Uniform inf-sup condition for the Brinkman problem in...

30
Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30

Transcript of Uniform inf-sup condition for the Brinkman problem in...

Uniform inf-sup condition for the Brinkman problem inhighly heterogeneous media

Raytcho Lazarov & Aziz Takhirov

Texas A&M

May 3-4, 2016

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30

Outline

1 Outline

2 Motivation

3 Related work

4 The continuous problem

5 The discrete problem

6 References

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 2 / 30

Motivation

Brinkman equation

−ν∆u + νK−1u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

where- u is the fluid velocity.- p is the pressure.- ν is the viscosity. We assume ν = 1.- ν is the effective viscosity. We assume ν = 1.- f is the external forcing term.- 0 < K (x) <∞ is the permeability of the medium.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 3 / 30

Motivation

Brinkman equation

Brinkman can be used to model flows in:Pebble Bed Reactors,filtration,biological flows,oil/water reservoirs.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 4 / 30

Motivation

Flows in highly heterogeneous media

Figure: SPE10 3 dimensional permeability distributions, logscale.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 5 / 30

Motivation

Flows in highly heterogeneous media

When permeability field K (x) has large variations and jumps, theproblem becomes more challenging.

Contrast of the media: κΩ =maxx∈Ω

K(x)

minx∈Ω

K(x) .

Exact solution has low regularity when κΩ 1.The known iterative methods, converge very slowly or practically donot converge when κΩ 1, due to the dependence of the conditionnumber of the linear system on κΩ.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 6 / 30

Motivation

Preconditioners

X - real, separable, Hilbert space,inner product on X is (·, ·), norm on X is ‖ · ‖,X ∗ be the dual of X , 〈·, ·〉 be the duality pairing.

Given A ∈ L (X ,X ∗), symmetric and f ∈ X ∗, find x ∈ X such that

Ax = f ⇔

a(x , y) := 〈Ax , y〉 = 〈f , y〉 ∀y ∈ X .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 7 / 30

Motivation

Preconditioners cont-d

Definition[3, Mardal & Winther (2011)] B ∈ L (X ∗,X ) is a preconditioner forA ∈ L (X ,X ∗) if B is symmetric and positive definite in the sense that

〈·,B·〉

is inner product on X ∗.

B is a Riesz operator: Given f ∈ X ∗

(Bf , y) = 〈f , y〉 ∀y ∈ X .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 8 / 30

Motivation

Preconditioned system

UsuallyAx = f

is preconditioned asBAx = Bf .

Condition number of the system

cond (BA) := ‖BA‖L(X ,X )‖ (BA)−1 ‖L(X ,X )

Letting

‖a‖ := supx ,y∈X

a(x , y)

‖x‖‖y‖, infx∈X

supy∈Y

a(x , y)

‖x‖‖y‖≥ γ ⇒

cond (BA) ≤ ‖a‖γ.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 9 / 30

Motivation

Condition number of the Brinkman problem

Let

A =

(−∆ + IK−1 ∇−∇· 0

).

Brinkman system:

A(

up

)=

(f0

).

If X =(H1

0 , ‖∇ · ‖),Q =

(L2

0, ‖ · ‖), then

B =

((−∆)−1 0

0 I

).

Condition number of the system

cond (BA) ≤ O (κΩ) .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 10 / 30

Motivation

Question

Is it possible to establish well-posedness of the Brinkman problem, suchthat cond (BA) is independent of the media contrast κΩ?

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 11 / 30

Related work

Singularly perturbed Stokes system

In [2, Mardal & Winther (2004)], authors consider

−ε∆u + u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

Authors establish well-posedness in ε-dependent norms, both in continuousand discrete cases.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 12 / 30

The continuous problem

Intersection and sum of Hilbert spaces

If X and Y are Hilbert spaces, then X + Y and X ∩ Y are also Hilbertspaces [1, Bergh, Löfström], with the following norms:

‖z‖X∩Y =√‖z‖2X + ‖z‖2Y ∼ max (‖z‖X , ‖z‖Y ),

‖z‖X+Y = infz=x+y

x∈X ,y∈Y

√‖x‖2X + ‖y‖2Y .

If X ∩ Y is dense in both X and Y , then

(X ∩ Y )∗ = X ∗ + Y ∗, and (X + Y )∗ = X ∗ ∩ Y ∗.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 13 / 30

The continuous problem

The continuous, weak formulation

a(u, v) + b(p, v) = (f, v)

b(q,u) = 0,

a(u, v) := (∇u,∇v) + (u, v)α ,

b(p, v) := (p,∇ · v) ,

where α = K−1.The natural space for the velocity field is

X :=(H1

0 ∩ L2α

)d, ‖u‖X :=

√‖∇u‖2 + ‖u‖2α.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 14 / 30

The continuous problem

The pressure norm

‖ · ‖Q should be chosen, so that the Brezzi theory for well posedness holds:a(u, v) ≤ ‖a‖‖u‖X‖v‖X ,a(u,u) ≥ a0‖u‖2X ,b(p, v) ≤ ‖b‖‖p‖Q‖v‖X ,infp∈Q

supv∈X

b(p,v)‖p‖Q‖v‖X ≥ β.

For our applications, we need to ensure that cond (BA) is independent ofκΩ.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 15 / 30

The continuous problem

The pressure norm

Let

Q := L20 + H1

K ∩ L20 =

q ∈ L2

0 : q = q1 + q2, q1 ∈ L20, q2 ∈ H1

K ∩ L20,

with the associated norm

‖q‖Q = infq=q1+q2

q1∈L20,q2∈H1

K∩L20

√‖q1‖2 + ‖∇q2‖2K .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 16 / 30

The continuous problem

The pressure norm

Lemma

Given q ∈ L20, let q2 ∈ H1

K ∩ L20 be the solution of the following elliptic

problem: −∇ · (K∇q2) + q2 = q in Ω,

K∇q2 · n = 0 on ∂Ω.

Then

‖q‖L20+H1

K∩L20

=√‖q1‖2 + ‖∇q2‖2K

=√‖q − q2‖2 + ‖∇q2‖2K

=√‖q‖2 − ‖q2‖2H1

K∩L20.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 17 / 30

The continuous problem

Well-posedness: Continuity of b(·, ·)

Lemma

The bilinear form b(·, ·) : Q × X → R is continuous.

Proof.∀q ∈ Q, let q = q1 + q2 with q1 ∈ L2

0 and q2 ∈ H1K ∩ L2

0. Then

b (q, v) = b (q1, v) + b (q2, v)

= − (q1,∇ · v) + (∇q2, v)

= − (q1,∇ · v) +(K

12∇q2, α

12 v)

≤√d‖q1‖‖∇v‖+ ‖∇q2‖K‖v‖α

≤√d√‖q1‖2 + ‖∇q2‖2K‖v‖X .

Taking infimum over all q1, q2 gives b (q, v) ≤√d‖q‖Q‖v‖X .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 18 / 30

The continuous problem

Well-posedness: Coercivity of b(·, ·)

Lemma

There exists a constant β > 0, independent of 0 < K (x) <∞, such that

infq∈Q

supv∈X

b (q, v)

‖q‖Q‖v‖X≥ β.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 19 / 30

The continuous problem

Proof of the coercivity of b(·, ·)

Proof.The result of Necas: ∀q ∈ L2

0 (Ω) : ‖∇q‖H−1(Ω) ∼ ‖q‖.∀q ∈ Q with q = q1 + q2 and

∫Ω

qi = 0. Assuming that the duality pairing

〈·, ·〉X∗×X is an extension of the L2 inner product, one obtains that:

supv∈X

b (q, v)

‖v‖X= ‖∇q‖X∗ = ‖∇q‖H−1+L2

K

= infq=q1+q2

∇q1∈H−1,∇q2∈L2K

√‖∇q1‖2H−1 + ‖∇q2‖2K

≥ C infq=q1+q2

q1∈L20,q2∈H1

K∩L20

√‖q1‖2 + ‖∇q2‖2K

= C‖q‖Q .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 20 / 30

The discrete problem

Assumption

Assumption. The mesh has resolved the heterogeniety of the medium sothat elementwise contrast

κE =maxx∈E

K (x)

minx∈E

K (x)

is a moderate constant. We will also set

κTh = maxE∈Th

κE .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 21 / 30

The discrete problem

Inf-sup with conforming subspaces

Fortin’s Lemma for Mini-element:Πh = Πb

h (I − Ch) + Ch.Πbh satisfies

(∇ · Πb

hv, qh)

= (∇ · v, qh).Ch is Clement or Scott-Zhang (quasilocal) interpolant.In particular need, ‖Chv‖α ≤ c‖v‖α, with c independent of κΩ.

For any E ∈ Th:

‖Chv‖2α,E ≤ maxx∈E

α(x)‖Chv‖2E ≤ C maxx∈E

α(x)‖v‖2ΩE

≤ Cmaxx∈E

α(x)

minx∈ΩE

α(x)‖v‖2α,ΩE

.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 22 / 30

The discrete problem

Non-conforming velocity space

Xh :=(Pdk ⊕ xPk

)∩ H0 (div ,Ω) ,Qh := Pk−1 ⊂ H1 (Ω) .

J (uh, vh) : =∑

e∈Γh∪Γ

σe|e|

∫e

[uh][vh],

ah (uh, vh) : =∑E∈Th

(∇uh,∇vh)E + (αuh, vh) + J (uh, vh)

−∑

e∈Γh∪Γ

∫e

∇uh · n [vh]−∑

e∈Γh∪Γ

∫e

∇vh · n [uh],

bh (ph, vh) : = −∑E∈Th

(ph,∇ · vh)E

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 23 / 30

The discrete problem

Discrete weak formulation

ah (uh, vh) + bh (ph, vh) = (f, vh)

bh (qh,uh) = 0.

‖uh‖Xh:=

√∑E∈Th

‖∇uh‖2E + ‖uh‖2α + J (uh,uh),

‖qh‖Q := infqh=q1+q2

√‖q1‖2 + ‖∇q2‖2K =

√‖qh − q2‖2 + ‖∇q2‖2K .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 24 / 30

The discrete problem

Discrete inf-sup

Lemma

The following inf-sup condition holds: There exists a constant βh > 0,independent of κΩ and h, such that

infqh∈Qh

supvh∈Xh

bh (qh, vh)

‖qh‖Q‖vh‖Xh

≥ βh.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 25 / 30

The discrete problem

Proof of discrete inf-sup

Proof.Let ∀qh ∈ Qh. By continuous inf-sup condition, there exists v ∈ X suchthat

b (qh, v) ≥ β‖qh‖Q‖v‖X .

Let vh = πhv ∈ Xh be the Raviart-Thomas interpolant of v. By definitionof the Raviart-Thomas interpolant:

bh (qh, vh) = −∑E∈Th

(∇ · vh, qh)E = −∑E∈Th

(∇ · v, qh)E

= b (qh, v) ≥ β‖qh‖Q‖v‖X .

One can show that

‖vh‖α ≤ CκTh‖v‖α ⇒ ‖vh‖X ≤ C (κTh) ‖v‖X .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 26 / 30

The discrete problem

Continuous vs. discrete pressure norms

Recall that for ph ∈ L20,

‖ph‖Q =√‖ph‖2 − ‖p2‖2H1

K∩L20,

where

(K∇p2,∇q) + (p2, q) = (ph, q) ∀q ∈ H1K ∩ L2

0.

So in general, p2 /∈ Qh, and therefore ‖ph‖Q is not computable.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 27 / 30

The discrete problem

Continuous vs. discrete pressure norms

Let

‖ph‖Qh=√‖ph‖2 − ‖p2,h‖2H1

K∩L20,

where

(K∇p2,h,∇qh) + (p2,h, qh) = (ph, qh) ∀qh ∈ Qh,

Then

‖p2,h‖H1K∩L

20≤ ‖p2‖H1

K∩L20⇒

‖ph‖Qh≥ ‖ph‖Q .

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 28 / 30

The discrete problem

The end

THANK YOU!

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 29 / 30

References

References

J. Bergh, J. Löfström, Interpolation Spaces: An Introduction, SpringerBerlin Heidelberg, 1976.

K-A Mardal, R. Winther, Uniform preconditioners for the timedependent Stokes problem, Numerische Mathematik 98 (2), 305-327.

K-A Mardal, R. Winther, Preconditioning discretizations of systems ofpartial differential equations, Numer. Linear Algebra Appl. (18) 2011,1-40.

R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 30 / 30