLAHPQAiP

C

c~this*f3 the 1 »i>ut*'fon~the element location anq current description c qt 18 the element displacement in ike ynoirecttqn. measured^

ahpliiude* in relative umiti 9

C CT IS THE CiRRttR PLUS SIDES AMD. AMPLITUDE* IN RE C PC tS THE CARRIER PLUS SIDEBAND PHASE, IN DEGREE £_3T IS THE 91PEBAMD ONLY iMPLfTUflg. 1W RELATIVE U

E UNfTS

C PS IS THE SIDEBAND ONLY PHASE. IN DEGREES Q

1 READ (9,1000) OTi CT, ©C» ST. Pfi

c fnis test is to see It the end of the element caroTmas seen C REACHED. If THE BAHRIpW PHASE IS GREATER THAN 9BP FLOW

CIS TO THE CLEMENT PATTERN SECTION,

C . . , IF( PC .CT. 90fl.) CO TO 2

C THIS IS THE 90 OEGREE PHASE SHIFT FOR THE 4UAbR~A?URE~dr C THE StftEflAND 8NJJ TO ThJ.SIDEBAND IN THE CARRIER PLUS SIPE8AND.

PS ■ PS»90(0 ... ._ . ..

WRITE (6,1006) OT,CT,PC.ST,PS

C<t> 3(1)

\ « I ♦ 1

C THIS STATEMENT LOOPS BACK FOR THE NEXT ELEMENT.IF THK WT*L C NUMBER OF ELEMENTS DOES NOT EXCEED THE AVAILABLE SPACE,

ire I .LT, 26) GO TO 1 ... _

c

C THIS SECTION REAOS IN THE PATTERN FOR THE ELMENTS, NE 19 THE C NUMBER Or ELEMENTS. ALL CLEMENTS ARC A99U«E0 To HAVE THE Si! C PATTERNS,

C ., . -

2 NE > I - 1

C

C GT HILL CONTAIN THE ELEMENT PATTERN, THE VALUES A«E IN . C RELATIVE AMPLITUDES. ET<i) IS THE VALUE AT ZERO DECEES AND

Page 73: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

*« c successive Values arc At lp decree "spacTShTup "toTee". ~thus~ J5 c There *"e i* points given, the pattern is

97 C

158 READ (9,1000) £T

™ . WRITEC6,1000> £T . 40 RETURN *1 1000

42

CONSTANTS

O\

n I-5* C 157 $ 160 CT 1*1 COMHOM ■ --.-...- - . . ...

/•I ICm /SUB /*2 IET /SUB /*? " /♦6 RAOO /SUB /*7 PHI /SUB /*10 /•17 SLP /SUB /*20 KXA /SUB /*2l ./•32. . T5?.. /SUB_

CT 171

RAflD 7 !ET 3

S 160

I*. ..._22_

42

IP 21 42

2? 27 49

Page 74: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

i

c

J C THIS SUBDOUTINE INPUTS THE ANTENNA PATTERNS FOR THE HEASUREO

4

C PATTERN ANTENNA CASES.

5

C

ft

SUflROUUHE. RilI8»L i ABaO, .If P£*_AfiP.P. J

-7

" DIMENSION ARAD(S0>< AFPP<50>i AGPP<58>

B

DATA

RAD /

97.2997795

/

J

1 RE

AD(9

1100

0) An

C. A

FPP(1X>i AG

PP(L

X1.

11

APPPltX)aArPP(IX)*100808.

iPPUXUAfiEPtDtLfaSftaB

" 13

" "

'"" ARAOMxJaANG

/HAD

14

jXiix+i

15

IFC IX .GE. 51) Co To 2

16

IF( ING .IT, 361.) CO TO 1

17

IF< IX ,LE. 2) GO TO 4

19

URlTf (6tlBB2)

21

DO 3"

99

ANQnAn^m« §-nnvTinunux

* ~

~

23

3 WRITE (6.1BB3) ANC.AFPPCI>,AGPP<I)

24

...

. GO. T0..3

__

--

■■

-25

9 RETURN

26

4 XR1TC (6.1004)

27

END FILE 8

28

STOP

29

1080 FORMAT(6F10|0)

SB

^0Bl_tOOHATC21HaANTENUA PA.TTCRN HFaSUHEM£NT>

3i

lB82F0aMAT<3«H ANGLE READ

SIOEBANO

CARRJERl

32

1BB5 rO"M»T (3C12.4)

33

1004 FORM*T(33H HEASUREO ANTENNA PATTERN H|SSlN&

> 34

£"■)

e 2216069B3BPB

1 221624540BBB

2

160917426942

GLOBAL DUMMIES

. ...

ARAJ}

...122

. AFPP

173

>tay»

-12A

SUBPROGRAMS

TPFCX,

EXIT

FLOUT,

TL1RT.

SCALARS

-.

--—

PATTRN

175

RAO

176

1*

1"

2"

I 282

ARRAYS

Page 75: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

ARiD 172

ATP? AGP?

L IX

_fiAD_ ..-.

IP 2P

I 7

13

6 7

t. 22-9 IB

fl - -Zi.

a -13-

10 16.

15 IS

.21 21. P 17 26

?■ n h t5,

-HI

*FPP

14

12 —22—

... -A8PP.

-23-

_IL IS

23. 11 13 14 19 17

33

"V

Page 76: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

I C

I C THIS SUBROUTINE SIMULATES TltOcMAVioR'OP THE C I BO L

* .c a.YSi£H«-jja TH£-ia*jm BrnnvFR pnTwrax..ctucULAT|a C THAT WOULD BE OBSERVED WITH THE HELD LEVELS IN IP,IP 9

8 ■ .SUSRHUTINE QETEC UlL«CJLtj . 9 DOUBLE PRECISION Gf!00

12 REAL N 11 COMPLEX iP(9<JB)|ZPC(900t2>. ).2 9 gmgaai -gxrlSnft.gi

13 DIMENSION VCO(500i2).VPOt900*2)»VNO(90?i2)

14 DXl!£.NaU* il2J.6BBJ!t26j-19 COMMON lP.aPCi?H«2HCiVCD.VPD.VH0 £6 COMHON /VAR/ SH^NCUTJNBUfljiNCU&laUVPCtal.VJlCUJ 17 DATA NC /5/

-g

i! .JA 29

28 CALL QTCt2Hllfi)JVM,VMC) 99 QK2 ■ 4.0«VP»VM/(VP*VM»»«2

50 _ uw . vh/vp

31 IF( UW ,EQ, B.) GO TO 2

32 H • VC

33 Ml i N Mi 34 cc f e;o 39 CP ■ 0?0 36 CM l fl^fl— . .

37 1 IF( »l ,LE. fl ) 00 TO 3 38 6 > GBBBtNi) 39 CC • ce«8K2 * G ,.

41 CM ■ CM.BK2 * S*ti:*N»(l,/Uw*l.))

43

44 00 TO 1 45 2 CC. 1,9

46 CP * l.'U 47 CM • 0.0 4g j nQ_4 t ■ t .9

49 " " " "VD?I • C»«eP«VPO(IR«l> *" CH.CM.VMDUi.I) * Ce«CC*VCD(lR|I) 50 VCI t CP*VPCtl) * CMfVHCCll 91 4V(|) a SORT< VCtaVC( * V02I )

52 COT ■ SK*(V(2|BVUJ.)/(V(2}*Vtl)) 93 RETURN

Page 77: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

«uo o!*»

X Z

men

X 9

HI.U

ir — uou o tsxxo M Z 3UU 1*1

no .

xx sin r»« sqoani

)Nnnnn < in «cy ■* im <

u — u ; no i

tn o ^ J301 "* " < u twcJ|<ucvi a i-«i

■ o ac ' </>

o u < "ml •• > pi 3 .»- cj ui v o. o ae a. a. ■

—t k!'u ni u'uua or a— <vi uo oa t> i. tariLUi- S tr w<9xzz!za>x ,« ouox x-xa. o. a.x c a a.

71

Page 78: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

1

c

-.

-..

. •

2

C

3

C THIS SUB°OUT!NE SIMULATES THE EFFECTS OF PHASE SHIFT BETWEEN

4 C CARRIER and ?IOEBA'!OS ON DETECTED 9E AMD 150 HZ AMPLITUDE,

5

C

ft

SygROutPiE fl-TC_t

Zn.vh, vnc

> 7

COMPLEX ZN, ZH

a

dimension ZN<sea..i).VNCti>

9

VN b CABS(2N(1,1)1

13

ZH « 1.0

11

IF« VN ,CT. 0.

) ZH o CONJG(ZN{1,1))/VH

.12

...._..

.

_DQ_J

I ! U

13

1 VNcd) b 2H»ZN(i,Ui)

"

"""

14

RETURN

19

ENO

CONSTANTS

GLOBAL DUHHIES

73

VN

74

VNC

75

SUBPHOCPAMS

RAQS

CONJG

CFI.D

CFH.2

SCALARS

OTC

76

VN

74

HH

77

I 1B1

ARRAYS

11

IS

Page 79: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

too

X «I -JOC >■ nice in

a c

a. a. ui *• ->>u —■

WUOT

3 a. ». •-no

i a

a a a cna a a cr a al

uuuuaqoao jaai3uuaai

(am nini iumn|>>>>>

«• KM

m aa CD 3 3 ■< OO

o z z

4 • »:

OO

OU E

uoo <w r«i

z wm co —lo.«»

» i«i-»

a:x

mm — oo

« « ♦ * «

. x »»«. »,„

— -»co

I en «•- -m Ti^i_i

tnniru • « « • 4 «m r a, x — ouc

us ct 2

caai'~ -o»-»->_ia:cr alx o oix nma*. w.m ■«•-•-- «Wj» 3»», "••UMS <i UI ̂ ~> ' U o.x> aiSiraiNii. ■ z ■ •

•« -icd mi

3 hi hi mzzUzw —cricrcr cwarociz

tJj ixxiiitr —w ulucruccihc 3 C3IO MOOOO<CitO&ICU I7(LZ'UZ iouIo ot>uuuuniNom> -in>>lc<u

! j Hr«<Hi

73

Page 80: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

S3 0>M

3r?

uju ca

»■» na a

a. a. 2 ■>>> <r

-i ui3

in »iv>

poo u. uuuiiaoioo zzzkuih

« uluuuiia a. uizzzzk

->cr»«)cnw«n>>

74

Page 81: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

1 C

3 C THIS SUBROUTINE CALCULATES THE ELECTRIC FIELDS'FOR THE 4 C $IQEBA"D$ AT LOCATION <Xl,Y,Z), ARRAY £ IS THE SAKE AS 5 C ARRAY rwP IN THE HaIN PROGRAM.

A_ C

7 SUBROUTINE FLC(XliYliZ) 8 COMPLEX CiF,FPPJ6PPiC(2S«2>.S(2S.2}.CJA.CJ8 9 COMHON/CO/ ARAD(9B).AFPP(50)#AGPP(98l|»RAO(S(i)lBFPP(50)leGPP(50)

10 COMMON /SUB/ LC(3).lET,FRQJMAn0A,PliRA0D,PWi,P<2),PSl<TT<2).NELi 11 1 XTM.SLP. XXA(3)iYA(S),HA(S>iRA(3nT6S,BT.s{6»CBiAK

fifiYT/EPPCP£UCHi)Sl^1 12. 13

3Z

2 ET(2e,2).N0t2>iGC(4i3,4>

14 COMMON /We/ TH(3«2)*Bh<3i2)iCjA(3B)iCjP<30)

15 DIMENSION RH<3) U JA ■ i

17 C

_U . c ...._.__.. 19 C THIS IS THE LOOP ON ANTENNA NUMBER.

?B C ?1 DO 11 jBltNEL

IZ .. CALL CLEAR JPPP.4I 23 C

C _..... ^ as c loc is the Type for antenna »j» en 26 c

27 LOC ■ LC(J)

Z9 C X IS THE DISTANCE HJOH THE ANTENNA TO THE POINT,

_3J C -

31 X "m VI i XXA<J) 12 Y ■ 13 34 8A(j) ■ Q

35 IF ( LOC .CTi 10 ) GO Ti 36 PHI»ATANg(V,Xl

^7 P5I ■ ATAN2(Z-HA(J)rX)

39 IF( LOC «LTi 4) CALL CSP *9 IFJL^C .COa ?) CALL ANTP(.fPP<J>j5PPCJ),A»»APUiH|AFPPlJAjIACPP(JA>) 41 IF(LOC ,CO, ?> CALL LNAR(FPP(J),6PP(J),PHIlDri.J).C(l,J)*

44 2 cO^TtNUE 'if ' ' RH<i» • X/H 46 RH(2» . v/R

47 (E H hJ

46.,... . lfJLL.PiLjL6.tj_l? LGO TO 3. 49 CALL CWC< FPP. CPP, RH, TH(1»J), ^8 CO TC 10 ^1 3 c*LL SSA i GC(i«J»L0C-12>t*M.lET )

12 IB COM3 « AK*R

93 C

Page 82: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

C F IS TH£_CflMP.LEl.GAlN FACTOR Fftfi THE TRANSMISSION LOSS FRQH THE C ANTENNA TO THE POIMT.

F ■ CEXP<CHPLX(0t»CON3)}/R

_ na.ii JC»i.a .. ... —

c

C GPP IS T«-t SIGNAL LEVEL FOP THE SIDEBAND PfRTlON OF THE CARRIER C PLUS SIDCBANO, f» _^ _._ .. _ + „ .. , 4 — .

CPP(JC)t GPPUCl«AS(JC)

C

C FPP IS TU£ C^MPLEx PHASOR FO» THE SIDEBAND ONLy.

C

XU«a RETURN CNQ

j

FEPUfiUF

000B0B0000B0

... ti. 395 396

U

96PP /CO

/CO s

TT /SUB ya /sue

SIC /SUB

GPp /ANT C /ANT

SUPPROCRAHS

CLEAR SQRT

.SCALARS-

/*fl

♦1

/♦2*

/*0

/♦62 AFPP /CD

LC /SUB /*B R.APQ /SUB /•?.

NEL /SUB /«1< HA /SUB /*V

DB /SUB /*4t

E /AST /♦« S /ANT /*3(

6R /HG /*6

CSP ANTP LHAR

FLC

X

Z

361

364

3S6 41

JA 362 XI 354

PHI 10

F 37P

/HG

CSA

J 363

v 365

PSI 13 JC 372

BRAD FRO

SLP TCS LOG

AS

NO Cjfl

/CO /*226

/SUB /•* /SUB7 /sue /« /SUB /♦SS /ANT /♦«

/ANT /»33. 0 /ANT /«9t'

CExP CHPLX CFD.0 CFHH.2 CFM.2

NEL VI IET

16

355

373

Page 83: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

20

4**

46 47 49 51

36 37 45

36 46

37 47

49 51 72

Page 84: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

1 C

2 C THIS iS THE M*YEQUinE F.*R FIELD *NGVMR PATTeBN BCUTlNrV 3 C UNIT VECTORS ARE USED TO DENOTE T«E SIGNIFICANT DIRECTIONS t

R 4 C R - DIRECTION Of y

5 C B - aROAOSlOE DIRECTION

6 C T ; TANGENT P. | RECKON T'~ ■" ^routine" gScTfpp, gpp". r, f, b > 6 COHPUX PPPfGPP. C(5fl),SC52), FP,GP« E

9 COmhON /ANT/ L0C*FP<2),cP(2}.E(4.4>«CMA(2),A8(S)tD(5f9>(CiS. 16 2 ET(3e,2),NQ0C2}*GC(4f3t4)

11 OIHE^SIO'J R(3)i B(S)t T(S)

JZ- »fD.t-2J. . ... 13 S!PH • 5P( R.T ) 14 EPP ■ SP( R.B ) 19 IF ( T(3) ,LT, 0.2 ) EPP ■ -EPP

1» f ? p

ie_

C < JIVCEXP(CMPLX{0 *,-D(J)«St PH))

C E6 72 FPP ■ SPP»PPP 23 HETUPN

ESQ-

°° CONSTANTS

FPP Hi GPP 153 " 155 T 15ft B ii7

Page 85: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

>o><in o> to on o> <o <,

Iq. a a u o a. •-£». qloojo. 3 oo

I Lk 9 9 O U ~J jy

a 'a. d \~

j

79

Page 86: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

i

c

? .

C THIS SUBROUTINE CALCULATES THE F4R FIELD iMPLJTUOES EMANATING FROM

3 C

INDIVIDUAL GLIDE SLOPE ELEMENTS.THE RELATIVE AMPLITUDES FOR tH£ VAR«

4 C

IOUS SJ0E6AND COMPONENTS ARE TRANSMITTED TO THE SUBROUTINE BY THE

5 c

abray g. the element pattern fs selected py the ikoex ie

. i

C

7 SUBROUTINE CSA

( G,

«J

, IE

)"

9 COMPLEX rpp.GPP. C(5BJ.S<50). GP. £

9 COMMON /ANT/ LOC,GP<4),Ef4,4),CWA<2>,ASC2).0<5{")#C,S,

1?

2 ET(2e.2>.ND(2)>eCt4i3.4>

11

DIMENSION C(4), R(3)

4?

If-I-1£-.*EO. 0 J.

F.i SQHTH. -

fl(2)»»2

) 19

IF(IE

,'EO,

1 ) Ft(SINC(4,*ATANS(R(8).S0RT|ll(l)«*!«R<3)««2)))>»«i S

00 1

I « 1.4

* IS

1 GP(J)

■ F»G(I)

U

C

GP(i) ■ CHA(1).CP(1>

17

RETU»N

1ft-

--

. -

.EK3

-

8L0BAL OUMMIES

C

76

f?

77

IE

100

OO

O

Page 87: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

00

200

C

201

S

202

ET

203

Page 88: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

I 5

7

9

4

-■»*

13

1*

15

[I

21

2 26

9y

C RADIANS,

THE

SUBR

OUTI

NE W

ILL

INTERPOLATE

BETW

EEN

VALU

ES

C gRACKETTtNC TPHJ,

If PHI J8 OUTSJOE THJ RiNCC Of THE TABLE

C THEN EXTRAPOLATION

FROM

THE

LAST TWO

V4LU

ES WILL BE US

ED?

SUBROUTINE ANTP (FOP.GPP,ANG.ANT.ACPj

01HEMS10N AN$C9e>, ANT(Sfl). ACP<90>

COMMON /9UB/ LC(4),rRa1WAHDA.PI,«»A001»»HI,P(2)fPSl,T{2),NAR,XTM

I XXAi31YvLHA(3)(lAt31

CONSTANTS

00 1 t«2#3fl

K«I

IF(A"C(U ,CE, 6.3) CO TO 5

IF(ANG<I)-PH|> i.3,2

1 CONTINUE

?|PiI{

I{JJi)IAHT<JCjANT(K-l>)«(PHl -

»iK-i)*(«CP<K)-ACP(K-in.(PHI -

3 FPP«ANT<K)

4 RETU"N

5 K?K-A

60 TC 2

GLOBAL

ft

SCALARS

9

a-

128

S

£"

Z SMS

£

■-»■

r

PS!"

RADU

SUB

WAHUt

11

16

21

18 22

19 24

ia

XXA

Page 89: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

BUS

59 .a _i-*o j ~

OC •« - «J

> JZZHIK - ,0071 is jxSwi

2 ■*<

t- aar f

3 blO Q-—-

is 4> a« s

U — M — uuyuuuuuuuuuu

83

Page 90: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

CO

If ?7 58 59

40

62

64

66 «7

66

78

72""

74

II 76 79

96

40

? 9$

9T 97

98 99

190

Kl IP* 134 135

106

TEHPiABS(PHI)/.1745329

c

C THIS IS

4

I

SN?.HiSINtD(JI«SlPH)

GPP ■ BPP • 2.»EPP«C(J»»CSPH P • FPP » 2.»FPP>C«JI«!IMPH

co to a "

6-LOOP

C<4)>a,30

CSPH.2,«eO9(HAOO»D(1)«SIPH >

CPP.CdlfClPH DO 5 J»2»4

:.RAno«01J >«SI»H> >HPH

60 T" 8

S 1? TH|_ MAVEOUlne ANTENNA..

C(2)«2?950

em-e.545 e(8)-e.'d64

8(g)«B.5l3

S(3)ae*,776

S<5)«1.B00

S(6}B0^9A2 5C7)«e,093

Page 91: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

ee.7

S(9110.543

00

IB

15

22

27

34

4.1

46

53

60

T

XF

1}

211761314631

200656010793

176702436960

177560507934

2Bl5l2l72fB2

201950753412

176956497069

200664970651

213576400000

/SUB

/*6

/SUB

/*14

/ANT

/»2

/AnT

/•»

4

.

11

i!

30

35

■»-

54

61

UU320JL

212611314631

|0S6SiesfiU

.2|SSiesfiU

176411172702

|77aB9075341

21263B7024J6

;77036

2fi0

;

20040*917676

2005463^4631

213671600000

/'I

Zl«

RADD

/BUB

WAR

/8U8

rPM

/»MT

/*8

Y6

/*mT

/'IP

Page 92: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

; I

!.! I

i ■■*

!

! I

! I

i i

>

Iff!

i-3 » 7\

as

as

?

S S^

(as? g a^t

s ^^

«>

.*4<d<o«o

«ni<n «n3

en 3

3

SSSSSfS

S

0,0.0.0.0.

86

Page 93: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

1

2

3

<

5

6

7

8

9

10

11

12

13

14

15

16

17

..16-

19

20

21

22

93

24

25

26

27

36

?9

. .3UL.

31

32

13

34

^5

36.

37

38

*9

40

«1

42

43

44

45

46

«7

4ft.

'9

sa

51

52

93

C

c

C THIS FUNCTION EVALUATES THE mEIGMTED SUM OF

* SERIES OF

C BE.SSEU FUNCTIONS.

IT IS USED TO CALCULATE Tu£ SCATTERING

C FROM A

CYLINDER.

C

..

COMPLEX FUNCTION SESF(AKA.XC8,XSS)

COMPLEX SUH

DATA PI,EE/3.14i59265i217iB28i83/

CB.XCB

SUh.(-2.P.O.)

IF.tCl J.1^ -.99996J GO_TO 6

SB«A«S(XSB)

CB2sS0"T((l.*CB>/2.)

V«2.«AkA*CB2

vli2.7v

SER»

FiiixU

OJ.l./FN

EJ«<«li-l./FN)»»(F»l-.5))»EE»V».5»0J«0J

rN»F"-l.

DO 3 KK»1,5

EJ.-EJ»FN.VI.OJ

F1

CONTINUE

B«AT»NZ(SB|CB)

SliSIN((FN*2,)»B/2.)

ei»cos{(rni*2.>«B/2.)

S2aSl*CB«Cl«SB

C2«Cl»CB*Sl»Se

s 1F(F»< .LT. 2.) GO TO 5

Cl»«

S1-S2

TEmP»C2»CB*S2«SB

S2«S2iC8«C2«SB

C2aTEMP

O

AMi2,/(a8S<EJ)*a9S(0J))

EJ«EJ»AM

OJ.OJtAM

SERbSE&*Am

cd re i

Page 94: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

n«t» «s«n «.s«

«■»«■ * n Hh Mia A «Mf«. «4«4«4»»|«lft

«««in mm m K <o bb«» w«i m|«(

Dnn«»

CO • W

«■ NXIS

• BIB

X • <*•

11 a • b

in -x -

«cv OB «ut»

Ul

• • <*•—

^ x ».«

aw -n»»

a» •k —

•cu x;<n a

«T<noj •«

I—a -to XBJ — B

i • a • a

|n « « •

135 £** .**■» B I

|o«on>

• •> o

X •» i ► >~ <M

OH •-<

MCU ~ OB O ns u

w - 4

•> • x

ct t a • g\

a t« o !xb ~ on

-• i

o>o> •>

(ft X«l I 0. i m'o — IMMII

• x o>r. t n • :

• f* r4>« O C. i

• n «a • ou»-:

XO'I _»

■<•- oa 'bo a<

iin i « i ♦a> ncN

• • <jno~ «*•- —|-«n> • B

— x ->_izioofti~ -• '• « <—«n • co x t

.U.U.xOBXi •1Oi->*>

'>n_iCD«i— awiM •oii->t<*-io i*k t ■•-

noeniiunu ibcui

o «r » inm » Bfl«RB, It.I- *«

>MH«aQh«N

ncametrvi* ** ••« •« n r*tr> nl« in

B.B N4Bi< r4<O B m

■c W. in ir. ics ■<« ■»■' BI

<o to is.« iu

ii«Bf « t«. hbk n

B 4« » m M

nat>. to

<a mini ̂ t ricu w wj<H wcu

i «r-a>» to ' «m'« isjco o>b ■ <njor mor«. i ? cdcr co cd cm

88

Page 95: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

»KA 665 XCB 666 XSB 667

SUBPROGRAMS

AfiS .. SftST . IFIX TLQAT EXP3.4 ATAWa SIN COS CMPU

SCALARS

5£SF 672 PI 674 EE 675 CB 676 XCB 666 SU» 677 SB 701 XSB 667 CB2 702 V 703

__. *KA ^65 .. VI 7fl4 S£R 70S . F* 7B6- - OJ JU CJ 710 . KK 711 1 712 Si 7U Cj H« S2 715 C2 716 VI 717 II 728 TEMP J24 AM 722 AJ 723 ZU 724 XXJ 729 Xt 726 FO 727 PHI 730 BJ 731 SCAL 712 "I 7-M Cl 734

ABS 13 46 54

Aj 51 52 54 68 ftl

AHA 7 is aa

AH 46 47 48 49

ATA*? 28

9 28 29 30 Bt$r 7 99 9J 61 64 66 67 68 76 79 81 B3

Cl 50 51 32 35 37 C2 32 35 37 39 40 41 CB 10 12 14 28 31 32 39 40 83 C82 14 15 13 85 86

CJ A6 87 CHPIK 87

COS Jfl_. _ ^61. 76

QO EJ 2B " Z5 35 AZ 44 *6 A7 5| «a i* «4 „ °? FN 18 19 ?0 21 ?3 24 25 26 29 30 33 34 36 10 43 44 45 51

FO 57 61 74 76

If

!i

20 23 25 42 44 46 48 51 53 54 66 67 82

61 72 76

86

S3 _ 37 31 32 36

38 39 40 28 31 32 39 40 83

69 U 82 44 35 49 84 A5

.63 61 76

11 «7 89

JJ 18 20 95 56 59 61 63 64 70 7l 72 76

23 25 42 44 51

57 «59 63 64 73 '2 '4 78 79

13

35

35

7B

81 27 „,..--....--

50

51 SB

70 63

63. . • 66

Page 96: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

iMC £UN£TI0*' IT IS DEF-HEO AS THE SINE OF Xt &!NC OF ZERO IS TAKE** TO PE ONE,

SINCrXi

41

Page 97: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

BIQC* OATA ejM<ejp.z(fpct2)lzjnc(2)

/AB/ 2JM,2JP,ZJPC.ZJHC /$ue/0UMHr<6>,PtiRA0D

COMPLEX CJA(IB).CJB(3fl) -COmhCN /WG/HC0UH(12),CJA,Cje

nATA CJA< ?),C " *

OATA CJA( 3l!cJB(

DATA CJAi*5)lcJBl S)/( 0.3O4208E*e0#-0VS02587E*00)i It

CJA(

1C

K

K

CJA( 9>.CJB(

9?6C*00, 0.4

CJAll0l,CJBt 660C*BS, a.3

CJA(ll).CJBllU/t E00 97759

QATA 0,963434E*00.

CJA(15>,CJB{1S)/1

( t.2l» DATA CJA(l9),CJB_(|9)/(

* ?739l2E*«e0388734 OATA CJA<2g;,CJB(20)/( S,4A7<

It e,ftl866Sr*0T>,-«.4i7957E*P0)/ DATA CJA(21>.CJB(21)/( 0.393764E*00. 0'.333237E»08 J,

It P.50fl964C*0fl,-0.43O696t:*P0)/

OATA CJAt22).CJ8t22)/_t

it

It 3,3i3654E*00#-0.4066fl6C»00)/

OATA CJA(24>,CJB(2«)/« ' — 0V285123E+00)

Page 98: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

•[ * «

dz ■3-*: N

b b a

•a a a

3 an

• co ♦«

«M CM M

'a 'a "a

a ^ *+ a a a * ■ ■ 'U U Ul

a ♦ q • a ♦ •

« •< -< •<

C F' C TO Dh

III aa

• • i

aa

da « «i

ae i

o I i! s u

•XX X

nN«i n nton

«o o

31 </)

Jxx, ^ i IE ' <a en

O -Jl—O 3 "^ C* "»

L»X

a. x

m ci

3 :» U » o zziz QCC or I a o.

u aoDon ir coxlarni mitiiw

92

Page 99: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

APPENDIX B

DYNAMIC SIMULATION

PROGRAM DYNM LISTING

93

Page 100: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

The ILSLOC program calculates the CDI at each point in

space; this CDI includes the Doppler effects from the velocity

of the aircraft. In the simulation, the receiver system is

assumed to generate the CDI value instantaneously. In the real

case, the inertia of the electrical and mechanical portions of

the system limit the rate of change of the CDI. Thus the real

observed CDI appears to have been low-pass filtered from the

instantaneous CDI.

The program DYNM takes the output tape generated by program

ILSLOC and converts it to observed CDI by simulating the effect

of a low-pass filter. The variable TAU is the time constant of

the effective filter.*

Note!When a flight path has been segmented, the low-pass filter will operate continuously over the entire flight path.

94

Page 101: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

r twtq PROGRAM SIMULATES THE EFFECT OF THE MECHANICAL AND ELECTRICAL C INERTIA OF THE ILS RECEIVER ON THE CDW THIS EFFECT IS EQUIVALENT r to a JtmpYE R-C LOW PASS FILTER. THE VARIABLE TAU IS THE TIME C CONSTANT OF THE EFFECTIVE FILTER. A TYPICAL VALUE IS .4 SECONDS. C THE INPUT TAPE IS ON UNIT 11, THE OUTPUT ON UNIT 12.

C

c

DIMENSION XY(10),DEF(5Ol),MEMO(14)

LOGICAL FOF

DATA ILPL/4HDYNM/

DATA TAU/0.6/

IF (EOF (ID) GO TO 4

DELC=O.

2 READ(11,1000) MEMO,XY,ID,NC»ICF

WRITE(6,1OO3) MEMO,XY»ID,NC,ICF

DEFK=ABS(XY(9)/XY(5)/TAU>

IR=IFIX{XY(1O)+.1>

READ(11,1001) (DEF(I),I=1,IR) IF(IT .EQ. 0) CEF2=DEF(1)

IT = 1

DO 3 1 = 1,IR

CEF2=CEF2+DELC

DELC=(DEF(I)-CEF2)*DEFK

3 DEF(I)=CEF2

MEMO(13)=ILPL

WRITF(12,1000) MEMO,XY,ID,NC,ICF

WRITE(12,1001) (DEF(I),I=1,IR)

IF(ID .GT. 13) GO TO 1

IF( ID .EQ. 0) GO TO 1

GO TO 2

4 REWIND 11

END FILE 12

RFWTND 12

1000 FORMAT(13A6,A2,/,1X,7F3 8.9,/,3F18.9,I10,10X,2UO)

1001 F0RMAT(7E15.fi) ^T,^t 1003 FORMAT(1X,13A6,A2,/,1X,7F18.9,/,3F18.9,I10,10X,2I10)

STOP

END

95

Page 102: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

APPENDIX C

ILSPLT PLOTTING ROUTINE

96

Page 103: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

This program has been written to generate graphs of the

static and dynamic CDI's. It was written on the IBM 7094 using

the CALCOMP plotting subroutines.

The first input card has the following format:

Col. Symbol Use

1-2 NL Number of lines per graph

3-4 NGRFS Number of graphs

5-7 NTAPE (1) Input logical unit no. for first

line

8-10 NTAPE (2) Input logical unit no. for second

line

11-13 NTAPE (3) Input logical unit no. for third

line.

NL permits the overlaying of two or more CDI or signal

strength graphs for comparison purposes. The scaling will be

set by the first graph, and the successive overlays will be

plotted to the same scale. A maximum of three lines per graph

will be allowed.

NGRFS sets the maximum number of graphs to be drawn. Each

graph will have the same number of overlays.

NTAPE (i) gives the logical unit number used for the input

of the ith line on each graph. If the value of NTAPE is negative

then its absolute value will be used as its logical unit number

and the tape will be rewound before input.

The second input card defines the scaling used for the graph

(or graphs) described above. It has the following format:

97

Page 104: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

Use

Horizontal scale in ft/in, or deg/in.

Tick mark spacing in ft. or deg.

Maximum y-value on vertical scale

Minimum y-value on vertical scale

Tick mark spacing on vertical spacing

in microamps for CDI or relative units.

The horizontal axis is drawn in-either feet or degrees per

inch as specified by XSC. The tick mark spacing along the axis

is determined by DELX. The length of the axis will be adjusted

to the shortest length with an integral number of tick marks

that will cover the domain required by the input data. When a

flight path has been segmented it is treated as a single line

on the graph.

YMAX, YMIN define the range of the plotted variable: CDI

or relative signal strength. The y-axis has a fixed length of

seven inches. If DELY does not integrally divide the range, DELY

will be adjusted to yield an integer. When the range (YMAX-YMIN)

is zero, the program will automatically scale the range to the

largest scale that will include the data in the length of the

axis.

When multiple graphs are plotted, each graph is scaled in

dependently.

After all NGRFS graphs have been drawn, the program will loop

back to the beginning and attempt to read in a new NL card. This

allows many graphs to be drawn. If the user wishes to replot

data using different scales or overlaid with different sets of

data, he may use the negative NTAPE to rewind the input tape.

The program will terminate after reaching an end-of-file

on the card input unit.

The vertical scale on the graph is always labeled "micro

amperes." This is valid only for CDI graphs. All others are

in relative units and this labeling should be ignored.

98

Page 105: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

COMMGN/TEST/XMINtOXRfNTOTtNP

LOGICAL EOF

DIMENSION IBUFUOOO)

DIMENSION NTAPEOI ,MEM0U4) , MC 141

EQUIVALENCE (M( 1) rMEMOi 1M ,„,,,». CCMMCN /PDF/ DF(2O0O)»XLEN,NSTEPStIOEFtIDENT,DXClO),NPTSC10)

COMMON /PRINT/ NL,XSC,DELX,YMAX,YMIN,DELY,ICF

C^LL PLOTS(IBUFtlOOO)

CALL FL0T(0.0f-12.t-3)

CALL FACTOR (0.4)

ILBL^l

60 CONTINUE

IF(EOF15)> GO TO 55

RF.AD(5,100) NL,NGRFS,NTAPE

WRITE(6,100) NL,NGRFS»NTAPE

IF(NGRFS.LE.C) NGRFS-3

100 F3RM/rr<2I2,3!3>

DO 401 1=1»NL

IFINTAPECIKGE.O) GO TO 401

NTAPE(I)=-NTAPEII)

NU=NTAPE(I)

RtWINO NU

401 CONTINUE READ(5,101) XSC,DFLX,YMAX,YMIN,DELY

WPITE16,101) XSC,DELX,YMAX,YMIN,OELY

101 FORMAT(8F10.0)

T€MP=AMIN1(YMIN»YMAX)

YMAX=AMAX1(YMIN,YMAX)

YMIN=TEMP

TEMP=YMAX-YMIN

IF(TEMP .NE. 0.) DELY=Tf=MP/(FL0ATUFIX(TEMP/DELY*.5) ))

NPLT = 1

NP = 1

I = 1

Nl = 1

NTOT = 0

10 NU = NTAPE(NP)

IF(EOF<NU)) GO TO 50

R£AD(NUt500) M,XOfOXR,XY,IDtIDEF,IOENTtICF

IFdCF .NE. 0) ICF=1

WRITE(6,6C0) MEMOfXOfDXRfXY,IDtIDEFfIDENT,ICF

IF( ILBL .ME. 1) GO TO 70

ILBL=O

CALL SYMBOL!O.,O.f.14,MEMO,90.t80)

CALL PLOT(3.,0.,-3)

70 CONTINUE

IR =IFIX( XY+.l)

NTOT ^ NTOT + IR

IF(I.EQ.l) XMIN = XO

500 F0RMAT(13A6,A2,/,/,3F18.9,4I10)

600 F09MAT(2X, 13A6,A2,/,3F18,9t4110)

501 FCRMATi7E15.8)

502 FORMAT(1X,7E15.8)

RF. AO (NU, 501 )(OF(J),J=N1,NTOT)

WRITE(6,502) (DF(J),J=N1,NTCT)

99

Page 106: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

WRITE<6t1000) XMIN,IRiNl,NTOT,NP,I 1000 F0RMAT(F10.0,5110)

NPTS(I) = IR

DX(I) = OXR

IF( ID *GT. 13 ) GO TO 40

IFUD .EQ. 0) GO TO 40

Nl = Nl + IR

1 = 1 + 1

GO TO 10

11 NL = NP

40 CONTINUE

NSTEPS = I

IF(NP.GT.l) GO TO 41

CALL GRAPH2(0)

GO TO 42

41 CALL GRAPh2ll)

42 CONTINUE

Nl = 1

I = 1

NTOT = 0

IF(NP.EG.NL) GO TO 45

NP = NP + 1

GO TG 10

45 NP = 1

CALL PLGT(XLEN+7.f-12.,-3)

NPLT = NPLT + 1

ILBL=l

IF(NPLT«GT.NGRFS ) GO TO 60

GO TO 10

50 CONTINUE

IF(NTOT.GT.O) GO TO 11

CALL PLOT (XLEN+7.,-12,,-3)

GO TO 60

55 CONTINUE

CALL PLOT(O.tO.,999)

DO 400 1=1,NL

NU=NTAPEU)

4C0 REWIND NU

STOP

F.NO

100

Page 107: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SUBROUTINE GRAPH2CITL)

DIMENSION XLAB<4)

COMMON/TEST/XO,DELTAX,NDELTA,NP

DATA XLAB/24HDISTANCE.FT. OEGREES /

DIMENSION TYPEOI

DIMENSION X(3),NC(3)

COMMON /PDF/ DF(2000)tXLENtNSTEPSfIOEFfIDENTtDXC10)tNPTS(lO)

COMMON /PRINT/ NL,XSC,DELX,YMAX,YMIN,DELY,ICF

DATA X /-5.,5.,5./

DATA NC /It 5,4/

IF<ITL ,NE, 0) GO TO 1

ELX=DELX

IFJDELTAX.LT.O.) ELX - -ABS(DELX)

RANGE^O-

DO 11 I=1,NSTEPS

11 tUNGE=RANGE*FLOAT(NPTSU) )*0XU)

TIX=IFIX(RANGE/ELX+.9)

7 XLFN = ABS(ELX/XSC«TIX)

IFIXLEN .GT. 40.) GO TO 9

IF(XLEN ,GT. 5.J GO TO 6

9 XSC=ABS(RANGE/20.)

XLEN=ABS<f=LX/XSC*TIX)

WRITE(6,8) XSC

8 F0RMAT(25H AXIS OUT OF RANGE SCALE-tE12.5»8H FT./IN. /)

6 CONTINUE

XMAX=TIX*ELX*XO

XMIN = AMNKXOtXMAX)

XMAX = AMAX1(XO,XMAXJ

ND = 2

PWR = 0.

CALL PLCT(O.,1.5,-3)

AMIN=YMIN

IF(YMAX .J=Q. YMIN) CALL SCLAXi 7. ,DF ,NDELTA , AMAX, AMI N, DELY, ND,PWR)

CALL AXlS3(0o,0.,AMAX,AMIN,DELY,7*f 12HMICP.0AMPERES, 12,ND,P*<IR ,OELN)

YSC = DELN

IXLAB=2*ICF+1

IXSC=-1

IF(ABS<ELX) .LT. 10.) IXSC=1

CALL AXIS3(0.,0.,XMAX,XMIN,ELX,-XLEN,XLABCIXLAB),12 ,IXSC,O.

•,OELN)

XSC =: DELM

XT = XLEN/2. - 2.

IF(AMIN*AMAX.GT.O-) GO TO 2

IFI AMIN .EQ. 0.) GO TO 2

ZER0=(0.-AMIN/10.**PWR)/YSC

CALL PLOT (0.,ZERO,3)

CALL PL0T(XLEN,ZER0,2)

2 CONTINUE

1 CDNTINUF.

XI = O.

IF(DELTAX .LT. 0.) XI=XMAX-XMIN

J=l

DO 5 I=1,NSTEPS

DF.LTAX = DX( T)

101

Page 108: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

NX=NP7$tI)

IFU ,LTo NSTEPSI NX=NX+1

YM=ANIN/10.**PWR

CALL XCLINE(XIsDELTAX»DFU),NX,0.9XSC,YM»VSC?NCINP))

J=J+NPTS(I) XI=XI + DXfI)*FLOATCNPTSCn)

5 GONTINUE

RETURN

END

102

Page 109: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SUBROUTINE XCLINE1XI ,DX tY ,N,XM, DELX.YM, DELY,NC)

DIMENSION Y(l)»IPeN(4)

REAL L(4,4)»LL(4)

DATA IPEN/2,3,2,3/ DATA L/.3,.lt.3,.lf.5,3*.05f.3t3*.lf.lf.05,*lf.05/

X = XI

IC = NC - I XP1 = (X-XM)/DELX

CALL PLGT(XPltYPl,3)

IF(IC.LE.O) GO TO 1OOO

IF(IC*GT.4) IC = 4

K=l

1 = 2

X = X + OX

XP2 = (X-XM)/OELX

YP2*(Y(2)-YM)/0ELY

1 LL(K)=L(K,IC)

10 DIFFX-XP2-XP1

DIFFY=YP2-YP1

OIS=S0RT(OIFFX*DIFFX*DIFFY*DIFFY)

IF(DIS.GT.LL(K))GO TO 100

CALL PLGT(XP2,YP2fIPEN(K))

XP1=XP2

YP1=YP2

I=I+1

IF(I.GT.NJRETURN

X = X + DX

XP2 = (X-XM)/DELX

YP2-(Y(I)-YM)/0HLY

LL(K)=LL(K)-OIS

GO TO 10

IOC RATIO=0IS/LL(K)

XP1=XPH-DIFFX/RATIO

YP1 = YP14-DIFFY/RATIO

CALL PLCT(XPltYPl,IPEN(K))

1F(K-EQ.5IK=1

GO TO 1

1000 00 50 1-2, N

X = X + DX

XP1 = (X-XM)ZDELX

YP1-(Y(I)-YM)/DELY

5C CALL PLCT(XP1,YP1,2)

RETURN

END

103

Page 110: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SUBROUTINE SCLAXCAINCH,VAR,N,VMAX.VMIN,DELTA,NO,EXP) DIMENSION VAR(l)

AXLEN = AINCH

VMAX = VAR(l)

VMIN = VARU)

DO 40 1=2,N

VMAX = AMAX1(VMAX,VARU))

40 VMIN = AMIN1<VMIN,VAR(IM

ND ■= 0

NE = 0

M x 2

TOTAL = VMAX - VMIN

DETERMINE EXPONENT ANO INCREMENT/INCH VM = AMAXKABS(VMAX),ABStVMIN))

IF(VMAX*VMIN) 6,5,7

7 VAV = ABS<VMAX+VMIN)/2.

DELTA * TOTAL/AXLFN

IF(T0TAL.GT.0..AND.T0TAL/VM.LT..75) GO TO 4 IF(VMAX.EQ.VM) VMIN=0.

IF(VMIN.FQ.-VM) VMAX=O.

GO TO 5

6 AXLEN = AXLEN*VM/TOTAL

5 DELTA - VM/AXLEN

VAV = VM/2.

TEST FOR VAV BETWEEN .01 AND 1000. 4 IF(VAV.Lt.l.E-ll) GO TO 21

IF(VAV - .01) 3,10,1

41 !F(VAV - 1.) 3,10,10

1 IFtVAV - 1000.) 10,2,2

VAV GE 10CC.

2 IF(NE.EG.O) VAV = VM

VAV = VAV/1000.

N£ = NE - 3

GG TO 1

VAV LT 1.

3 VAV = VAV*1000.

NE = NE + 3

GO TO 41

DETERMINE DECIMAL PLACES IN DELTA 10 IF(DELTA.LT.VM/1.E4) GO TO 21

DELTA = DELTA*10.**NE

11 1FCDELTA - 1.) 12,19,13

12 DF.LTA - DELTA*10.

ND = ND + 1

GO TO 11

13 IFtDELTA - 10.) 15,8,14

14 DELTA = DELTA/1C.

ND = ND - 1

GO TG 13

DELTA NOW BETWEEN 1 AND 10 15 IFtDELTA - 5.) 16,17,17

16 IFCDELTA - 2.) 19,18,18

17 DELTA = 5./10.**(ND+NE)

GO TO 20

104

Page 111: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

18 DELTA = 2./10.**<ND*NE)

M = 5

GO TO 20

8 ND = NO - 1

19 OELTA = l./10,**(ND+NE) RESET VMIN (FIRSTV) FOR AXIS

20 AK = VMIN/OELTA * .01

K = (IFIX(AK)/M>*M

IF(VMIN,LT.O.) K=K-M

VMIN = DELTA*FLOAT(K)

NOIV = (VMAX - VMINI/OELTA ♦ .9 IF(FLOAT(ND1V).GT.AINCH*2.I OELTA=OELTA*AMAX1(2.,FLOATlM)/2.)

IF(NO.LE.OI NO = -1

21 EXP = NF WRITE(6,1002) VMAXtVKINfOELTAfNDfNE

RETURN

1002 F0RMATUHQ,3E13«,3t3I7// )

END

105

Page 112: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SUBROUTINE AXIS3IXO,Y0tVMAX,VMIN,DELVtAINCH,BCOtNCR,NOECfPWR,VSC) FACTOR = 1O.**PWR

AMIN = VMIN*FACTOR

AMAX = VMAX*FACTOR

DELX = ABS(DELV)*FACTOR

DIMENSICN BCDC1J

HT = ,15

W1=O.

W2=0.

W3 = 0.

NEXP = 0

NCH=IABS(NCR)

IFtPWR.NE.O.) NEXP - 6

CINCH=ABS(AINCH)

IF((VMAX-VMIN)/AMAXl(VMAX,-VMIN).LT,l.E-6) GO TO 50

IF(tAMAX-AMIN)/(DFLX*l.E-8).GT.3.*CINCH) DELX = (AMAX-AMINI/CINCH IF(DELX.GT.AMAX-AMIN) DELX = AMAX - AMIN

IF(NCR.LT.O) W3 = 1.

NUM=(AMAX-AMIN)/DELX*1.9

ANC=CINCH/FLOAT(NUM-1)

IFtAINCH.LT.OGO TO 5

W2=l.

GO TO 10

5 W1=K

10 CALL FLCT(X0,Y0,3)

VSC = OELX/FACTOR/ANC

ANUM=AMIN-DELX

XM=0.

OFF = .05

DO 40 1=1

AN'JMsANUM+DELX

11=0

25 IFCABSIANUMI/10.**IULT.l,)G0 TO 20

11=11+1

GO TO 25

20 IF(ANUP*.LT,C.)II=IH-1

IF(ABS(ANUM),LT.l,) 11=11+1

IMORf==NDEC + l

II=II+IMORE

IFI IFIXCMlMI.EQ.ll HT = AMINUHT t ANC/FLOAT( II+2) )

HL = AMAX1(.12,1.2*HT)

CENTER = FLOAT(II)*HT/(1.+W1)

XC = X - CFNTER - W2*«15

IF(XC.LT.XW) XM = XC

1F(W2*W3.GT.C.) XC = .15

IF(ABS(XC).GT.ABS(XM)) XM = XC

YC - Y - W1*(HT + .15 - W3*(HT*«3)> - W2*OFF

CALL PLOT(X0+XfYO+Yf2)

CALL PLOT(XO+X+.l*W2,YO+Y+.l*Wlt3)

CALL PL0T«X0+X-.i*W2tY0+Y-.l*Wl,2)

CALL NUMBER(XO+XCtYO+YCfHTtANUMfO.tNOEC)

CALL PL0T<X0+X,YQ+Y,3)

X=X+ANC*U1

106

Page 113: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

40 CONTINUE

BST « (CINCH - FLOATiNCH+NEXP)*HL)/2.

IF(W3.EQ.l.) XM = -XM XXC « Wl*(X0 + BST) + W2*(XO + XK - OFF + W3*<2.*OFF+HL))

YYC = W1*(YO t YC - 1.5*HL + W3*CHT ♦ 2.*HU» ♦ W2*(YO>BST) CALL SYMBOL*XXCtYYC,HL»BCDf90.*W2,NCH)

IFCPWR.EO.O.) RETURN

CALL SYM80L(999.,999.tHL,5H * lOf9C.*W2»5)

X = 999. + <XXC-.66*HL-999.)*W2

Y = 999. ^ <YYC*.66*HL-999.)*W1

CALL NUMBER(X,Y,.75*HL,PWRf90.*W2f-l)

RETURN

5C VSC = {VMAX-VMIN+l.E-6/FACTQRJ/CINCH

WRITE(6t1000)

1000 FORMAT(LH0,27HINSUFFICIENT RANGE FOR AXIS )

RETURN

END

107

Page 114: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SIMULATED CERTIFICATION FLIGHT for

TEST CASE AIRPORT - GIVING

INSTANTANEOUS CDI ■- USING MEASURED

ALFORD ANTENNA

O

Page 115: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SIMULATED TEST FLIGHT SHOWING EFFECTS

OF DYNAMIC SIMULATION -ASSUMED TIME

CONSTANT OF 0.4 SECOND

15.00

00 10

.00t

-10. OOt

-15. 10

000

1250

0 15000

1750

0 20000

2250

0 25

000

2750

0 30

000

32500

35000

37500 40000

DISTANCE FT.

Page 116: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SIMULATED CLEARANCE RUN for MEASURED PATTERN

ALFORD 14 AND 6

-too -60

DEGREES

Page 117: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

MEASURED ANTENNA PATTERN

CARRIER and SIDEBAND for

ALFORD 14, SCALE in

RELATIVE UNITS

SIDEBAND ONLY for ALFORD 14

o.oo

OEGflEES DEGREES

Page 118: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

MEASURED ANTENNA PATTERN -

CARRIER and SIDEBAND for

ALFORD 6, SCALE in RELATIVE

UNITS

nimi wm«wu am si smi

SIDEBAND ONLY for ALFORD 6

1 1

1 1

1 1

1 1

SUW31IB3S iflSMlM Nffll

3H1 SI SI Hi

Page 119: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

SIMULATED CLEARANCE RUN for TEST CASE AIRPORT SHOWING EFFECT of SCATTERERS

ON CDI

tn

o

<->

■p

(0

u

V)

c

V)

-loo -60

DEGREES

Page 120: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

MEASURED ANTENNA PATTERN CARRIER

and SIDEBAND "for ALFORD 14

SHOWING SCATTERERS, SCALE IN

RELATIVE UNITS

SIDEBAND ONLY - WITH SCATTERERS

for ALFORD 14

u in

tr.

cd

U

o

ifl

•H

H

4

c

6 OCGflEES

-80 -20

DEGREES

Page 121: USERS' MANUAL FOR ILSS (REVISED* ILSLOC)

m

n

o

MEASURED ANTENNA PATTERN

CARRIER and SIDEBAND ONLY

for ALFORD 6 SHOWING

SCATTERERS, SCALE IN

RELATIVE UNITS

SIDEBAND ONLY SHOWING SCATTERERS

for ALFORD 6

■p

•ft

C

0.00 .60

-20

0

DEGREES

CO

o

C/3

Q)

CO

U

u

c

O.SO-i

OEGREES