Tall Building Data Sheet

download Tall Building Data Sheet

of 16

Transcript of Tall Building Data Sheet

  • 8/3/2019 Tall Building Data Sheet

    1/16

    Structures & Tall Buildings Data Page 1

    A. REINFORCED CONCRETE DESIGN FORMULAE (For fcu 40 MPa)(Based on Hong Kong Code of Practice for the Structural Use of Concrete 2004, and moment

    redistribution < 10%)

    A1. Lever Arm (Singly reinforced section)

    9.025.05.0 kdz

    A2. Bending Reinforcement

    ,2

    cufbd

    MK

    zf

    MA

    y

    s87.0

    For d/x < 0.43, compressive stress in steel = 0.87fy

    ForK 0.156, compression steel required.

    ,'87.0

    156.0'

    2

    ddf

    fbdKA

    y

    cus

    dzA

    zf

    bdfA s

    y

    cus

    775.0and'87.0

    156.0 2

    Min. 18.0100

    bh

    As for bw / b < 0.4

    Min. 13.0100 bhAs for bw / b 0.4

    Max. 0.4100

    bh

    As

    Min. 2.0'100

    bh

    As , Max. 0.4'100

    bh

    As

    A3.1 Bending Moments for Two-way Spanning Simply Supported Slabs

    22 and, xsysyxsxsx lnmlnm

    A3.2 Bending Moments for Restrained Two-way Spanning Solid Slabs

    and2

    xsxsxlnm 2

    xsysy lnm

    A3.3 Loads on Supporting Beams of Restrained Two-way Slabs

    andxvxsxlnV

    xvysy lnV

  • 8/3/2019 Tall Building Data Sheet

    2/16

    Structures & Tall Buildings Data Page 2

    A4. Deflection

    bprovs

    reqsy

    ss

    tA

    Aff

    bd

    M

    fm

    1

    3

    2,2

    9.0120

    47755.0

    ,

    ,

    2

    5.1'100

    3

    '100

    1,

    ,

    bd

    A

    bd

    A

    mprovs

    provs

    c

    A5.1 Shear Reinforcement for Beam & Slab

    yvv

    sv

    yv

    c

    v

    sv

    f

    b

    s

    A

    f

    vvb

    s

    A

    87.0

    4.0,

    87.0

    ,

    A5.2 Punching Shear Reinforcement for Slab

    cyv

    csv vv

    f

    udvvA 6.1ewher

    87.0sin

    or cc

    yv

    csv vvv

    f

    udvvA 21.6ewher

    87.0

    7.05sin

    in either case 87.0

    4.0sin

    yv

    svf

    udA

    m

    s

    c

    dbd

    A

    v

    4/13/1400100

    79.0

    , m = 1.25;

    bd

    As100 should not be taken as greater than 3;

    d

    400should not be less than 0.67 for members without shear reinforcement,

    d

    400should not be less than 1 for members with shear reinforcement providing minimum links.

    For characteristic concrete strengths greater than 25 N/mm2, the values ofvc may be multiplied by (fcu/

    25)1/3. The value offcu should not be taken as greater than 80.

    Note: All the terms and symbols bear their usual meanings.

  • 8/3/2019 Tall Building Data Sheet

    3/16

    Structures & Tall Buildings Data Page 3

    Table 1: Lever Arm Factor (b 0.9)

    K= M/bd2fcu

    0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.043 0.156

    0.950 0.7750.941 0.928 0.915 0.901 0.887 0.873 0.857 0.842 0.825 0.807 0.789la = z/d

    Table 2 Area of Steel Reinforcement

    Steel Reinforcement

    Bar Size Area of one Bar (mm2)

    8 50.3

    10 78.512 113

    16 201

    20 314

    25 491

    32 804

    40 1257

    Table 3 Area of Steel Reinforcement Per Meter

    Table 4 Asv / sv Ratio for Shear Link

    Steel Reinforcement - Area per one meter (mm2/m)

    Bar Spacing

    in mm

    Bar

    Size

    100 125 150 175 200 225 250 275 300 350

    8 503 402 335 287 251 223 201 183 168 144

    10 785 628 524 449 393 349 314 286 262 224

    12 1131 905 754 646 565 503 452 411 377 323

    16 2011 1608 1340 1149 1005 894 804 731 670 574

    20 3142 2513 2094 1795 1571 1396 1257 1142 1047 898

    25 4909 3927 3273 2805 2454 2182 1964 1785 1636 1403

    32 8042 6434 5362 4596 4021 3574 3217 2925 2681 2298

    40 12566 10053 8378 7181 6283 5585 5027 4570 4189 3590

    Asv/sv Ratio for Shear Link (2 legs)

    Spacing of Links in (mm)

    Link Size (mm)80 100 125 150 175 200 225 250 275 300 325 350

    8 1.257 1.005 0.804 0.670 0.574 0.503 0.447 0.402 0.366 0.335 0.309 0.287

    10 1.964 1.571 1.257 1.047 0.898 0.785 0.698 0.628 0.571 0.524 0.483 0.449

    12 2.827 2.262 1.810 1.508 1.293 1.131 1.005 0.905 0.823 0.754 0.696 0.646

    16 5.027 4.021 3.217 2.681 2.298 2.011 1.787 1.608 1.462 1.340 1.237 1.149

  • 8/3/2019 Tall Building Data Sheet

    4/16

    Structures & Tall Buildings Data Page 4

    Shear

    Reproduced from Hong Kong Code of Practice for Structural Use of Concrete (2004)

  • 8/3/2019 Tall Building Data Sheet

    5/16

    Structures & Tall Buildings Data Page 5

    Deflection:

    Reproduced from Hong Kong Code of Practice for Structural Use of Concrete (2004)

  • 8/3/2019 Tall Building Data Sheet

    6/16

    Structures & Tall Buildings Data Page 6

    Deflection:

    Effective Flange Width

  • 8/3/2019 Tall Building Data Sheet

    7/16

    Structures & Tall Buildings Data Page 7

    Force Coefficients:

    Table 6.5 Bending moment coefficients for slabs spanning in two directions at right

    angles, simply supported on four sides

    ly / lx 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0

    sx 0.062 0.074 0.084 0.093 0.099 0.104 0.113 0.118

    sy 0.062 0.061 0.059 0.055 0.051 0.046 0.037 0.029

    Reproduced from Hong Kong Code of Practice for Structural Use of Concrete (2004)

  • 8/3/2019 Tall Building Data Sheet

    8/16

    Structures & Tall Buildings Data Page 8

    Two-Way Spanning Slabs:

    Reproduced from Hong Kong Code of Practice for Structural Use of Concrete (2004)

  • 8/3/2019 Tall Building Data Sheet

    9/16

    Structures & Tall Buildings Data Page 9

    Two-Way Spanning Slabs:

    Reproduced from Hong Kong Code of Practice for Structural Use of Concrete (2004)

  • 8/3/2019 Tall Building Data Sheet

    10/16

    Structures & Tall Buildings Data Page 10

    B. Design Formulae for Prestressed Concrete Structures

    B1.1 Concrete Stresses at transfer:

    'min

    ftZ

    iM

    tZ

    ei

    P

    cA

    iP and '

    maxf

    bZ

    iM

    bZ

    ei

    P

    cA

    iP

    B1.2 Concrete stresses at service:

    maxf

    tZ

    sM

    tZ

    ei

    P

    cA

    iP and

    minf

    bZ

    sM

    bZ

    eiP

    cA

    iP

    B2. Section modulus:

    min'max ff

    iMsM

    tZ

    and

    minmax' ff

    iMsM

    bZ

    B3. Prestressing force based on allowable stresses:

    )min'max'

    (

    tZbZ

    ftZfbZcA

    iP or )min

    max(

    tZbZ

    fbZftZcA

    iP

    The greater value of Pi obtained from the above equations should be used.

    B4. Prestressing force and eccentricity:

    )/(

    min'

    ec

    At

    Z

    iMf

    tZ

    iP

    iP

    iMfZ

    iP

    cA

    tZ

    e

    t

    )

    min'(

    )/(

    max'

    e

    c

    A

    b

    Z

    iMf

    bZ

    iP

    i

    P

    iMfZ

    iP

    cA

    bZ

    e

    b

    )max'(

    )/(

    max

    ec

    At

    Z

    sMftZ

    iP

    i

    P

    sMfZiP

    cA

    tZ

    e

    t

    )max(

    )/(

    min

    ec

    Ab

    Z

    sMfbZ

    iP

    i

    P

    sMfZiP

    cA

    bZ

    e

    b

    )

    min(

  • 8/3/2019 Tall Building Data Sheet

    11/16

    Structures & Tall Buildings Data Page 11

    B5. Prestress Loss:

    B5.1 Relaxation:

    Loss of prestress =1000 hr

    relaxationx

    relaxation

    factorx

    initial prestress

    in steel

    Table 1 Relaxation Factor

    Wires and strands

    Class 1 Class 2 Bars

    Normal Relaxation Low Relaxation

    Pre-tensioning 1.5 1.2 -

    Post-tensioning 2.0 1.5 2.0

    B5.2 Elastic Deformation:

    I

    eM

    r

    eA

    Am

    ff i

    ps

    c

    pi

    co

    )1(2

    2

    at mid-span

    Loss = m fco for pre-tensioned member

    Loss = m fco for post-tensioned member with sequential tensioning

    B5.3 Shrinkage:

    CS = Cs kL kC ke kj in microstrains

    Loss of prestress = CS Es

    B5.4 Creep:

    28E

    fccc

    = kL km kc ke kjLoss of prestress = cc Es

    B5.5 Anchorage Draw-in:

    p

    pssad

    A

    AEx

  • 8/3/2019 Tall Building Data Sheet

    12/16

    Structures & Tall Buildings Data Page 12

    B5.6 Friction due to Curvature and 'Wobble' effect:

    )(

    0

    KxR

    x

    x ePP or )](1[0 Kx

    R

    xPPx

    R = L2

    / 8 dr

    where dr

    is the drape

    B6. Moment Capacity:

    Neutral axis depth trial: ' = (1 + 2c

    s

    F

    F) /3

    Strain in steel: 0.0035/x = p/(d-x)

    B7. For unbonded tendons in rectangular section or flanged section in which stress block lies within

    the flange.

    bdf

    Af

    dl

    ffcu

    pspupepb 7.11

    7000

    df

    f

    bdf

    Afx

    pu

    pb

    cu

    pspu47.2

    B8. Shear Resistance

    Uncracked Shear resistance:

    tcp2tvco f0.8ffh0.67bV where ft = 0.24 fcu

    Cracked Shear resistance:

    cuv

    0

    vcpu

    pe

    cr fd0.1bthanlessnotbutVM

    M

    db)vf

    f

    0.55(1V

    Mo =0.8 [fptI/y]

    d)(0.87f

    V-V

    s

    A

    yv

    c

    v

    sv if V - Vc > 0.4 b d

  • 8/3/2019 Tall Building Data Sheet

    13/16

    Structures & Tall Buildings Data Page 13

    B9. Deflection

    Deflection due to uniformly distributed load :

    EI

    wLy

    4

    384

    5 Deflection due to prestress force from straight tendon :

    EI

    PeLy

    8

    2

    Deflection due to prestress force from symmetrical parabolic tendon profile: EI

    LPey c

    2

    48

    5

    Table 2 Short Term Elastic Modulus of Concrete (Hong Kong)

    Characteristic Strength Modulus of

    at Age Considered (N/mm2) Elasticity (N/mm

    2)

    20 18900

    25 20200

    30 21700

    40 24000

    45 26000

    50 2740055 28800

    60 30200

    Note: All the terms and symbols bear their usual meanings.

  • 8/3/2019 Tall Building Data Sheet

    14/16

    Structures & Tall Buildings Data Page 14

    C. Design Formulae for Water Retaining Structures

    C1. Allowable steel stresses in direct or flexural tension for SLS (Table 3.1 of BS 8007)

    Design crack width Allowable stress (N/mm2)

    (mm) Plain bars Deformed bars

    0.1 85 100

    0.2 115 130

    C2 Elastic design

    Depth of neutral axis:

    dxe

    e

    121

    Level Arm3

    xdz

    Moment of resistance zfbxzfAM cbssr 5.0

    C3.1 Crack width calculations (direct tension)

    Steel: yss

    ys ff

    E

    f8.0or

    8.0

    Average strain 21 m andssEA

    T1 For a limiting design surface crack width of 0.2 mm:

    ss

    t

    AE

    hb

    3

    22

    For a limiting design surface crack width of 0.1 mm:

    2ss

    t

    AE

    hb

    The design surface crack width mcraw 3

  • 8/3/2019 Tall Building Data Sheet

    15/16

    Structures & Tall Buildings Data Page 15

    C3.2 Crack width calculations (flexure)

    Concrete: cucb ff 45.0

    Steel: yss

    ys ff

    E

    f8.0or

    8.0

    Average strain 21 m and ss

    E

    f

    xd

    xh 1

    For a limiting design surface crack width of 0.2 mm:

    xdAE

    xaxhb

    ss

    t

    3

    '2

    For a limiting design surface crack width of 0.1 mm:

    xdAE

    xaxhb

    xdAE

    xaxhb

    ss

    t

    ss

    t

    2

    'or

    3

    '5.122

    The design surface crack width

    xh

    ca

    aw

    cr

    mcr

    min21

    3

    Where222

    22

    csacr

    C3.3 Crack width calculations (Temperature and moisture effects)

    Crack width max21 sTTRw

    C4. Critical Steel:y

    ctcrit

    crit

    s

    f

    f

    bh

    A

    C5. Maximum crack spacing:

    cb

    ct

    f

    fss

    22max

    For Type 2 deformed bar,b

    ctf

    f= 3

    2

    Note: All the terms and symbols bear their usual meanings.

  • 8/3/2019 Tall Building Data Sheet

    16/16

    Structures & Tall Buildings Data Page 16

    Typical value of T1 ( C ) for Hong Kong condition

    Cement content

    (kg/m3)

    Steel Formwork 18 mm Plywood

    Formwork

    Winter Summer Winter Summer

    300 12 18 20 28350 15 23 27 35

    400 17 27 32 43

    T2 = 20C in summer and 10C in winter

    Restraint Factor R

    Restraint condition Restraint Factor

    R

    External : Base cast onto blinding 0.2

    Edge restraint in box typedeck cast in stages

    0.5

    Wall cast onto base 0.6

    Edge element cast onto slab 0.8

    Infill bays 1.0

    Internal : 0.5