Teknologi Konservasi_Danau

62
PRELIMINARY DEVELOPMENT OF VERTICAL SEGMENTATION MODEL FOR WATER QUALITY PREDICTION IN ELONGATED RESERVOIRS Priana Sudj ono Dept. of Environmental Engineering Bandung Institute of Technology [email protected] 1

Transcript of Teknologi Konservasi_Danau

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 1/62

PRELIMINARY DEVELOPMENT

OF VERTICAL SEGMENTATIONMODEL FOR WATER QUALITY

PREDICTION IN ELONGATED

RESERVOIRS

Priana SudjonoDept. of Environmental Engineering

Bandung Institute of Technology

[email protected]

1

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 2/62

Review on reservoir

Water quantity of reservoir

Water quality of reservoir

Mathematical development Application and discussion

Conclusion

Content

2

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 3/62

Jatiluhur reservoir, West Java 3

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 4/62

Saguling reservoir, West Java4

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 5/62

5

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 6/62

Introduction

Reservoir usually support cities

Industries

Recreation

Transportation

Fisheries

 Aesthetics

 Also: Irrigated Agriculture

Flood Control

Power Plant

 WATER QUANTITY OF RESERVOIR

6

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 7/62

7

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 8/62

Morphology of Reservoirs

The form of a Reservoir determines the

characteristic of:Physical processes

Chemistry of water

Biological diversity

Steep sided that usually deep. Such as V shaped

basins: biologically unproductive

Shallow depressions: greather contact between

water and Sediment: Biologically productive

(natural lakes)

Reservoir in Java, such as Saguling, Jatiluhur are

shallow at the entrance and deep at the outlet zone

8

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 9/62

Morphometric Parameter

Max open water length

Surface area

Storage volume

Mean depth (Vol/area)

Length of shore line

Shoreline development

shore line development, dimensionless

length of shore linbe, kmsurface area, km2

9

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 10/62

Many natural Lakes are subcircular or eleptical

Elongated reservoirs in river valley

Water renewal time of a Reservoir

Q is coming from river inflow, groundwater

seepage.

Outflow is the outflow and evaporation

2 <   < 3   ≈ 5  =

Vol

10

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 11/62

11

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 12/62

Thermal Stratification

12

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 13/62

Solar radiation penetrates to reservoirs

Solar energy = f (latitude; season of the year)

Light is absorbed by water = f(wave length)

Long wavelength (red) dissipates within impounded

of pure water Short wavelength (blue) - penetrate deeper

So there will be stratification

13

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 14/62

14

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 15/62

Uniform stratification

15

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 16/62

16

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 17/62

Surface Water Movement

Mixing

17

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 18/62

Internal Movement of Water

…………….   …………….

…………….

…..…………….

………………….

……….

…………….

…………….

…..

….. …..

…..…..

…..

reservoir 

reservoir 

reservoir 

river 

river 

river 

nutrient

Density factor 

Density factor

18

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 19/62

19

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 20/62

 W  ATER QUALITY IN RESERVOIR

Problem

Dam or reservoir is usually long and narrow

following the regime of rivers

In shallow area light penetrate to the bottomThe productivity is not uniform

20

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 21/62

Mayor consideration in WQM:

Water quality control

Beneficial use Dilution of wastewater

Water quality control

We need to predict water quality

21

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 22/62

22

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 23/62

23

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 24/62

Oxygen Content

O2 from Atmosphere Photosynthesis

Inorganic CarbonInorganic forms: CO2, HCO3

-, CO3=

pH=4,3

H2CO3 H+ +HCO3- H+ + CO3

=

pH=4,5 pH=8,3

Bicarbonate ion Carbonate ion

24

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 25/62

Inorganic carbon

Seepage of groundwater

Surface drainage

Respiration of aquatic animals

Bacteriological

decomposition

of organic matter

25

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 26/62

Blue green algae fixation N2

Organic N

26

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 27/62

Input Nutrient in Eutrophic Reservoir

Surface water rich in nutrientsDrainage from cultivated farmlands

Cattle feedlots from inorg fertilizer and Manure

Municipal wastewaters

Fish cages

27

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 28/62

The Nitrogen Cycle in a Reservoir

28

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 29/62

29

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 30/62

The Phosphorous Cycle in a Reservoir

30

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 31/62

Ecology of Lakes and Reservoirs

31

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 32/62

 Aquatic Community

Trophogenic: planktonic and animals

 Algae photosynthesisfood

Tropholyctic: decomposition and low DO 32

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 33/62

• Chlorophyl a

• Planktonic algae

• Phytoplankton• Zooplankton

• Blue green Algae

Plant life in most enriched lakes is dominated byBlue Green Algae

Phytoplankton = f (Temp, Light, Mixing, Species

Competition, Predator, Nutrient)

 Algae = f (Nutrient (P))

33

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 34/62

Cultural Eutrophication

Natural Environments Eutrophication isslow

Cultural Eutrophication is accelerated by

fertilization of a reservoir, stream arising from

pollution associated with

Population Growth

Industrial Development

Intensive Agriculture

34

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 35/62

The response of aquatic ecosystems to increased

input of Nutrients is greater productivity to the

detrimental of Water Quality

Decaying blue-

green algae

Excessive growth

of phytoplanktonreducing

transparancy

Increasedorganic content depleting DO

• release foul and odor

• loss of less tolerant fish

species• littoral zones choked

with aquatic weeds

Cultural eutrophication short period of a few

years after introduction of excess Nutrient.35

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 36/62

 Allowable Nutrient Loadings

Data on the indicator parameters of nutrient

concentrations:

can’t be applieddirectly in Engg.

 Analysis

36

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 37/62

However, by relating

Trophic level nutrient loading

from external and

cycling within a

Reservoir

Eutrophication

can be described by

Mathematical models

37

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 38/62

 Vollenweider (1970)

Correlated “Data on annual phosporus Loadings”

“Mean Lake Depth” “Degree of Enrichment”

Permissible loading is The maximum allowable load

for a reservoir to remain oligotrophic indefinitely

38

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 39/62

typical plant tissue of phytoplankton and

Macrophytes contains phosphorus, nitrogen, and

carbon in the approximate ratio of 1P: 7N : 40C per100 dry weight).

The Phosphorus Loadings include all biologically

available forms of which the majority are dissolved

orthophosphate and acid hydrolyzable phosphate.

The principle inorganic nitrogen forms taken up by

plants are Nitrate and Ammonia.

influene the

degree ofEutrophication

39

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 40/62

Not equal to

Dillon (1974):

Some Lakes had very high Loadings with corresponding

Low chlorophyl a concentrations, high transparancy, andsmall oxygen deficits during the summer.

This discrepancy was attributed to the high rates of water

flowing through these lakes as a result of large watershed

areas relative to lake volumes

40

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 41/62

MATHEMATICAL DEVELOPMENT

Water Quantity Model

Water Quality Model

41

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 42/62

Surface Heat and Mass Exchange

Energetic of surface layer

 Vertical diffusion in the hypolimnion

Inflow dynamicsOutflow dynamics

Dyresm (dynamic reservoir simulation model)

42

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 43/62

Difficulties in building models applicable for

Indonesian situation

1. Lack of data

2. Ecological cycle or process takes place all over

the year (the weather is warm)

3. Less fund needed

43

T i l R i E t hi ti M d l (TREM)

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 44/62

The schematization: reservoir is divided into (m) segments that the

water in the segment remain for a time-step

then moves to the direction of flow to the next segment. The number 

of segment is estimated by dividing hydraulic detention time by

)(  t ∆

)(   t ∆

1 m

overland flowsubsurface flow

intake

evaporation

main

stream

intake

evaporation

outlet

overland flowsubsurface flow

Tropical Reservoir Eutrophication Model (TREM)

44

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 45/62

The incoming water to the first segment consists ofwater from the main river and side inlet such

as small rivers or subsurface flow and overland

flow, . During a time-step, the volume of the

river water to the first segment is and the

volume of side inlet is . Then the volume of the

first segment is

Water Quantity Model

where

45

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 46/62

In every segment: agriculture, water supply,

evaporation or other activities need water, as their

total amount of water intake is .

During a time-step, the volume of intake-water,

as;

So that, the volume of water in the first segment,

t t t t VoVsVr V  111   −+=

t t t  VoViV 111   −=

t qoVo  t 

n

n  ∆∗=

46

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 47/62

It is assumed that all water in upper segment

moves to the downstream segment, and side inflow

and intake also take place, then the general

equation can be written as

n

n

n   VsV Vi   +=  −

1

1

if Then,

  t 

n

n

n  VoViV    −=

Initial volume is placed as for all segmentsinit V 

47

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 48/62

 At the last segment where overflow weir is placed

as in the figure, the flow depends on the dead

storage that is the volume of the last segmentunder the weir.

Vd V t 

m

  ⟩if overflow takes place as much as Vd V t 

m  −

if 

if 

Vd V t 

m  ⟨ overflow does not occur, then the

volume of water in the segment ist 

mV 

Vd V t 

m = overflow does not occur

48

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 49/62

Load of pollutants in reservoir comes from river

water, overland flow, and activities in segments,

such as fish farming. Pollutant load at the first

segment during a specified time

 Water Quality Model

( )t ∆

t t t t l Li Lr  L 111   −+= where

t t t  ciQr  Lr    =1

t t t t   f coqs Li 1111   +=

49

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 50/62

While at other segments :

n

n

n

n  l Li L L   −+=

  −

1

1

It is assumed that water intake contents pollutant at

average concentration. The amount of pollutant taken

out from the segment ist 

t t 

n  C qol   =

It is assumed that water in a segment is completely

mixed, so the average concentration:

n

nt 

n

 LC    =

50

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 51/62

During a time-step the pollutant may involve in

physical and biochemical processes that alter the

concentration.

For example, the alteration can be predicted by

using first order of reaction as:

t k t 

n

n  eC C   ∆−−

−=

1

1

nC  = concentration at segment )(n at time )(t k  = coefficient reaction rate for the pollutant.

In case conservative pollutants are concerned,

reaction rate does not take place but massbalance principle can be applied.

51

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 52/62

The computer model is applied into Saguling

reservoir that is divided into 12 segments

 APPLICATION OF THE MODEL

52

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 53/62

Water Quantity

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

1 2 3 4 5 6 7 8 9 10 11 12

Segment

   V  o   l

  u  m  e   (  m   3   )

The volume of reservoir in all segments at day 252 in 1991.

53

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 54/62

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

14 56 98 140 182 224 266 308 350

Julian day, 1991

   V  o   l  u  m  e   (  m   3   )

The volume of water in segment 11th.

54

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 55/62

 

No River flow

Pollutant

concentration in the

main river water

Fish

farming

1*

Qr   ci   exists

2 Qr   ci   none

3 Qr   ci33.0   none

4 Qr   ci33.0   exists

*) actual condition

. Scenario of altering pollutants in the management.

Water Quality

55

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 56/62

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Segment

   P   h

  o  s  p   h  o  r   (  g   /  m   3   )

Calculated

Measured

Concentration of pollutant along the reservoir at day 252

year 1991 and the calculated results using data of actual

condition (scenario 1). 56

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 57/62

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Julian day, 1991

   P   h

  o  s  p   h  o  r   (  g   /  m   3   )

Fluctuation of concentration of pollutant at segment

eleven using data of actual condition in 1991 (scenario 1).57

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 58/62

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Segment

   P   H  o  s  p   h  o  r   (  g   /  m   3   )

Concentration of pollutant along the reservoir atday 252 in 1991 given scenario 3.

58

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 59/62

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Julian day, 1991

   P

   h  o  s  p   h  o  r   (  g   /  m   3

   )

Fluctuation of concentration of pollutant at

segment eleven given scenario 3.59

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 60/62

CONCLUSION

Water quality of in a reservoir is under the

influence of point sources and diffuse sources

quality of Main River water

overland flow, andactivities in segments.

The fate of pollutant in a reservoir depends on the

water movement characteristics and biochemicalprocesses that are specific for each segment.

60

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 61/62

The reservoir is divided into segments

activities related to pollutant increments and water

consumption could be included in a mathematical

model.

Water in a segment is assumed to move to the nextsegment and at the same time alterations on

pollutant concentrations take place.

61

8/13/2019 Teknologi Konservasi_Danau

http://slidepdf.com/reader/full/teknologi-konservasidanau 62/62