Types of skeleton

36

description

Types of skeleton. Prepared By : Sadia khurshid Lecturer , Zoology Department DA Degree College for Women, Phase VIII . Content. INTRODUCTION TYPES OF SKELETON HYDROSTATIC SKELETON EXOSKELETON ENDOSKELETON FACTS REFERENCES. The Skeletal System. - PowerPoint PPT Presentation

Transcript of Types of skeleton

Page 1: Types of skeleton
Page 2: Types of skeleton

TYPES OF SKELETONPrepared By :

Sadia khurshidLecturer , Zoology Department

DA Degree College for Women, Phase VIII

Page 3: Types of skeleton

Content INTRODUCTION TYPES OF SKELETON HYDROSTATIC SKELETON EXOSKELETON ENDOSKELETON FACTS REFERENCES

Page 4: Types of skeleton

The Skeletal System The system which

is consist of supporting tissues. This is to protects the body or a part of body and play an important role in animal’s physiology.

Fig.1. human skeleton

Page 5: Types of skeleton

Functions of skeletal system Support and shape Protection Movement Mineral homeostasis (Ca, P, Na, & K) Blood cell production

Page 6: Types of skeleton

Skeleton The skeleton is a tough & rigid framework

of body of animals which provides protection , shape, and support to the body organs.

It is composed of organic & inorganic material or both. There are three types of skeleton:

Hydrostatic skeleton Exoskeleton Endoskeletons.

Fig. 2.JELLY FISH

Page 7: Types of skeleton

1. Hydrostatic Skeleton It consist of fluid-filled closed chambers.

Internal pressures generated by muscle contractions cause movement as well as maintain the shape of the animals, such as the sea anemone and worms.

Fig. 3. jelly fish

Page 8: Types of skeleton

Hydrostatic skeleton In animal that lack

the hard skeleton, a fluid filled cavity act as a hydrostatic skeleton.

It provide support & resistance to the contraction of muscles so that mobility results.

It is found in: Cnidarians: jelly fish,

sea anemone, Annelides:

earthworms Molluscs: octopus

Fig. 4Octopus octopus

marginatusFig. 5

A Neries

Page 9: Types of skeleton

Hydrostatic skeleton of sea anemone

Skeleton is used to extend its body & tentacles.

Its body cavity is filled with sea water.

The sea anemone has one set of longitudinal muscles in the outer layer of the body, and a layer of circular muscles in the inner layer of the body.

The anemone can elongate or contract its body by contracting one or the other set of muscles.

FIG. 6 sea anemone

Page 10: Types of skeleton

Hydrostatic skeleton of earthworm

The hydrostatic skeleton consist of fluid filled compartments separated by septa.

Contraction of circular muscles cause compartments to elongate. and contraction of longitudinal muscles causes a compartment to shorten.

Setae helps in locomotion. When the pressure of

coelomic fluid is decreased its result in a relaxation of muscles.

Fig. 7 Earth worm

Page 11: Types of skeleton

Successive peristaltic waves begin at the front and move towards the end of the body

Earthworm has bristle (chaetae)anchors part of the body to the ground so that other parts can be pulled towards the static parts.

Fig. 8 Movement of earth worm

Page 12: Types of skeleton

Hydrostatic skeleton of Octopus

The mollusc possess a coelom, a fluid-filled cavity that develops within the mesoderm. 

The coelom not only functions as a hydrostatic skeleton but also provides space within which the internal organs can be suspended by the mesenteries.

Fig. 9 Octopus

Page 13: Types of skeleton

2. EXOSKELETON Exoskeletons is

hardened outer surface to which internal muscles can be attached.

It is inert & non living. It is secreted by

ectoderm in animal cells. It consist of epicuticle,

procuticle & endocuticle.

Fig. 10 An insect

Page 14: Types of skeleton

Shelled Protozoans The smallest

exoskeletons are found on microscopic animals such as diatoms and certain protozoan's.

Can push a pseudopods through a hole in the shell.

This one is called difflugia.

Fig. 11 Difflugia

Page 15: Types of skeleton

Arcella is a genus of  testate amoebae or

Arcellinida, usually found in freshwaters

  A key characteristic

of Arcella is the circular test with a hole on its center from where finger-like pseudopods emerge. It is one of the largest testacean genera.

FIG. 12 Arcella

Page 16: Types of skeleton

Foraminifera (forams for short) are single-celled protists with shells. Their shells are also referred to as tests because in some forms the protoplasm covers the exterior of the shell.

Coral reefs are made up of the accumulated exoskeletons of the coral polyp.

Some cnidarians produce skeletons of limestone known as corals.

These animals secrete their skeletons from their base.

Fig. 13 A typical foram : In the inside which the foram lives. Radiating from the picture about, the dark brown structure is the test, or shell, opening are fine hair like reticulopodia, which the foram uses to find and capture food.

Fig. 14 Cnidarians

Page 17: Types of skeleton

Shelled Molluscs It provides

formidable protection.

It is bulky and severely restrictive of movement.

May be univalve or bivalve.

The mollusc shell is typically a calcareous exoskeleton which encloses, supports and protects the soft parts of an animal like snails, clams, tusk shells, and several other classes.

Having lines of growth.

Fig. 15 Shell of Mollusc

Page 18: Types of skeleton

Exoskeleton of Insects & Arthropods

In insects and other arthropods, support is provided by the exoskeleton (external skeleton).

Exoskeletons can play a double role by helping animals to conserve water, but they have one important disadvantage: unlike an internal bony skeleton, their weight increases very rapidly as they get bigger, eventually making them too heavy to move.

This explains why insects have all remained relatively small, while some vertebrates have reached very large sizes.

Page 19: Types of skeleton

Advantage of exoskeleton in Arthropods

It forms ridges & bars for the muscle attachment.

Exoskeletons protects the animal from hard environment, and dehydration.

Exoskeleton shows the formation of joints. Exoskeleton possess sensory structure called sensilla and lenses.

Permits exchange of gases . Spiders use a combination of an exoskeleton

for protection and fluid pressure for movement.

Page 20: Types of skeleton

Moulting Animal can not grow larger. To grow they shed their exoskeleton ,

called moulting. It consist of 4 stages.1. Secretion of

enzyme, removal of endocuticle &

separation of skin from the exoskeleton

2. Formation of new epicuticle & procuticle.

4.Hardening of new

exoskeleton by deposition of

calcium carbonate

3. Splitting of old exoskeleton

Page 21: Types of skeleton

MOULTING

Step 1 (cicad) Step 2

Step 3 Step 4Fig. 16

Page 22: Types of skeleton

Endoskeleton Endoskeletons is the internal support

structure of an animal, composed of mineralized tissue and are typical of many vertebrates.

Fig. 17 Endoskeleton

Page 23: Types of skeleton

Endoskeleton of sponges

The skeleton of sponges consists of microscopic calcareous or silicious spicules.

The demosponges include 90% of all species of sponges. Their "skeletons" are made of Spicules consisting of fibers of the protein spongin, the mineral silica, or both.

Where Spicules of silica are present, they have a different shape from those in the otherwise similar glass sponges.

Fig. 18 Spicules

Page 24: Types of skeleton

Endoskeleton of Echinoderm

The skeleton of the echinoderms, which include, the starfish, is composed of calcite and a small amount of magnesium oxide.

It lies below the epidermis in the mesoderm and is within cell clusters of frame-forming cells. This structure formed is porous and therefore firm and at the same time light.

It coalesces into small calcareous ossicles (bony plates), which can grow in all directions and thus can replace the loss of a body part. Connected by joints, the individual skeletal parts can be moved by the muscles.

Fig. 19 Ossicle of star fish

Page 25: Types of skeleton

Endoskeleton of Vertebrates

Vertebrates have developed an internal mineralized endoskeleton composed of bone and/or cartilage.

Living material of endoskeleton grows in correlation with the growth of the animal.

They articulate with each other at a variety of joints that allow a wide range of movements brought about by the contraction of muscles attached to them.

Muscles are on the outside of the endoskeleton.

Page 26: Types of skeleton

Living tissues of endoskeleton

Cartilage and bone are types of connective tissue.

Bones: living cells are osteocyte ,collagen fibre are hardened by calcium phosphate.

Cartilage: living cells are chondrocytes. Sharks, and rays have skeletons

composed entirely of cartilage; other vertebrates have an embryonic cartilage skeleton progressively replaced by bone as they mature and develop.

Page 27: Types of skeleton

Human skeleton An adult human endoskeleton consists of 206

bones. An human endoskeleton is about 18% of the total

body weight. The vertebrate skeleton consists of The axial skeleton :skull, vertebral column,

and rib cage The appendicular skeleton : limbs ,pectoral

girdle and pelvic girdle. The basic plan for vertebrates is similar, although

large variations occur in relation to functional demands placed on the skeleton.

Page 28: Types of skeleton

Axial skeleton The axial skeleton supports and protects the

organs of the head, neck, and torso, and in humans it comprises the skull, ear ossicles, hyoid bone, vertebral column, and rib cage.

Skull The adult human skull consists of eight bones

which form the cranium, or braincase, and 14 facial bones that support the eyes, nose, and jaws.

Lower jaw is supported by a single bone called Dentary.

Page 29: Types of skeleton

Vertebral column The vertebral column has 33(after fusion

26) individual vertebrae separated from each other by a cartilage disk. These disks allow a certain flexibility to the spinal column, although the disks deteriorate with age, producing back pain. These discs prevents the grinding of these bones.

The sternum is connected to all the ribs except the lower pair. Cartilage allows for the flexibility of the rib cage during breathing.

Page 30: Types of skeleton

Appendicular skeleton The appendicular skeleton is composed of 126 bones

in the human body. The word appendicular is the adjective of the noun appendage, which itself means a part that is joined to something larger.

The appendicular skeleton is divided into six major regions:

1) Pectoral Girdles (4 bones) - Left and right Clavicle (2) and Scapula (2).

2) Arm and Forearm (6 bones) - Left and right Humerus (2) (Arm), Ulna (2) and Radius (2) (Fore Arm).

3) Hands (58 bones) - Left and right Carpal (16) (wrist), Metacarpal (10), Proximal phalanges (10), Middle phalanges (8), distal phalanges (10), and sesamoid (4).

Page 31: Types of skeleton

HIND LIMB & GIRDLE 4) Pelvis (2 bones) - Left and right os coxae (2)

(ilium). 5) Thigh and leg (8 bones) - Femur (2) (thigh), Tibia

(2), Patella (2) (knee), and Fibula (2) (leg). 6) Feet (56 bones) - Tarsals (14) (ankle), Metatarsals

(10), Proximal phalanges (10), middle phalanges (8), distal phalanges (10), and sesamoid (4).

It is important to realize that through anatomical variation it is common for the skeleton to have many extra bones (sutural bones in the skull, cervical ribs, lumbar ribs and even extra lumbar vertebrae)

Page 32: Types of skeleton

A FACT The appendicular skeleton of 126 bones

and the axial skeleton of 80 bones together form the complete skeleton of 206 bones in the human body. Unlike the axial skeleton, the appendicular skeleton is unfused. This allows for a much greater range of motion.

Page 33: Types of skeleton

Some interesting facts The human skeleton consists of 206 bones. We are actually born with more bones

(about 300), but many fuse together as a child grows up. These bones support your body and allow you to move. Bones contain a lot of calcium (an element found in milk, broccoli, and other foods). Bones manufacture blood cells and store important minerals.

The human skull, or cranium, has a number of individual bones tightly fitted together at immovable joints. At birth many of these joints are not completely sutured together as bone, leading to a number of "soft spots" or fontanels, which do not completely join until the age of 14-18 months.

The longest bone in our bodies is the femur (thigh bone). The smallest bone is the stirrup bone inside the ear. Each hand has 26 bones in it. Your nose and ears are not made of bone; they are made of cartilage, a flexible substance that is not as hard as bone.

Differences in males and females: Males and females have slightly different skeletons, including a different elbow angle. Males have slightly thicker and longer legs and arms; females have a wider pelvis and a larger space within the pelvis, through which babies travel when they are born.

Page 34: Types of skeleton

Functions of Muscles and Bones

The skeleton and muscles function together as the musculoskeletal system. This system (often treated as two separate systems, the muscular, and skeletal) plays an important homeostatic role: allowing the animal to move to more favorable external conditions. Certain cells in the bones produce immune cells as well as important cellular components of the blood. Bone also helps regulate blood calcium levels, serving as a calcium sink. rapid muscular contraction is important in generating internal heat, another homeostatic function.

Page 35: Types of skeleton

References

en.wikipedia.org/wiki/Skeleton www.emc.maricopa.edu/faculty/.../

biobookmusskel.html www.biologyreference.com en.wikipedia.org/wiki/Appendicular_skeleton TEXT BOOK OF BIOLOGY XII (SINDH TEXT

BOOK BOARD) TEXT BOOK OF BIOLOGY XII (PUNJAB TEXT

BOOK BOARD) WWW.YOUTUBE .COM

Page 36: Types of skeleton

THANK YOU