The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140...

37
1 ALCA, 8 th Mar. 2016, Minwon Park, Changwon, Korea from Haenam HVDC #1 150MW from Jindo HVDC #2 250MW Hanlim wind farm 60MW Bus 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Halla Bus 180 Sinseogwi Bus 200 Sungsan Bus 210 Sanji Bus 996 Jhocheon Bus 998 Pyoseon * Wind farms Hanlim CC : 42.7MW Hanlim SS: 40 Hanlim T/L 40MW Sungsan : 103.2MW Chocheon : 32.5 Halla 15MW Hanlim C/C : 42.7MW Hanlim S/S 40MW Hanlim T/L 40MW Jhocheon : 32.5MW Sungsan 103.2MW Halla 15MW The possibility of HTS wind power generator for the future of eco-friendly society Minwon Park Changwon National University

Transcript of The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140...

Page 1: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

1ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

from HaenamHVDC #1 150MW

from JindoHVDC #2 250MW

Hanlim wind farm60MW

Bus 120Jeju T/P

Bus 130Dongjeju

Bus 140Sinjeju

Bus 150Hanlim

Bus 160Anduck

Bus 190HallaBus 180

Sinseogwi

Bus 200Sungsan

Bus 210Sanji

Bus 996Jhocheon

Bus 998Pyoseon

* Wind farms Hanlim CC : 42.7MW

Hanlim SS: 40Hanlim T/L 40MWSungsan : 103.2MWChocheon : 32.5Halla 15MW

Hanlim C/C : 42.7MWHanlim S/S 40MWHanlim T/L 40MW

Jhocheon : 32.5MW

Sungsan 103.2MW

Halla 15MW

The possibility of HTS wind power generator for the future of eco-friendly society

Minwon Park

Changwon National University

Page 2: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

2ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

1960’s 2010’s

Korean Power Network

Power System in 2005Power System in 1965

Page 4: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

4ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Korean Power Capacity (1960~)

Generation capacity ~90GW

by KEPCO

Page 5: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

5ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

1997~2013

Peak load ~80GW

by KEPCO

Page 6: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

6ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

-

200,000

400,000

600,000

800,000

De

ma

nd

(G

Wh

)

Increase rate of power demand: 3.4%/year

2015 2027

526,356 GWh

751,007 GWh

224,651 GWh

Power supply and demand

82 GW90 GW

100.6 GW

108 GW

120 GW124 GW

129 GW

140 GW144 GW

149 GW152 GW

153 GW154 GW

156 GW

157 GW

159 GW

2015 yr (%)

2027 yr (%)

0

50

100

150

Ma

x.

po

we

r (G

W)

2015 2027

Increase rate of Max. power: 3.5% per year

83.532 GW43.208

GW

126.74 GW

In 2027, 159 GW power supply in KOR.

Ref. 産業部

Power supply and demand

Now

Page 7: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

7ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Component Ratio in Korea

by EIA

The current draft proposal of the country's long-term energy plan, submitted to the Korean parliament at the end of 2013, revised down the share of nuclear capacity to 29% of total generating capacity by 2035 from the prior 41% by 2030, specified in the previous plan.

Page 8: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

8ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Nuclear

Coal

Hydro

LNG

Wind

Petrol

PV

g/kWh

CO2 emission, Coal 991g/kWh, Wind 14g/kWh

Coal; 27GWLNG; 22.5GW

CO2 emission

China >7,000MtonUSA >6,000MtonJapan >1,000Mton

Korea ~530Mton- coal 163Mton- LNG 75Mton

No more Hydro,Wind is alternative.

Page 9: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

9ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Power from blade

𝑃𝑏=1

2𝜋𝑅2𝜌𝐶𝑝𝑉

3

Power of blade(Watt)

Radius of blade(m)

Air density1.225kg/𝑚3

Coefficient of blade(<0.48)

Wind velocity(m/s

)

1MW R=27m V=11.5m/s5MW R=60m V=11.5m/s10MW R=84m V=11.5m/s

Longer length of bladecan easily generate much higher power.

Good wind quality(offshore)can easily obtain much higher power.

Page 10: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

10ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

But, problem is the top head weight.

EESG

EESG

EESG

EESG

The heavy top head causes the high mechanical stress and high cost of foundation and tower.

1,000 ton

Page 11: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

11ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

BladeYaw system

Cooling system/Monitoring system

GeneratorMain frameSpinner

Hub

Pitch control

Converter Power system

Only one way to reduce the weight, it is generator.

Generator

Page 12: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

12ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Best way to reduce the weight is to increase the field.

The high field of rotor makes small active volume and light generator.

𝑃𝐺=𝐵𝑟 ∙ 𝐾𝑠∙ 𝜋𝑟2𝑙 ∙

𝜔

𝑝

The high field of rotor makes small active volume and light generator.

Field of rotor(T)

Active volume(𝒎𝟑)

Page 13: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

13ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

If wind blows 5m/s in ground 100 m,Onshore : 72 m --> wind velocity : 5 m/sOffshore : 72 m --> wind velocity : 5.5 m/s

Offshore wind power system generates 30% higher rated power than onshore wind power system.

32

2

1bladepbladeblade VCRP

72

Ref : Kim J.M. “Introduction of wind turbine generator”

OffshoreOnshore

5 (m/s) 5.5 (m/s)

Better wind quality in offshore (3)

Aerodynamic sound is related to tip-speed of blade.Noise level (A-weighted) ∝ log10 (Tip speed of blade)

To limit the generation of aerodynamic noise, large modern wind turbines limit the rotor rotation speeds to keep the tip speeds under about 80 m/s.

11 30windspeed

eedbladetipsp

V

NR

V

R R

Aerodynamic noise

Mechanical noise

Flickering shadow

Problems of onshore (2)

Why offshore wind power

Page 14: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

14ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

PartsRisøDTU

AMSC GESUPRAPOWER

AMLConverte

am

Rated power (MW) 10 10 10 10 10 8

Rotation speed (rpm) 10.4 10 10 8.1 10 12

Poles 16 24 36 - - -

Diameter (m) 4.7 5 4.9 - 5 5

Length (m) 1.15 - 2.7 - 2 2.2

Length of SC wire (km) 1450 - 720 - - -

Temperature (K) 20 30-40 6.08 - 20 30

Maximum field (T) 9.1 - 7.35 - - > 4

Field on stator (T) 3 - 2.2 - - -

Output voltage (kV) - 3.3 3.3 - - -

Voltage frequency (Hz) 1.33 2 3 - - -

Frequency converter O O O O O O

Drive-train DD DD DD DD DD DD

>10 MW wind power generators

Page 15: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

15ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

12 MW superconducting wind power generatorin CWNU

Page 16: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

16ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Items Value

Rated output power PN (MW) 12

Shaft power PT (MW) 12.96

Rated ideal wind velocity VRI (m/s) 11.4

Tip speed ratio λ (VR ) 8.9

Blade length (m) 97.4

Tip speed VTIP (m/s) 85.6

Rotation speed ωR (rad/s) 1.047

Maximum power coefficient CPmax 0.48

Mass density of the air ρ (kg/m3) 1.225

• ρ : Air density, 1.225 kgm-3

• Cp : Max. power coefficient of rotor

• V : Rated ideal wind velocity

𝑅𝑏𝑙𝑎𝑑𝑒 =2𝑃𝑇

𝜌𝐶𝑝𝜋𝑉3 =

2(1 + 𝜀)𝑃𝑁

𝜌𝐶𝑝𝜋𝑉3

• PT : Mechanical power of the rotor shaft

• PN : Rated power of wind turbine

• PT = (1+ε)PN includes a loss factor of

the drive train (ε~8%)

The proposed 12MW class HTS generator

Page 17: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

17ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

3rd PhaseCommercial

Beta-type fabrication

2nd PhaseDown scale prototype

manufacturing

1st PhaseDesign in detail for 3 years

2015 2016 20192018 2020 20222021 2023 202520242017

Total 3 MW

Total 12 MW 12 MW design in detail

3 MW class proto-typemanufacturing

12 MN∙m torque test unit

3 MW class field test

12 MW real system fabrication

Blade 3 MW conventional 12 MW newly developed

Tower 3 MW conventional 7~8 MW conventional

Hub 3 MW conventional 12 MW newly developed

Generator 3 MW newly developed 12 MW newly developed

Converter 3 × 1 MW conventional 3 × 4 MW conventional

Foundation 3 MW conventional 7~8 MW conventional

VISION; 12 MW WPGS technology roadmap over the next 10 years

Plan of the technology application

Project about 12 MW Floating Offshore Wind Turbine

Page 18: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

18ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Digit 1 Digit 2 Digit 3

Check the Design Objective Target of the generator Cost / Weight / Diameter / Efficiency

2D Generator Design

Rating of generator Output power / Output voltage

Set of generator parametersRotating speed / Number of poles / HTS field coil

/ Stator coil / etc.

Electromagnetic analysis Magnetic distribution / Output power

Force / Mechanical analysis

Lorentz force

Torque

HTS field coil loads

Generator Layout Drawingfor 3D Optimization Design

Drawing generator (3D CAD program)

Rotor part (Rotor body, HTS field coil, Cryostat)

Stator part(Stator body, Coil, Magnetic shield)

3D Generator Optimal Design Confirm the 2D Optimization ModelElectromagnetic analysis

Mechanical analysis

Detailed Analysis

Electromagnetic Analysis Magnetic flux density / Lorentz force

Mechanical Analysis Torque / Load / Max. stress

Thermal Analysis Cooling method / Cooling path / Temp.

Redesign of the StructureChange the Structure

Based on the Detailed Analysis

Verify the analysis results

Drawing the modified model

Analysis of the modified model

Confirm the designed generator Confirm the design objective Cost / Weight / Diameter / Efficiency

Detailed Drawing Drawing based on designed generatorCheck the assembly process

Detail drawing of the generator

HTS generator design process

Ongoing

Page 19: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

19ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Rotor support

Cryostat

Air gap

Superconducting field winding

Armature winding

Iron cored bobbin

Item Value

Rated power 12.3 MW

Rated L-L voltage 6.6 kV

Rated armature current 1.05 kA

Rated rotating speed 8 RPM

Rated torque 14.7 MNm

The num. of rotor poles 30

The num. of SC layers/pole 6

The length of air gap 30 mm

Thickness of vacuum vessel 15 mm

Number of stator coil /phase/pole 2

Current density of copper wire 3 A/mm2

Safety margin of operating current 30%

Parts Material Density (kg/m3)

Rotor wire (RE)BCO 11,000

Rotor body 304 stainless steel 8,190

Vacuum vessel 304 stainless steel 8,190

Stator wire Copper 8,940

Stator body M-27 24 Ga 7,650

1/30 model of 12 MW HTS generator

Materials of each part

Materials of the 12MW class HTS generator

Page 20: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

20ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Specification and FEM analysis results

Parts Property Value

Rotor

The number of poles 30

Effective length 450mm

Rotation speed 8 rpm

Turns of SC coil/layer/pole 400

Field current of SC coil 352 A

Length of SC wire per pole 4.35 km

Total length of SC wire 130 km(12mm)

Parts Property Value

Stator

The number of slot 180

Copper coil winding type(Distributed Winding)

Short pitch

Cooling system Water cool

Current density of copper coil

3 A/mm2

Turns of copper coil 15

Diameter 6.7 m

Perpendicular magnetic field 5.42 T

Maximum magnetic filed 7 T

Active volume 25 m3

Active weight 107 ton

Total weight (incl. structure)

180 ton

Inductance per pole 4.84 H

100 mm

100 mm90 mm

For supporting structure space

12MW class HTS generator (Volume & Weight)

Page 21: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

21ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

PMSG362 ton

PMSG: 362 t

𝑦 = 𝑒(3.24253+0.38324𝑥−0.01354𝑥2)

SCSG: 180 t

SCSG 180 ton

Design results of the 12MW class HTS generator

Page 22: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

22ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

• No Power supply• No Slip-ring• No Current leads• Small volume of cryostat• High mechanical torque

on narrow & small space

The proposed idea of modularization.

Configuration of the modularized HTS wind power generator with the flux pump

Page 23: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

23ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Rotor body

HTS one pole module

Flux pump exciter

Stator body

Stator teeth

Stator coil

Configuration of the module for the 12 MW HTS wind power generator

The modularization of the generator enables a smaller cryogenic volume, an easierrepair, assembly, and maintenance of the HTS field coil. Modularization will be suitablefor commercial mass production and will increase the operational availability of HTSgenerators in the wind turbine.

Cross section of the modularized generator

Page 24: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

24ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

254 mm

490 mm

390 mm

79 mm

128 mm

HTS coil & bobbin (Al)

Heat exchanger

(Cu)

Cryostat(SUS)

Coil supporter

(G10)

Bobbin supporter (SUS)

Heat exchanger(Cu)

But, there are two big problemshave to be solved.

• Heavy heat load capacity• Very high mechanical torque

Conceptual dimensions of the module(tentative)

Page 25: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

25ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

2 Conduction

Five principal heat sources

Heat load characteristics of the module

1 Excitation 3 Radiation

4 Eddy current

5 AC loss

• Gifford-McMahon (1-stage)

SRDK-500B

• Operating temperature of the HTS coils: 20 K

• Therefore, the total heat loss in the module should be lower than 50 W.

GM cryocooler power curve

Page 26: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

26ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Heat load characteristics of the module(Conduction and radiation heat loads)

Coil supporters

-HTS field coils

-Pole type supporter

Diameter: 20 mm

79 mm

19.3 K

-HTS field coils

-Honeycomb type supporter

19.8 K

79 mm

131 mm419 mm

-HTS field coils

-Zigzag type supporter

390 mm840 mm

79 mm

16.6 K

Parts Pole type Honeycomb type Zigzag type

Max. temperature at the HTS coils 19.3 K 19.8 K 16.6 K

Conduction heat load 11.4 W 14.5 W 11 W

Radiation heat load 2.2 W 2 W 2.5 W

Page 27: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

27ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

<Eddy current distribution of the module structures>

Structures Value

SUS 4.6 W

Cu 7.5 W

Al 6.4 W

Total eddy current loss is 18.5 W.

Heat load characteristics of the module(Eddy current heat load)

Page 28: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

28ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Heat load characteristics of the module(Total current heat load)

Excitation heat loss10.2 W

Conduction & Radiation heat losses<14 W

Eddy current heat loss18.5 W

GM cryocooler power curve • The cooling capacity of the GMcryocooler is 53 W at 20 K.

• However, the temperature of thecurve point at the HTS coils ishigher than 20 K.

• When the sum of the conductionand radiation heat losses is lessthan 7 W, the max. temperature ofthe HTS coil is achieved at 20 K.

• We should be reduce theconduction area of the supporter.

The sum of the heat losses is 43 W.

Page 29: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

29ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Displacement

Lorentz force

Mechanical characteristics of the module

Page 30: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

30ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Von Mises stress

Displacement

- Zigzag-type supporter

Max. stress: 468 MPaMax. displacement: 4.24 mm

- Honeycomb-type supporter

Max. stress: 282 MPaMax. displacement: 1.27 mm

- Pole-type supporter

Max. stress: 159 MPaMax. displacement: 0.05 mm

When the allowable stresses of GFRP and CFRP are considered,the pole type supporter is suitable at the allowable stress of CFRP.

Allowable stress of the GFRP= 93.3 MPaAllowable stress of the CFRP= 200 MPa

Mechanical characteristics of the module

Page 31: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

31ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

0.5 MN

0.15 MN

Von Mises stress

Displacement

Mechanical characteristics of the module

Page 32: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

32ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

p.32/40Characteristic evaluation device for HTS field coil

M

Cryostat & HTS coil

Ground

Stator & Transfer equipment

Accelerationmotor

Stator guide rail

Quick braking deviceCoil height control system

Ground

Load bank & Inverter system

Power supply

Cooling system & Pump

Compressor

Workbench

Cable rollerMotor inverter &

Monitoring system

Rail

HTS coil monitoring system

Clamp

Up & DownMove

Cryostat bottom

Thermal insulation pad

Radiationshield

Cryostat cover

Current lead

HTS coil

Cooling pad

Cooling pipe

Stator winding module

Motor

Wheel-2(Rail holder)

Stator holder

p.32/27

Page 33: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

33ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Active parts Weight Material

Stator coil 48 ton Copper

Stator body 50 ton Silicon steel plate

Vacuum vessel 12 ton Stainless steel

Rotor body 11 ton Stainless steel

Total length of HTS wire

HTS wire 375 km

Material Cost

Copper 20.5 $/kg

Stainless steel 1.5 $/kg

Silicon steel plate 4.1 $/kg

HTS wire 23 $/m (100 A @ 77 K)

Parts Cost

Stator coil 985 k$

Stator body 206 k$

Vacuum vessel 18 k$

Rotor body 16 k$

HTS wire 18,616 k$

Structure 306 k$

Ref. Design of direct-driven permanent-magnet generator for wind turbines, Anders GrauersRef. SuperPower (4mm HTS wire)

Total cost of a 12 MW SCSG (Current price of HTS wire; 230 $/kA-m)

Total cost of the 12 MW SCSG=10,146,509 $=11,161,160,184 KRW (1$=1,100 KRW)

=112 억원

Page 34: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

34ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

HTS wire price-performance for commercialization

Ref. SuperPower

Today’s HTS wire price: $225/kA-m (100 A performance at 77 K, zero applied magnetic field)

Improving wire price-performance is key factor for commercialization

Page 35: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

35ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Material Cost

Copper 20.5 $/kg

Stainless steel 1.5 $/kg

Silicon steel plate 4.1 $/kg

HTS wire 5 $/m (100 A @ 77 K)

Ref. Design of direct-driven permanent-magnet generator for wind turbines, Anders GrauersRef. SuperPower (4mm HTS wire)

Total cost of a 12 MW SCSG (Future price of HTS wire; 50 $/kA-m)

Active parts Weight Material

Stator coil 48 ton Copper

Stator body 50 ton Silicon steel plate

Vacuum vessel 12 ton Stainless steel

Rotor body 11 ton Stainless steel

Total length of HTS wire

HTS wire 375 km

Parts Cost

Stator coil 985 k$

Stator body 206 k$

Vacuum vessel 18 k$

Rotor body 16 k$

HTS wire 1,873 k$

Structure 306 k$

Total cost of the 12 MW SCSG=3,403,709 $=3,744,080,184 KRW (1$=1,100 KRW)

=37.44 억원

Page 36: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

36ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

BladeYaw system

Cooling system/Monitoring system

Generator

Main frameSpinner

Hub

Pitch control

Converter Power system

Drawing the whole shape of the 12 MW WPGS

Page 37: The possibility of HTS wind power generator Bus 190 for … 120 Jeju T/P Bus 130 Dongjeju Bus 140 Sinjeju Bus 150 Hanlim Bus 160 Anduck Bus 190 Bus 180 Halla Sinseogwi Bus 200 Sungsan

37ALCA, 8th Mar. 2016, Minwon Park, Changwon, Korea

Thank you for your attention

in Changwon national university

20GW wind turbine (10MW HTS wind, 2,000 unit)We can reduce about 50Mton of CO2 emission per year.It is 1/10 of Korean CO2 total emission.