THE ORTHORHOMBIC STRUCTURE OF CaCO3, SrCO3, PbCO3 ...

12
1245 The Canadian Mineralogist Vol. 47, pp. 1245-1255 (2009) DOI : 10.3749/canmin.47.5.1245 THE ORTHORHOMBIC STRUCTURE OF CaCO 3 , SrCO 3 , PbCO 3 AND BaCO 3 : LINEAR STRUCTURAL TRENDS Sytle M. ANtAO § Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada IShMAel hASSAN Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica AbStrAct The crystal structures of four isostructural orthorhombic carbonates, CaCO 3 (aragonite), SrCO 3 (strontianite), PbCO 3 (cerus- site), and BaCO 3 (witherite), were obtained by Rietveld refinements using data acquired by synchrotron high-resolution powder X-ray diffraction (HRPXRD). For BaCO 3 , powder neutron-diffraction data were obtained and refined by the Rietveld method. For aragonite, we also carried out a refinement of the structure by single-crystal X-ray diffraction. These carbonates belong to the space group Pmcn, with Z = 4. The CO 3 group is slightly non-planar, and the two independent C–O distances are slightly different. The CO 3 group becomes more symmetrical and less aplanar from CaCO 3 to BaCO 3 (M 2+ radii : Ca < Sr < Pb < Ba). The CaCO 3 structure is, therefore, the most distorted, whereas the BaCO 3 structure is the least distorted. Several linear structural trends are observed in plots of selected parameters as a function of the unit-cell volume, V. These parameters are radii of the nine-coordinated M 2+ cations, the unit-cell axes, the average <M–O> and <C–O> distances, average <O–C–O> angle, and aplanarity. These linear trends are the result of the effective size of the divalent ionic radius of the M cations that are coordinated to nine oxygen atoms. The geometrical features of the CO 3 group can be obtained reliably only by using neutron-diffraction data, especially in the presence of other heavy atoms. Keywords: CaCO 3 , aragonite, SrCO 3 , strontianite, PbCO 3 , cerussite, BaCO 3 , witherite, Rietveld refinements, synchrotron high- resolution powder X-ray diffraction (HRPXRD), neutron diffraction, crystal structure. SOMMAIre Nous avons affiné la structure cristalline de quatre carbonates orthorhombiques isostructuraux, CaCO 3 (aragonite), SrCO 3 (strontianite), PbCO 3 (cérusite), et BaCO 3 (witherite), par la méthode de Rietveld en utilisant les données acquises par diffraction X à haute résolution avec rayonnement synchrotron. Pour le BaCO 3 , nous avons utilisé des données obtenues par diffraction neutronique, aussi affinées par la méthode de Rietveld. Pour l’aragonite, nous avons affiné la structure par diffraction X sur monocristal. Ces carbonates répondent au groupe spatial Pmcn, avec Z = 4. Le groupe CO 3 est légèrement non planaire, et les deux distances C–O indépendantes diffèrent légèrement. Le groupe CO 3 devient plus symétrique et moins aplanaire en allant de CaCO 3 à BaCO 3 (M 2+ rayon : Ca < Sr < Pb < Ba). La structure de CaCO 3 serait donc la plus difforme, tandis que la structure de BaCO 3 serait la moins difforme. Plusieurs tendances structurales sont évidentes dans les tracés de paramètres choisis en fonction du volume de la maille élémentaire, V. Parmi ces paramètres sont le rayon des cations M 2+ à coordinence neuf, les dimensions le long des axes de la maille élémentaire, les distances <M–O> et <C–O> moyennes, l’angle <O–C–O> moyen, et l’aplanarité. Ces tracés linéaires sont le résultat de la dimension effective du rayon ionique du cation M bivalent coordonné aux neuf atomes d’oxygène. On ne peut évaluer les aspects géométriques du groupe CO 3 qu’avec les données en diffraction neutronique, surtout en présence des atomes lourds dans la structure. (Traduit par la Rédaction) Mots-clés: CaCO 3 , aragonite, SrCO 3 , strontianite, PbCO 3 , cérusite, BaCO 3 , withérite, affinements de Rietveld, diffraction X à haute résolution avec rayonnement synchrotron, diffraction neutronique, structure cristalline. § E-mail address: [email protected]

Transcript of THE ORTHORHOMBIC STRUCTURE OF CaCO3, SrCO3, PbCO3 ...

1245

The Canadian MineralogistVol.47,pp.1245-1255(2009)DOI:10.3749/canmin.47.5.1245

THE ORTHORHOMBIC STRUCTURE OF CaCO3, SrCO3, PbCO3 AND BaCO3: LINEAR STRUCTURAL TRENDS

SytleM.ANtAO§

Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada

IShMAelhASSAN

Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica

AbStrAct

Thecrystalstructuresoffourisostructuralorthorhombiccarbonates,CaCO3(aragonite),SrCO3(strontianite),PbCO3(cerus-site),andBaCO3(witherite),wereobtainedbyRietveldrefinementsusingdataacquiredbysynchrotron high-resolution powderX-raydiffraction(HRPXRD).ForBaCO3,powderneutron-diffractiondatawereobtainedandrefinedbytheRietveldmethod.Foraragonite,wealsocarriedoutarefinementofthestructurebysingle-crystalX-raydiffraction.ThesecarbonatesbelongtothespacegroupPmcn,withZ=4.TheCO3groupisslightlynon-planar,andthetwoindependentC–Odistancesareslightlydifferent.TheCO3groupbecomesmoresymmetricalandlessaplanarfromCaCO3toBaCO3(M2+

radii:Ca<Sr<Pb<Ba).TheCaCO3structureis,therefore,themostdistorted,whereastheBaCO3structureistheleastdistorted.Severallinearstructuraltrendsareobservedinplotsofselectedparametersasafunctionoftheunit-cellvolume,V.Theseparametersareradiiofthenine-coordinatedM2+ cations, the unit-cell axes, the average<M–O>and<C–O>distances, average<O–C–O>angle, andaplanarity.TheselineartrendsaretheresultoftheeffectivesizeofthedivalentionicradiusoftheMcationsthatarecoordinatedtonineoxygenatoms.ThegeometricalfeaturesoftheCO3groupcanbeobtainedreliablyonlybyusingneutron-diffractiondata,especiallyinthepresenceofotherheavyatoms.

Keywords:CaCO3,aragonite,SrCO3,strontianite,PbCO3,cerussite,BaCO3,witherite,Rietveldrefinements,synchrotronhigh-resolutionpowderX-raydiffraction(HRPXRD),neutrondiffraction,crystalstructure.

SOMMAIre

Nousavonsaffinélastructurecristallinedequatrecarbonatesorthorhombiquesisostructuraux,CaCO3(aragonite),SrCO3(strontianite),PbCO3(cérusite),etBaCO3(witherite),parlaméthodedeRietveldenutilisantlesdonnéesacquisespardiffractionXàhauterésolutionavecrayonnementsynchrotron.PourleBaCO3,nousavonsutilisédesdonnéesobtenuespardiffractionneutronique,aussiaffinéespar laméthodedeRietveld.Pour l’aragonite,nousavonsaffiné lastructurepardiffractionXsurmonocristal.CescarbonatesrépondentaugroupespatialPmcn,avecZ=4.LegroupeCO3estlégèrementnonplanaire,etlesdeuxdistancesC–Oindépendantesdiffèrentlégèrement.LegroupeCO3devientplussymétriqueetmoinsaplanaireenallantdeCaCO3àBaCO3(M2+

rayon:Ca<Sr<Pb<Ba).LastructuredeCaCO3seraitdonclaplusdifforme,tandisquelastructuredeBaCO3seraitlamoinsdifforme.Plusieurstendancesstructuralessontévidentesdanslestracésdeparamètreschoisisenfonctionduvolumedelamailleélémentaire,V.ParmicesparamètressontlerayondescationsM2+àcoordinenceneuf,lesdimensionslelongdesaxesdelamailleélémentaire,lesdistances<M–O>et<C–O>moyennes,l’angle<O–C–O>moyen,etl’aplanarité.CestracéslinéairessontlerésultatdeladimensioneffectivedurayonioniqueducationMbivalentcoordonnéauxneufatomesd’oxygène.OnnepeutévaluerlesaspectsgéométriquesdugroupeCO3qu’aveclesdonnéesendiffractionneutronique,surtoutenprésencedesatomeslourdsdanslastructure.

(TraduitparlaRédaction)

Mots-clés:CaCO3,aragonite,SrCO3,strontianite,PbCO3,cérusite,BaCO3,withérite,affinementsdeRietveld,diffractionXàhauterésolutionavecrayonnementsynchrotron,diffractionneutronique,structurecristalline.

§ E-mail address:[email protected]

1246 thecANAdIANMINerAlOgISt

Bowen1971,Jarosch&Heger1986,Bevanet al.2002,Caspiet al.2005,Pokroyet al.2007).Pilatiet al.(1998)carriedout lattice-dynamicstudiesonseveralcarbon-ates.ThestructuresofaragonitewererefinedinspacegroupPmcn, except for one structure refined in thetriclinicsystem,spacegroupP1,byBevanet al.(2002).

Thecrystalstructureofstrontianitewasdeterminedby Zachariasen (1928), and refined byDeVilliers(1971)andJarosch&Heger(1988),whereasthecrystalstructureofwitheritewasdeterminedbyColby&LaCoste(1933)andrefinedbyothers(DeVilliers1971,Holletal.2000).

Studiesoftheisostructuralorthorhombiccarbonatephases are important in understanding the transitionsequencesinCaCO3andmayprovideinsightsintothebehaviorofcarboninthemantle(e.g.,Berg1986,Antao et al.2004).BecauseoftheimportanceofCO2seques-trationandpossibleorder–disorderofcationsandCO3groups,wehaverecentlyexaminedthecrystalstructuresofseveralcarbonates(Antao et al.2004,2008a,2009,Antao&Hassan2007).Inaddition,resultsofseveralhigh-pressurestudiesareavailableforCaCO3,BaCO3andSrCO3(Lin&Liu1997,Holl et al.2000,Santillán&Williams2004,Ono2007).

experIMeNtAlMethOdS

Sample characterization

OnesampleofaragoniteusedinthisstudyisfromTuscany,Italy,andoccursascolorlessneedle-likecrys-talsthatoccurinacavity.Thechemicalanalysisofthisaragonite (using small crystalsencapsulated inepoxyresin, polished, andcarboncoated)wasdoneusingaCamecaCamebaxelectronmicroprobe(EMP)usingtheoperatingprogramMBX(copyrightbyCarlHenderson,UniversityofMichigan);thecorrectionwasdoneusingCameca’s PAP program.The analytical conditionswere 15 kV, andwith a beam current of 9.6 nA.Adiffusebeamofelectronswasusedfortheanalysistoavoidvolatilization.Mineralswere used as standards[e.g., dolomite (CaKa,MgKa), siderite (FeKa), andrhodonite(MnKa)].Typicaloxideweightpercentagesresulting from theEMPanalysesaregiven (Table1).The chemical formula obtained for this aragonite isCa0.996Mg0.001Sr0.003CO3,which is close to the idealformula,CaCO3.TheaverageamountofSr, inatomsper formulaunit (apfu), is 0.005,withminimumandmaximumvaluesrangingfrom0to0.007apfu.

TheotheraragonitesampleisfromCuenca,Spain;it occurs as a large (several cm in size) euhedralcrystalhexagonalinshape.Thisaragonitesamplewasanalyzedinasimilarmanner(Table1),andtheformulaisCa0.985Sr0.014CO3.TheaverageamountofSris0.014atoms per formula unit (apfu), withminimum andmaximumvalues ranging from0.012 to 0.015apfu.ThisamountofSrisaboutthreetimesmorethanthatinthesamplefromItaly.

INtrOductION

Thenaturallyoccurringisostructuralorthorhombiccarbonatesarearagonite(CaCO3),strontianite(SrCO3),cerussite(PbCO3),andwitherite(BaCO3), listedwithincreasingsizeoftheM2+cation.Inaddition,isostruc-turalrare-earthandradiumcarbonates(YbCO3,EuCO3,SmCO3, andRaCO3) have been synthesized (Speer1983).Linear structural trends are expected to occurin theseseries; theircrystalstructureswereexaminedpreviously,butonlygeneraltrendswereobserved(DeVilliers 1971,Chevrier et al. 1992).TheM2+ cationsshould have some effect on the slightly aplanarCO3groupandonthetwoindependentbutslightlydifferentC–O distances, althoughCO3 groups are generallyconsidered to be rigid.WithX-ray diffraction, it isdifficulttoaccuratelylocatelightatomssuchasCinthepresenceofheavyatomssuchasPb(includingproblemsfromabsorption). For this reason, neutron-diffractionexperimentswereperformedonaragonite,strontianite,and cerussite (Chevrier et al. 1992, Jarosch&Heger1986,1988),butnotonwitherite.Theapparentlackoflineartrendstodateseemstoarisefromaninappropriatechoiceofastructuralparameteragainstwhichtoplotsuitablestructuralvariables.

Although the structure of aragonite iswell estab-lishedandhasbeenacceptedforalongtime,thefind-ingsofBevanet al.(2002)onasamplethatcontainsasmallamountofSratomwasunexpected.Theyrefinedthestructureofatwinnedcrystalofaragonitefromanunknown locality in space groupP1, and cast somedoubtaboutthestructuresofaragonitethatwererefinedinspacegroupPmcn.Thepresentstructureofaragonitewasrefinedinordertoresolvesomeofthiscontroversy.Refinementdatafortwoaragonitesamplesfromlocali-tiesdifferentthanthosesampledbyotherinvestigatorswerealsoobtained.

Thepurposeof thisstudy is toexamine thestruc-tural trends in the orthorhombic carbonatesCaCO3,SrCO3, PbCO3, andBaCO3 usingRietveld structurerefinements and synchrotron high-resolution powderX-ray-diffraction(HRPXRD)data.WealsostudiedbyneutrondiffractionthestructureofBaCO3.Inaddition,werefinedthestructureofonearagonitesampleusingasingle-crystalapproach.Theresultsfromthepresentstudygavelinearstructuraltrendsacrosstheseries.

bAckgrOuNdINfOrMAtION

Aragonite, the most common orthorhombiccarbonate,occursastheinorganicconstituentofmanyinvertebrate skeletons and sediments derived fromthem.Italsooccursasaprimaryphaseinhigh-pressuremetamorphicrocks.ThecrystalstructureofaragonitewasdeterminedbyBragg(1924)andWyckoff(1925).Subsequently,severalrefinementswerecarriedout(DalNegro&Ungaretti1971,DeVilliers1971,Dickens&

OrthOrhOMbIcStructureOfcacO3,SrcO3,pbcO3ANdbacO3 1247

The othermaterials (PbCO3,BaCO3 andSrCO3)wereobtainedashigh-purity(99.999%)reagent-gradepowders andwere assumed to be pure.The formulaMCO3wasusedinthestructurerefinementsbelow.

Single-crystal X-ray-diffraction study of aragonite from Tuscany, Italy

Asingle-crystal fragment from the Italian samplewasselectedunderabinocularmicroscopeforstructurerefinement using aBruker P4 automated four-circlesingle-crystalX-ray diffractometerwith a SMART–CCDdetector and graphite-monochromatizedMoKaradiationgeneratedat50kVand30mA.Werecordedour datawith an exposure time of 30 s per frame,withadetectordistanceof5.016cm.Fivesectionsofframeswerecollectedwithastepwidthof0.30°inw.All datawere integrated usingSAINt (Bruker 2000),and empirical absorption correctionswere performedusingSAdAbS (Sheldrick 2001).The datawere alsocorrected for Lorentz, polarization, and background

effects.Theunit-cell parameterswere calculated andrefinedfromalltheintensitieswithI>15s(I).However,thecellparametersusedinthesingle-crystalstructurerefinementwere thoseobtained fromRietveld refine-ment using synchrotronHRPXRDdata because thisapproachprovidesmoreaccuratecellparameters(seebelow).The structure refinementwas doneusing theShelxtl97 suite of programs (Sheldrick 1997).Therefinementswere carried out by varying the param-etersinthefollowingsequence:scale,atompositions,isotropic, and anisotropic displacement parameters.The cell parameters and other information regardingdata collection, criteria for observed reflections, andrefinement are given inTables 2a and2b.The spacegroupPmcnwasusedinthisstudy,andnoreflectionswereobservedthatviolatethisspacegroup.Finally,allvariableswererefinedsimultaneouslytoanRfactorof0.0277.TheatompositionsandisotropicdisplacementparametersaregiveninTable3a.Anisotropicdisplace-mentparametersaregiveninTable3b.Selectedbonddistances and angles are given inTable 4.Table 5containsobservedandcalculatedstructure-factors;itisavailablefromtheDepositoryofUnpublishedDataontheMACwebsite[documentAragoniteCM47_1245].

Synchrotron high-resolution powder X-ray diffraction(HRPXRD)

Fivesamples(syntheticSrCO3,PbCO3,BaCO3andthe two natural aragonite samples)were studied byHRPXRD.Theexperimentswereperformedatbeam-line11–BM,AdvancedPhotonSource(APS),ArgonneNationalLaboratory(ANL).Eachsamplewascrushed(forabout5minutes)toafinepowderusinganagatemortarandpestle.Thesampleswereloadedintokaptoncapillariesandrotatedduringtheexperimentatarateof 90 rotations per second.The datawere collected

1248 thecANAdIANMINerAlOgISt

to amaximum 2u of about 40°with a step size of0.0005°andasteptimeof0.2sperstep.TheHRPXRDtraceswerecollectedwithtwelvesilicon(111)crystalanalyzers that increasedetector efficiency, reduce theangularrangetobescanned,andallowrapidacquisitionofdata.AsiliconandaluminaNISTstandard(ratioof1/3Si:2/3Al2O3)wasusedtocalibratetheinstrumentand to determine and refine thewavelength used intheexperiment.Additionaldetailsoftheexperimentalset-uparegivenelsewhere(Antao et al.2008b,Lee et al.2008,Wang et al.2008).

Neutron powder-diffraction refinement of BaCO3

Time-of-flightneutron-diffractionmeasurementsonBaCO3wereperformedusingtheSpecialEnvironmentPowderDiffractometer (SEPD)of the IntensePulsedNeutronSource(IPNS)atANL.About8gofsample

waspackedintoavanadiumcan;datawerecollectedatambientconditionsoveraperiodofthreehours.

Rietveld structure refinements

To extract structural parameters, themeasuredHRPXRDandneutronprofileswere analyzedby theRietveldmethod (Rietveld 1969), as implemented intheGSASprogram(Larson&VonDreele2000),andusing theEXPGUI interface (Toby2001). Scatteringcurvesforneutralatomswereusedinallrefinements.Thestartingcoordinatesofallatoms, thecellparam-eters,andthespacegroup,Pmcn,weretakenfromDeVilliers(1971).ThebackgroundwasmodeledusingaChebyschev polynomial.The reflection-peak profileswerefittedusingtype-3profileintheGSASprogram.Full-matrixleast-squaresrefinementswerecarriedoutbyvarying theparameters in the followingsequence:a scale factor, cell parameters, atomcoordinates, andisotropic displacement parameters.Toward the endof the refinement, all theparameterswereallowed tovary simultaneously, and the refinement proceededto convergence.TheHRPXRD traces are shown inFigures1and2.NoreflectionsviolatingspacegroupPmcnwereobservedinthisstudy,whichisincontrasttotheworkonadifferentsampleofaragonite(Bevanet al.2002).TheneutrondiffractionpatternforBaCO3isshowninFigure3.

The cell parameters and theRietveld refinementstatistics are listed inTable 2a.Atompositions andisotropic displacement parameters are given inTable3a.BonddistancesandanglesaregiveninTable4.

OrthOrhOMbIcStructureOfcacO3,SrcO3,pbcO3ANdbacO3 1249

reSultSANddIScuSSION

Structure of orthorhombic CaCO3, SrCO3, PbCO3, and BaCO3

ThephasesCaCO3,SrCO3,PbCO3,andBaCO3areisostructural,andhavethearagonite-typestructure(Fig.4).Layersofnine-coordinatedM2+(M:Ca,Sr,Pb,orBa)cationsareparallel to(001),andtheatomsoccurapproximately in the positions of hexagonal close-packing.This is in contrastwith the deformed cubicclose-packedarrangementofCa2+cationsincalcite,andgivesrisetothepseudo-hexagonalsymmetryintheseorthorhombic compounds. SuccessiveCO3

2– groupsalongc point alternately to the+b and–b directions(Fig. 4).Although theM2+ cations are nearly in ahexagonalarray,thearrangementoftheCO3

2–groupslowers the symmetry toorthorhombic, and theCO3

2–groupsareslightlyaplanar(Table4).

Linear structural trends

Theunit-cellparametersfortheisostructuralcarbon-ates are in excellent agreementwith those obtainedpreviously (e.g.,DeVilliers 1971, Jarosch&Heger

1986, 1988, Lucas et al. 1999, Holl et al. 2000).However, cell parameters obtained in this study aresignificantlymoreaccurate,astheywereobtainedfromHRPXRDdata(Table2a).Ingeneral,thehighqualityof theHRPXRD trace (including both statistics andangular resolution) allows the unit-cell parameters tobedeterminedaccuratelyandreliably.

UsingaHRPXRDtechniquesimilartothatusedinthepresentstudy,thestructureofanaragonitesamplefromSefrou,Moroccowas obtained byCaspiet al.(2005).Theircellparameters(seefootnotetoTable2)are in excellent agreement (within 2 3 10–4Å)withthoseforoursamplefromSpain,anddeviateslightlyfromthoseforthesamplefromItaly(within1 3 10–3Å).Thesesmalldifferences incellparametersamongaragonitesamplesarisefromdifferentcontentsoftraceelements, in particular Sr; the larger cell volume isassociatedwith larger amounts ofSr.The amount ofSr(apfu)inthesamplefromSpainisaboutthreetimesmorethanthatfromItaly(Table1).OtherstudieshavealsoshownthatSrisimportantinaragonite(Caspiet al.2005,Finch&Allison2007).

Strontium andMg atoms in calcite and aragoniteare used asproxies of temperature in paleoenviron-mental reconstructions. Finch&Allison (2007) usedX-ray absorptionfine structure (XAFS) to show thatSr substitutes forCa in aragonite and causes a small(2%)dilation,whereasSrsubstitutionforCaincalcitecausesa6.5%dilation.

AlthoughBevanet al.(2002)usedP1andmerohe-draltwinningtoproduceastructuralmodelforarago-nite,theirresultscannotbegeneralizedtoallsamplesof aragonite. In particular, their sample of unknownorigincontainsasmallamountofSr(about1atom%),whereasoursamplescontainminorimpurities,asisthecaseformostsamplesofaragonite,andgiverisetotheidealformulaCaCO3(seeDeeret al.1992).Caspiet al.

1250 thecANAdIANMINerAlOgISt

(2005)didnotobserveanyreflectionsviolatingPmcnsymmetry,asinourresultsforbothsingle-crystalandpowder samples. In powderX-ray diffraction, twin-ningeffectscanbeeliminated.ThelackofanysplitorunindexedreflectionpeaksinourdataindicatesthatasymmetrylowerthanPmcnisunlikelyforend-memberaragonite.This isalsosupportedby thesingle-crystaldataforouraragonitesamplefromItaly.

The radii of the nine-coordinatedM2+ cations(Shannon1976)andthea,b,cunit-cellparametersareplottedagainst thevolume,V (Fig.5).Data from theliteraturearealsoincludedinthegraphs(seecaptionto

fIg.1. ComparisonoftheHRPXRDtracesforaragonite,CaCO3,from(a)Tuscany,Italy,and (b)Cuenca,Spain, togetherwith the calculated (continuous line) andobserved(crosses)profiles.Thedifferencecurve(Iobs–Icalc)isshownatthebottom.Theshortverticallinesindicatethepositionsofallowedreflections.Inbothcases,theintensitiesbeyond20°2uarescaledbyafactorof320.TheFWHMin(a)ismorethanthatin(b).

fIg. 2. Comparison of theHRPXRD traces for SrCO3,PbCO3,andBaCO3,togetherwiththecalculated(continu-ous line) andobserved (crosses)profiles.Thedifferencecurve(Iobs–Icalc)isshownatthebottom.Theshortverti-callinesindicatethepositionsofallowedreflections.Notethechangeinintensityscaleathigh2u,andthefactorsaregiven as315,etc.TheFWHMofSrCO3 is the lowest,whereasthatofPbCO3isthehighest.

OrthOrhOMbIcStructureOfcacO3,SrcO3,pbcO3ANdbacO3 1251

1252 thecANAdIANMINerAlOgISt

fIg.3. TheneutrondiffractiontraceforBaCO3,togetherwiththecalculated(continuousline)andobserved(crosses)profiles.Thedifferencecurve(Iobs–Icalc)isshownatthebottom.Theshortverticallinesindicatethepositionsofallowedreflections.

fIg.4. ProjectionoftheorthorhombicCaCO3structureshowingtheapproximatehexago-nalclose-packingoftheOatomsandthecoordinationofaCaatomtonineOatomsofsixdifferentCO3groups.TheO2atomsareunlabeled.

OrthOrhOMbIcStructureOfcacO3,SrcO3,pbcO3ANdbacO3 1253

Fig.5).LineartrendsareobservedwithaR2valueof1,itsidealvalueforanexcellentfit(insertsinFig.5).

The average <M–O> distances are also plottedagainstV(Fig.6).Withallthedataincluded,alineartrendisobserved.ThepresentdataalsoshowthattheM–Opolyhedra become less distortedwith increaseinthesizeofM2+cations,asindicatedbyDeVilliers(1971).Thatis,theindividualM–Odistancesareclosertothemean<M–O>distanceinBaCO3thaninCaCO3(Table4).

The excellent linear fits of the above structuralparametersshowthatreliablecelland<M–O>distancescan easily be obtainedwith eitherX-ray diffractionor neutron diffraction, using either single-crystal orpowder samples (Figs. 5, 6).This is not the case forthegeometryoftheCO3groupbecauseofthelightCatominthepresenceofheavyatomsinthearagonite-typestructure.

The geometrical features of the CO3 group areplottedagainstV (Figs.7a,b, c).Only thedata fromneutron refinements are shown. If other datawereplotted(notshown),therewouldbeconsiderablescatter,indicatingthattheCatompositionisnotlocatedaccu-ratelywithX-raydiffraction.ThestructuralparametersoftheCO3groupinPbCO3areshown(asxsymbolsingraphs),buttheydonotfallonthetrendlines.Thosepointswere not included in the computation of thelineartrendlines.Itshouldbenotedthatthe<Pb–O>

distancedoes fallon theexpected trend line (Fig.6),so it appears that theC positionmay not have beenaccuratelydeterminedinPbCO3.

fIg.5. Theradiiofthenine-coordinatedM2+cationsandthea,b,cunit-cellparametersversusvolume,V.Theyincreaselinearly.Dataaretakenfromthisstudyandfromtheliterature(Caspi et al.2005,Chevrier et al.1992,DalNegro&Ungaretti1971,DeVilliers1971,Jarosch&Heger1986,1988,Pokroy et al.2007).

fIg. 6. Linear increase in average <M–O> distancewithvolume,V.Dataaretakenfromthisstudyandthelitera-ture (seecaption toFig.5).Theequationof the straightline and the goodness-of-fit (R2) are given as inserts inFigures6and7.

1254 thecANAdIANMINerAlOgISt

Theaverage<C–O>distanceand<O–C–O>angleincreaselinearlywithV,whereastheaplanarityoftheCO3 group decreases (Fig. 7).The aplanarity of theCO3 group is defined by the distance of theC atomfromtheplaneformedbythethreeOatoms.ThisCO3groupthusbecomesmoresymmetrical(C–Odistancesnearlyequal)andlessaplanaringoingfromaragonitetowitherite.Therefore, in this isostructural series ofmaterials,thearagonitestructureisthemostdistorted,

whereasthewitheritestructureistheleastdistortedintermsofthegeometryoftheCO3groupandthe[MO9]polyhedron.Thestructuralparametersofthisseriesofphases are influenced and correlatedwith size of theMcations.

AckNOwledgeMeNtS

WethankD.J.M.Bevan,S.Ness,oneanonymousreferee, theAssociate Editor, R.L. Flemming, andEditor, R.F.Martin for useful comments.We alsothankD.H.Lindsley andR.Marr for their helpwiththeEMPanalysis.TheHRPXRDdatawerecollectedattheX-rayOperationsandResearchbeamline11–BM,Advanced Photon Source (APS),ArgonneNationalLaboratory (ANL).We thank J.S.Fieramosca for hishelpwiththeneutron-diffractionmeasurements,whichwereperformedusingtheSpecialEnvironmentPowderDiffractometer(SEPD),IntensePulsedNeutronSource(IPNS),ANL.UseoftheAPSandIPNSwassupportedbytheU.S.DepartmentofEnergy,OfficeofScience,OfficeofBasicEnergySciences, underContractNo.DE–AC02–06CH11357. SMAacknowledges supportfromaUniversityofCalgarygrant,aDiscoverygrantRT735238fromtheNaturalSciencesandEngineeringResearchCouncilofCanada,andanAlbertaIngenuityNewFacultyaward.

refereNceS

ANtAO,S.M.&hASSAN,I.(2007):BaCO3:high-temperaturecrystalstructuresandthePmcn!R3mphasetransitionat811°C.Phys. Chem. Minerals34,573-580.

ANtAO,S.M.,hASSAN,I.,Mulder,w.h.&lee,p.l.(2008a):TheR3c !R3mtransitioninnitratine,NaNO3andimpli-cations for calcite, CaCO3.Phys. Chem. Minerals35,545-557.

ANtAO,S.M.,hASSAN,I.,Mulder,w.h.,lee,p.l.&tOby,b.h.(2009):InsitustudyoftheR3c!R3morientationaldisorderincalcite.Phys. Chem. Minerals36,159-169.

ANtAO,S.M.,hASSAN,I.,wANgJuN,lee,p.l.&tOby,b.h.(2008b): State-of-the-art high-resolution powderX-raydiffraction(HRPXRD)illustratedwithRietveldstructurerefinement of quartz, sodalite, tremolite, andmeionite.Can. Mineral.46,1501-1509.

ANtAO, S.M.,Mulder,w.h.,hASSAN, I.,crIchtON,w.A.& pArISe, J.b. (2004): Cation disorder in dolomite,CaMg(CO3)2, and its influence on the aragonite+mag-nesite! dolomite reaction boundary.Am. Mineral.89,1142-1147.

berg,g.w. (1986):Evidence for carbonate in themantle.Nature324,50-51.

bevAN,d.J.M.,rOSSMANIth,e.,MylreA,d.k.,NeSS,S.e.,tAylOr,M.r.&cuff,c. (2002):On the structure of

fIg.7. Neutron-diffractiondataforBaCO3(thisstudy),ara-gonite(Jarosch&Heger1986,Pokroy et al.2007),stron-tianite (Jarosch&Heger 1988), and cerussite (Chevrier et al. 1992): (a)<C–O>versusV, (b)<O–C–O>versusV,and(c)aplanarityversusV.DataforPbCO3,althoughshown, arenot included in the computationof the trendlines.Theaverage<C–O>distanceand<O–C–O>angleincreaselinearlywithV,whereastheaplanarityoftheCO3groupdecreases.

OrthOrhOMbIcStructureOfcacO3,SrcO3,pbcO3ANdbacO3 1255

aragonite –LawrenceBragg revisited.Acta Crystallogr.B58,448-456.

brAgg,w.l.(1924):Thestructureofaragonite.Proc. R. Soc. LondonA105,16-39.

bruker (2000):SAINt, software referencemanual.BrukerAXS,Madison,Wisconsin.

cASpI, e.N., pOkrOy, b., lee, p.l., QuINtANA, J.p. &ZOlOtOyAbkO,e. (2005):On the structure of aragonite.Acta Crystallogr.B61,129-132.

chevrIer,g.,gIeSter,g.,heger,g.,JArOSch,d.,wIldNer,M.&ZeMANN, J. (1992):Neutron single-crystal refine-ment of cerussite, PbCO3, and comparisonwith otheraragonite-typecarbonates.Z. Kristallogr.199,67-74.

cOlby,M.y.&lAcOSte,l.J.b.(1933):Thecrystalstructureofcerussite.Z. Kristallogr.84,299-309.

dAlNegrO,A.&uNgArettI,l. (1971):Refinementof thecrystalstructureofaragonite.Am. Mineral.56,768-772.

deer,w.A.,hOwIe,r.A.&ZuSSMAN,J.(1992):An Introduc-tion to the Rock-Forming Minerals(2nded.).JohnWiley,NewYork,N.Y.

devIllIerS, J.p.r. (1971):Crystal structures of aragonite,strontianite,andwitherite.Am. Mineral.56,758-767.

dIckeNS,b.&bOweN,J.S.(1971):Refinementofthecrystalstructure of the aragonite phase ofCaCO3.J. Res. Nat. Bureau Stand.A75,27-32.

fINch,A.A.&AllISON,N. (2007):CoordinationofSr andMgincalciteandaragonite.Mineral. Mag.71,539-552.

hOll,c.M.,SMyth,J.r.,lAuStSeN,h.M.S.,JAcObSeN,S.d.&dOwNS,r.t.(2000):Compressionofwitheriteto8GPaandthecrystalstructureofBaCO3II.Phys. Chem. Minerals27,467-473.

JArOSch,d.&heger,g.(1986):Neutrondiffractionrefine-ment of the crystal structure of aragonite.Tschermaks Mineral. Petrogr. Mitt.35,127-131.

JArOSch,d.&heger,g.(1988):Neutrondiffractioninvesti-gationofstrontianite,SrCO3.Bull. Minéral.111,139-142.

lArSON,A.c.&vONdreele,r.b.(2000):GeneralStructureAnalysis System (GSAS).Los Alamos Nat. Lab., Rep. LAUR 86-748.

lee,p.l.,Shu,d.,rAMANAthAN,M.,preISSNer,c.,wANg,J.,beNO,M.A.,vONdreele,r.b.,rIbAud,l.,kurtZ,c.,ANtAO,S.M.,JIAO,x.&tOby,b.h.(2008):Atwelve-analyzerdetector systemforhigh-resolutionpowderdif-fraction.J. Synchr. Rad.15,427-432.

lINchuNg-cherNg&lIulIN-guN (1997):High pressurephasetransformationsinaragonite-typecarbonates.Phys. Chem. Minerals24,149-157.

lucAS,A.,MOuAlleM-bAhOut,M.,cArel,c.,gAudé, J.&MAteckI,M. (1999):Thermal expansionof syntheticaragonitecondensedreviewofelasticproperties.J. Solid State Chem.146,73-78.

ONO,S. (2007):Newhigh-pressurephases inBaCO3.Phys. Chem. Minerals34,215-221.

pIlAtI, t., deMArtIN, f. &grAMAccIOlI, c.M. (1998):Lattice-dynamical estimation of atomic displacementparameters in carbonates: calcite and aragoniteCaCO3,dolomiteCaMg(CO3)2,andmagnesiteMgCO3.Acta Crys-tallogr.B54,515-523.

pOkrOy,b., fIerAMOScA, J.S.,vONdreele,r.b., fItch,A.N.,cASpI, e.N.&ZOlOtOyAbkO,e. (2007):Atomicstructure of biogenic aragonite.Chem. Mater.19, 3244-3251.

rIetveld,h.M. (1969):A profile refinementmethod fornuclear andmagnetic structures.J. Appl. Crystallogr.2,65-71.

SANtIlláN,J.&wIllIAMS,Q.(2004):AhighpressureX-raydiffractionstudyofaragoniteandthepost-aragonitephasetransitioninCaCO3.Am. Mineral.89,1348-1352.

ShANNON,r.d. (1976): Revised effective ionic radii andsystematicstudiesofinteratomicdistancesinhalidesandchalcogenides.Acta Crystallogr.A32,751-767.

SheldrIck,g.M.(1997):Shelxl–97–1.Program for Crystal Structure Determination.InstitutfurAnorg.Chemie,Göt-tingen,Germany.

SheldrIck,g.M. (2001):SAdAbS.Program for the Siemens Area Detector Absorption.BrukerAXS,Madison,Wis-consin.

Speer,J.A. (1983):Crystalchemistryandphaserelationsoforthorhombiccarbonates.InCarbonates:MineralogyandChemistry(R.J.Reeder,ed.).Rev. Mineral.11,145-190.

tOby,b.h. (2001):expguI, a graphical user interface forGSAS.J. Appl. Crystallogr.34,210-213.

wANg, J.,tOby,b.h.,lee,p.l.,rIbAud,l.,ANtAO,S.M.,kurtZ,c.,rAMANAthAN,M.,vONdreele,r.b.&beNO,M.A. (2008):A dedicated powder diffraction beamlineattheadvancedphotonsource:commissioningandearlyoperationalresults.Rev. Sci. Instrum.79,085105.

wyckOff,r.w.g.(1925):Orthorhombicspacegroupcriteriaandtheirapplicationstoaragonite.Am. J. Sci.209,145-175.

ZAchArIASeN,w.h.(1928):UntersuchungenüberdieKristall-strukturvonSesquioxydenundvergindungenABO3.Vid. Akad. Skr. Oslo4,1-165.

Received February 13, 2009, revised manuscript accepted October 6, 2009.