The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

20
The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum Likelihood Maximum likelihood with Flexible Probabilities Topic: parametric estimation of the invariants distribution based on the Maximum Likelihood approach We introduce the Maximum Likelihood with Flexible Probabilities estimate We consider the special case of invariants whose distribution belongs to an exponential family ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Transcript of The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

Page 1: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum Likelihood

Maximum likelihood with Flexible Probabilities

• Topic: parametric estimation of the invariants distribution based onthe Maximum Likelihood approach

• We introduce the Maximum Likelihood with FlexibleProbabilities estimate

• We consider the special case of invariants whose distribution belongs toan exponential family

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 2: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Canonical Maximum Likelihood

Intuition behind Maximum Likelihood estimation

Suppose that the number of observations t is small, or the number of simul-taneous invariants ı is large.

A parametric assumption on the distribution of the invariants is

εt ∼ fε ∈ {fθ}θ∈Θ (2a.58)

where• θ ≡ (θ1, . . . , θl)

′, l × 1 vector

• Θ ⊆ Rl, discrete or continuous

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 3: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Canonical Maximum Likelihood

Given the realized time series of the invariants, the likelihood is

fθ (i) =∏tt=1fθ (εt) (2a.60)

where i represents the realization of the information I ≡ (ε1| . . . |εt| . . . |εt).

The Maximum Likelihood estimate is

fMLε ≡ f

θMLε

, θML

ε ≡ argmaxθ∈Θ

{1

t

∑tt=1 ln fθ (εt)} (2a.61)

The Maximum Likelihood distribution is unequivocally determinedby the corresponding Maximum Likelihood parameters

fMLε ⇔ θ

ML

ε (2a.62)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 4: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Canonical Maximum Likelihood

Given the realized time series of the invariants, the likelihood is

fθ (i) =∏tt=1fθ (εt) (2a.60)

where i represents the realization of the information I ≡ (ε1| . . . |εt| . . . |εt).

The Maximum Likelihood estimate is

fMLε ≡ f

θMLε

, θML

ε ≡ argmaxθ∈Θ

{1

t

∑tt=1 ln fθ (εt)} (2a.61)

The Maximum Likelihood distribution is unequivocally determinedby the corresponding Maximum Likelihood parameters

fMLε ⇔ θ

ML

ε (2a.62)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 5: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Properties of the ML estimation

Equivalently, the Maximum Likelihood parameters are defined as

θML

ε = argminθ∈Θ E(fHistε ||fθ) (2a.63)

where E(fHistε ||fθ) is the relative entropy (25.32) and fHist

ε the historicaldistribution (2a.22).

Consistency: the parametric assumption (2a.59) holding true, θML

ε

approximates the true, unknown, parameters θε ∈ Θ of the invariants(fε ≡ fθε), and

limt→∞ θML

ε = θε ⇔ limt→∞ fMLε = fε (2a.64)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 6: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Example 2a.17. Consistency of the maximum likelihoodparameter

• Invariants: εt ∼ t(3, 0, 2)

• Number of observations: 500

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 7: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Generalization with Flexible Probabilities

Consider Flexible Probabilities {pt}tt=1 rather than the equal probabilityweights pt ≡ 1/t.

The Maximum Likelihood with Flexible Probabilities (MLFP)estimate is

fMLFPε ≡ f

θMLFPε

, θMLFP

ε ≡ argmaxθ∈Θ

{∑tt=1pt ln fθ (εt)} (2a.65)

The MLFP distribution is unequivocally determined by the corre-sponding MLFP parameters

fMLFPε ⇔ θ

MLFP

ε (2a.66)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 8: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Properties of the MLFP estimation

Equivalently, the Maximum Likelihood with Flexible Probabilitiesparameters are defined as

θMLFP

ε = argminθ∈Θ E(fHFPε ||fθ) (2a.67)

where E(fHFPε ||fθ) is the relative entropy (25.32) and fHFP

ε the Historicalwith Flexible Probability distribution (2a.24).

Consistency: the parametric assumption (2a.58) holding true, andprovided the Effective Number of Scenarios (2a.21) is ens(p1, . . . , pt) ≈ t

θMLFP

ε ≈ θε ⇔ fMLFPε ≈ fε (2a.68)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 9: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Extracting PropertiesUnder the parametric assumption, a generic property sε ≡ S{εt} reads

sε = hS(θε) (2a.69)

for some function hS.How to estimate the properties of fε?

Maximum Likelihood with Flexible Probabilities (MLFP) es-timate

sMLFPε ≡ SMLFP{ε} ≡ hS(θ

MLFP

ε ) (2a.73)See also Example 2a.18

θMLFP

ε ⇔ fMLFPε ≈

ens(p)→∞θε ⇔ fε

hS

y yhS

sMLFPε ≈

ens(p)→∞sε

(2a.74)

where ens(p) is the Effective Number of Scenarios (2a.21).

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 10: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodFrom Maximum Likelihood to Flexible Probabilities

Extracting PropertiesUnder the parametric assumption, a generic property sε ≡ S{εt} reads

sε = hS(θε) (2a.69)

for some function hS.How to estimate the properties of fε?

Maximum Likelihood with Flexible Probabilities (MLFP) es-timate

sMLFPε ≡ SMLFP{ε} ≡ hS(θ

MLFP

ε ) (2a.73)See also Example 2a.18

θMLFP

ε ⇔ fMLFPε ≈

ens(p)→∞θε ⇔ fε

hS

y yhS

sMLFPε ≈

ens(p)→∞sε

(2a.74)

where ens(p) is the Effective Number of Scenarios (2a.21).ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 11: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodExponential family invariants

Exponential family invariants

Consider ML estimation from a sample {εt, pt}tt=1 in the exponential family(22.109)

fθ(εt) = h(εt)eθ′φ(εt)−ψ(θ) (2a.76)

The log-likelihood maximization (2a.64) becomes

θMLFP

≡ argmaxθ{θ′ηHFPε − ψ(θ) +

∑tt=1pt lnh(εt)} (2a.77)

where ηHFPε is the Historical with Flexible Probabilities (HFP) estimator

(2a.37) of the expected features (22.112)

ηHFPε ≡

∑tt=1ptφ(εt) (2a.78)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 12: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodExponential family invariants

Exponential family invariants

From an information geometry perspective, ηHFPε is the estimator of the

expectation parameters, or m-coordinates (25.57).

The estimators θMLFP

ε and ηHFPε are related as follows

θMLFP

ε ≡ (∇θψ)−1(ηHFPε ) (2a.79)

where ψ is the log-partition function (22.110).

See also Example 2a.20

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 13: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

Goal: Use Maximum Likelihood to estimate tails modeled via ExtremeValue Theory

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 15: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

• Tail modeling: Extreme Value Theory (EVT)

zoom on left tail(losses)

1 Conditional excess distribution (CED)

fε−X|X≤ε (x) =fX(ε− x)

FX(ε)(3a.88)

2 Generalized Pareto distribution (GDP)

fξ,σ (x) ≡

1x≥0

σ1/ξ

(σ + ξx)1+1/ξif ξ ≥ 0

10≤x≤−σ/ξσ1/ξ

(σ + ξx)1+1/ξif ξ < 0

(3a.89)

fξ,σξ→0−→ exponential distr.

Theorem of Extreme Value Theory

fε−X|X≤ε (x) ≈ fξ∗,σ∗ (x) (3a.90)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 16: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

• Tail modeling: Extreme Value Theory (EVT)

zoom on left tail(losses)

1 Conditional excess distribution (CED)

fε−X|X≤ε (x) =fX(ε− x)

FX(ε)(3a.88)

2 Generalized Pareto distribution (GDP)

fξ,σ (x) ≡

1x≥0

σ1/ξ

(σ + ξx)1+1/ξif ξ ≥ 0

10≤x≤−σ/ξσ1/ξ

(σ + ξx)1+1/ξif ξ < 0

(3a.89)

fξ,σξ→0−→ exponential distr.

Theorem of Extreme Value Theory

fε−X|X≤ε (x) ≈ fξ∗,σ∗ (x) (3a.90)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 17: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

• Tail modeling: Extreme Value Theory (EVT)

zoom on left tail(losses)

1 Conditional excess distribution (CED)

fε−X|X≤ε (x) =fX(ε− x)

FX(ε)(3a.88)

2 Generalized Pareto distribution (GDP)

fξ,σ (x) ≡

1x≥0

σ1/ξ

(σ + ξx)1+1/ξif ξ ≥ 0

10≤x≤−σ/ξσ1/ξ

(σ + ξx)1+1/ξif ξ < 0

(3a.89)

fξ,σξ→0−→ exponential distr.

Theorem of Extreme Value Theory

fε−X|X≤ε (x) ≈ fξ∗,σ∗ (x) (3a.90)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 18: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

• Tail estimation: Maximum Likelihood with Flexible Probabilities (MLFP)

1 MLFP Pareto parameters

(ξMLFP , σMLFP ) ≡ argmaxσ>0,ξ

{∑εt≤ε

pt ln fξ,σ(ε− εt)} (3a.91)

2 MLFP cdf

FMLFPε (x) =

∫ x

−∞fMLFPε (x)dx (3a.92)

≡ fξMLFP ,σMLFP

3 MLFP quantile

qMLFPε (c) = (ε− σMLFP

ξMLFP(

(c

c

)−ξMLFP

− 1), c ≤ c ≡ FMLFPε (ε) (3a.93)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 19: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

• Tail estimation: Maximum Likelihood with Flexible Probabilities (MLFP)

1 MLFP Pareto parameters

(ξMLFP , σMLFP ) ≡ argmaxσ>0,ξ

{∑εt≤ε

pt ln fξ,σ(ε− εt)} (3a.91)

2 MLFP cdf

FMLFPε (x) =

∫ x

−∞fMLFPε (x)dx (3a.92)

≡ fξMLFP ,σMLFP

3 MLFP quantile

qMLFPε (c) = (ε− σMLFP

ξMLFP(

(c

c

)−ξMLFP

− 1), c ≤ c ≡ FMLFPε (ε) (3a.93)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update

Page 20: The “Checklist” - 3a. Estimation Flexible Probabilities - Maximum Likelihood

The “Checklist” > 3a. Estimation: Flexible Probabilities > Maximum LikelihoodTails: Extreme Value Theory

Tails: Extreme Value Theory

• Tail estimation: Maximum Likelihood with Flexible Probabilities (MLFP)

1 MLFP Pareto parameters

(ξMLFP , σMLFP ) ≡ argmaxσ>0,ξ

{∑εt≤ε

pt ln fξ,σ(ε− εt)} (3a.91)

2 MLFP cdf

FMLFPε (x) =

∫ x

−∞fMLFPε (x)dx (3a.92)

≡ fξMLFP ,σMLFP

3 MLFP quantile

qMLFPε (c) = (ε− σMLFP

ξMLFP(

(c

c

)−ξMLFP

− 1), c ≤ c ≡ FMLFPε (ε) (3a.93)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-05-2017 - Last update