Understanding and Comparisons of High Speed … and Comparisons of High Speed ADC and DAC...

17
Understanding and Comparisons of High Speed ADC and DAC Architectures TIPL 4706 Presented by Richard Prentice Prepared by Richard Prentice 1

Transcript of Understanding and Comparisons of High Speed … and Comparisons of High Speed ADC and DAC...

Understanding and Comparisons of High Speed ADC and DAC Architectures TIPL 4706

Presented by Richard PrenticePrepared by Richard Prentice

1

Architectures

• Flash converter– Track and hold

• Comparators– For n bits:

• 2n – 1 comparators-

AnalogInput

1K

3K

1K

1K

1K

1K

1K

1K

VDD

-

+

-

+

-

+

-

+

-

+

+

-

+1

2

3

4

5

6

7

ENCO

DER

LOG

IC

Comparators

MSB

DigitalOutput

LSB

Architectures• Pipelined – successive stages of flash

– Each stage adds n bits more precision• Requires good matching/trimming

X X X X X 0 0 0 0 0 0 0 0 0

0 0 0 0 X X X X X 0 0 0 0 0

0 0 0 0 0 0 0 0 X X X X X X

Architectures• SAR – Successive Approximation

– DAC = digital-to-analog converter– EOC = end of conversion– SAR = successive approximation register– S/H = sample and hold circuit– Vin = input voltage– Vref = reference voltage

• Source - Wikipedia

4

SuccessiveApproximation

Register

DAC

S/H

-+

ClockEnd of

Conversion

VREF

VIN

Comparator

DN-1 DN-2 D0D1D2

• Multiple ADC cores sample signal to increase total sampling rate

• ADC cores sample at same divided frequency but different phase offset

• Digital outputs are re-aligned in time

• Input buffer typically drives cores

Clock Input

0º Clock90º Clock

180º Clock

270º Clock

ADC1

ADC2

ADC3

ADC4

BUFFER

Signal Input

0º90º

180º270º

Clock PhaseGenerator

Clock Input

freq. = Fsfreq. = Fs/4

TimeAlignment

ADC Interleaving Basics

• Offset Errors– Mismatched ADC core voltage offset

• Amplitude Errors– ADC core gain error– ADC reference voltage error

• Phase Errors– Input routing delay– Input BW difference– Clock phase error– ADC sampling instant

ADC1

ADC2BUFFER

Signal Input

0º180º

Clock PhaseGenerator

Clock Input

freq. = Fs freq. = Fs/2

GERR

VOFFSETERR

Non-Ideal Interleaving

• Offset Error– Different voltage offset at ADC input between

different cores

• Alternating up/down in transient waveform

• Creates signal independent spurs in spectrum at Fs*n/N for n=1,2,…,N-1 where N is # of interleaved cores

FS/2Freq

FIN

Input Signal Offset spurs

Pow

er

Example N=4

FS/4

Example N=2

Non-Ideal Interleaving

• Amplitude (Gain) errors– Gain difference between different ADC cores

• Creates N-1 input signal dependent images from 0 to Fs/2 in a repetitive, mirror-image pattern where N is # of interleaved cores

• Also creates harmonic distortion images

FS/2Freq

FIN

Input Signal

Input Images

Pow

er

Example N=4FS/4

H2H2 Images

Non-Ideal Interleaving

• Relying on process matching not suitable for most applications• Interleave correction reduces spectrum offset spurs and images• Estimate the errors and correct the data with coefficients• Estimation

– Detection in time-domain or frequency domain– Convergence

• Correction– Analog/Digital

• Calibration time– Foreground: Calibration interrupts normal operation– Background: Calibration runs continuously

Interleaving Correction

Current Steering DAC

10

Dec

oder

Logi

c

Dig

ital I

nput

D

ata

Switc

h D

river

s

CurrentSource Array

BiasCircuit

IOUT1

Switch Array

IOUT2 Anal

og

Out

put

DAC =

30mA0mA

15mA15mA

0mA30mA

IOUT2IOUT1Full Scale = 30mA

DACs can be current source or current sink

11

+1/0.5 Volts

- 1/0.5 Volts IoutIoutb

VCC IoutIoutb

DAC90x, DAC290x, DAC2932, DAC56x2

DAC34xx, DAC3174

DAC5686/87/88/89, DAC5681/82Z,DAC3282/83DAC3152/62

PMOS NMOSC

urre

nt S

ourc

e C

asco

des

Switc

hes

Switc

hes

Cur

rent

Sin

k C

asco

des

VCC+ 0.5 Volts

VCC - 0.5 Volts

Simple 3-bit Binary DAC

12

bit 301

500uA

bit 201

250uA

bit 11

125uA

0

Vout

Vout

000 001 010 011 100 101 110 111

– (875u*1K)– (625u*1K)

(875u*1K)

– (375u*1K)– (125u*1K)

(125u*1K)(375u*1K)

(625u*1K)

bit 3bit 2bit 1

bit1 and bit2 turn off, bit3 turns on

10001000

AVDD AVDDPro: Least number of current sources and switches.Con: Higher distortion.

Equivalent 3-bit Thermometer Coded DAC

13

therm 11

125uA

0

Vout

bit 3bit 2bit 1

Vout

0000000

– (875u*1K)– (625u*1K)

(875u*1K)

– (375u*1K)– (125u*1K)

(125u*1K)(375u*1K)

(625u*1K)

therm 21

125uA

therm 71

125uA

00

0000001 0000011 0000111 0001111 0011111 0111111 1111111one more equal valued current source turns on

10001000

AVDD AVDDPro: Reduced distortion (easier to match equal current sources.)Con: More current sources and switches required.

DACs can be segmented and mixed coded

14

therm 11

125uA

0

Vout

10001000

AVDD AVDD

therm 21

125uA

therm 71

125uA

00

bit 301

62.5uA

bit 201

31.25uA

bit 11

15.625uA

0Binary 3b LSB DAC

Thermometer 3b MSB DAC

therm(7:1) to MSB segmentbit(3:1) to LSB segment

input 6b word decoder logic

Simplified TI 16b DAC topology

15

MSB segment decoding

LSB segment decoding

D(15:10)

D(9:0)

MSB Thermo(63:0)

LSB binary(9:0)

73 switch drivers

MSB current sources

LSB current sources

MSB cascodes

LSB cascodes

bias circuits

IOUT1

EXTIO

RBIAS

63 10

73 switches(6 MSB Bits)

(10 LSB Bits)

IOUT2

Ex: DAC34xx

Thanks for your time!

16

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.This material is provided strictly “as-is,” for informational purposes only, and without any warranty.

Use of this material is subject to TI’s , viewable at TI.com