Supplementary Materials for -...

152
www.sciencemag.org/content/351/6280/aad3000/suppl/DC1 Supplementary Materials for Reproducibility in density functional theory calculations of solids Kurt Lejaeghere,* Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel, Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, Andrea Dal Corso, Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl, Marcin Dułak, Olle Eriksson, José A. Flores-Livas, Kevin F. Garrity, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Grånäs, E. K. U. Gross, Andris Gulans, François Gygi, D. R. Hamann, Phil J. Hasnip, N. A. W. Holzwarth, Diana Iuşan, Dominik B. Jochym, François Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik, Emine Küçükbenli, Yaroslav O. Kvashnin, Inka L. M. Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nordström, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans, Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha, Matthias Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik Thunström, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt, Michiel J. van Setten, Veronique Van Speybroeck, John M. Wills, Jonathan R. Yates, Guo-Xu Zhang, Stefaan Cottenier* *Corresponding author. E-mail: [email protected] (K.L.); [email protected] (S.C.) Published 25 March 2016, Science 351, aad3000 (2016) DOI: 10.1126/science.aad3000 This PDF file includes: Materials and Methods Fig. S1 Tables S1 to S42 Full Reference List

Transcript of Supplementary Materials for -...

Page 1: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

www.sciencemag.org/content/351/6280/aad3000/suppl/DC1

Supplementary Materials for

Reproducibility in density functional theory calculations of solids Kurt Lejaeghere,* Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel, Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, Andrea Dal Corso, Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl, Marcin Dułak, Olle Eriksson, José A. Flores-Livas, Kevin F. Garrity, Luigi

Genovese, Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Grånäs, E. K. U. Gross, Andris Gulans, François Gygi, D. R. Hamann, Phil J.

Hasnip, N. A. W. Holzwarth, Diana Iuşan, Dominik B. Jochym, François Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik, Emine Küçükbenli, Yaroslav O. Kvashnin, Inka

L. M. Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nordström, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans, Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha, Matthias

Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik Thunström, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt, Michiel J. van Setten, Veronique Van Speybroeck, John M. Wills, Jonathan R. Yates, Guo-Xu

Zhang, Stefaan Cottenier*

*Corresponding author. E-mail: [email protected] (K.L.); [email protected] (S.C.)

Published 25 March 2016, Science 351, aad3000 (2016) DOI: 10.1126/science.aad3000

This PDF file includes:

Materials and Methods Fig. S1 Tables S1 to S42 Full Reference List

Page 2: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Materials and MethodsWe compared 40 DFT methods in terms of the ∆ gauge. ∆ expresses the root-mean-square

difference between the equations of state of two codes, averaged over a benchmark set of 71elemental crystals. The space groups and magnetic states for these crystals are listed in Ta-ble S1. The cif-files for these structures, as well as the ∆ calculation script, can be found in theSupplementary Material of Reference (26).

As mentioned in the main article, the ∆ value between codes a and b for element i is definedby:

∆i(a, b) =

√√√√√1.06V0,i∫

0.94V0,i

(Eb,i(V ) − Ea,i(V ))2

0.12V0,i

dV (1)

which is then averaged over every crystal in the benchmark set. Although V0,i was originallyproposed to represent the equilibrium volume predicted by the WIEN2k code, the results reportedhere are based on the average equilibrium volume of codes a and b to allow for a more symmetriccomparison (Delta calculation package version 3.0 (66)).

To maximize the comparability of the codes, the following protocol is used. Ea,i(V ) andEb,i(V ) are obtained by performing a 4-parameter Birch-Murnaghan fit (67) to 7 equidistantE(V ) data points between 0.94Vcif,i and 1.06Vcif,i (with Vcif,i the volume in the cif file). Theenergy is moreover shifted in such a way that the energy at the fitted equilibrium volume is zero.Only for FHI-aims, GBRV12/ABINIT, GPAW09/ABINIT, GPAW09/GPAW, Vdb2/DACAPO,FHI98pp/ABINIT, and HGH/ABINIT was the lattice constant instead varied over 5 equidis-tant points in a ±2 % interval, but we found the ∆ values of both approaches to differ by less than0.1 meV/atom. To avoid artefacts due to different geometry optimizers, only the volume of theelemental crystal is scaled; the cell shape and atomic positions are not relaxed. This guaranteesthat every evaluated code calculates exactly the same crystals in exactly the same geometries. Ev-erything is calculated at the scalar relativistic level. Finally, computational settings are taken ashigh as possible (basis set size, number of k-points, ...) to ensure that all results are numericallyconverged.

The definition (1) naturally leads to larger ∆ values when the bulk modulus increases, be-cause the equation of state over a given volume interval also reaches higher energies. To obtain amore relative energy difference, Jollet et al. rescaled each ∆i to the value for an average volumeVref and bulk modulus Bref (27):

∆1,i(a, b) =VrefBref

V0,iB0,i

∆i(a, b) (2)

leading to an average of ∆1. An equivalent approach is to divide each ∆i by the average rms-

2

Page 3: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

height of the equation of state:

∆rel,i(a, b) = 2

√√√√√√√√√

1.06V0,i∫0.94V0,i

(Eb,i(V ) − Ea,i(V ))2 dV

1.06V0,i∫0.94V0,i

(Eb,i(V ) + Ea,i(V ))2 dV

(3)

Both methods were implemented in the ∆ calculation package 3.0 (66).Kucukbenli et al., on the other hand, defined ∆′ (and analogously ∆′

1) to obtain a rigorousdistance measure, satisfying the triangular inequality between three codes or methods (28):

∆′i(a, b) =

√√√√√√

1.06Vcif,i∫

0.94Vcif,i

(Eb,i(V ) − Ea,i(V ))2

0.12Vcif,i

dV (4)

They used the EOS central volume Vcif,i, which is based on a VASP geometry optimization, as areference.

3

Page 4: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Elk

exciting

FHI-aims/tight

FHI-aims/really_tight

FHI-aims/tier2

FLEUR

FPLO/default

FPLO/T+F

FPLO/T+F+s

RSPt

WIEN2k/default

WIEN2k/enhanced

WIEN2k/acc

GBRV12/ABINIT

GPAW06/GPAW

GPAW09/ABINIT

GPAW09/GPAW

JTH01/ABINIT

JTH02/ABINIT

PSlib031/QE

PSlib100/QE

VASP2007/VASP

VASP2012/VASP

VASPGW2015/VASP

GBRV12/QE

GBRV14/CASTEP

GBRV14/QE

OTFG7/CASTEP

OTFG9/CASTEP

SSSP/QE

Vdb/CASTEP

Vdb2/DACAPO

FHI98pp/ABINIT

HGH/ABINIT

HGH-NLCC/BigDFT

MBK2013/OpenMX

ONCVPSP(PD0.1)/ABINIT

ONCVPSP(SG15)1/CASTEP

ONCVPSP(SG15)1/QE

ONCVPSP(SG15)2/CASTEP

Elk 0.3 0.6 0.6 0.3 0.6 3.9 1.0 1.0 0.9 1.7 1.8 0.3 0.9 3.8 1.3 1.5 1.2 0.6 1.6 0.9 2.1 0.7 0.4 1.1 1.1 1.0 2.5 0.4 0.4 6.4 6.3 13.5 2.2 1.1 2.1 0.7 1.5 1.4 1.4

exciting 0.3 0.5 0.5 0.1 0.5 3.9 1.0 0.9 0.8 1.7 1.8 0.2 0.8 3.8 1.3 1.5 1.2 0.6 1.6 0.8 2.1 0.6 0.4 1.0 1.1 1.0 2.5 0.5 0.3 6.4 6.3 13.4 2.2 1.1 2.1 0.7 1.4 1.3 1.4

FHI-aims/tight 0.6 0.5 0.0 0.5 0.7 3.8 0.9 1.1 0.7 1.8 1.8 0.5 1.0 3.8 1.3 1.6 1.3 0.7 1.7 1.0 2.2 0.8 0.6 1.1 1.2 1.1 2.6 0.7 0.6 6.4 6.3 13.6 2.2 1.2 2.0 0.8 1.5 1.4 1.5

FHI-aims/really_tight 0.6 0.5 0.0 0.5 0.7 3.8 0.9 1.1 0.8 1.8 1.8 0.5 1.0 3.8 1.3 1.6 1.3 0.7 1.7 1.0 2.2 0.8 0.6 1.1 1.2 1.1 2.6 0.7 0.6 6.5 6.3 13.6 2.2 1.2 2.0 0.8 1.5 1.4 1.5

FHI-aims/tier2 0.3 0.1 0.5 0.5 0.5 3.9 0.9 0.9 0.8 1.7 1.8 0.2 0.8 3.8 1.3 1.5 1.2 0.6 1.6 0.8 2.0 0.6 0.4 0.9 1.0 0.9 2.5 0.5 0.3 6.4 6.3 13.4 2.2 1.1 2.1 0.7 1.4 1.3 1.4

FLEUR 0.6 0.5 0.7 0.7 0.5 3.6 0.8 0.8 0.6 1.4 1.5 0.4 0.9 3.5 1.3 1.5 1.0 0.6 1.5 0.8 1.9 0.7 0.6 1.0 1.0 1.0 2.6 0.7 0.5 6.5 6.3 13.2 2.0 1.0 1.9 0.6 1.3 1.3 1.3

FPLO/default 3.9 3.9 3.8 3.8 3.9 3.6 3.1 3.6 3.3 2.9 2.5 3.9 4.0 3.1 4.1 4.1 3.4 3.6 3.3 3.9 2.8 3.9 4.0 4.0 4.0 4.1 5.8 4.1 3.9 7.9 7.2 13.0 4.9 3.6 3.2 3.7 4.1 4.1 4.1

FPLO/T+F 1.0 1.0 0.9 0.9 0.9 0.8 3.1 0.8 0.7 1.4 1.4 0.9 1.3 3.4 1.7 1.9 1.0 0.9 1.5 1.3 1.9 1.2 1.0 1.3 1.3 1.3 3.1 1.1 1.0 6.6 6.4 13.7 2.4 1.2 1.8 1.0 1.6 1.6 1.6

FPLO/T+F+s 1.0 0.9 1.1 1.1 0.9 0.8 3.6 0.8 0.9 1.5 1.5 0.9 1.3 3.5 1.7 1.8 1.2 0.9 1.4 1.3 1.9 1.2 1.0 1.4 1.4 1.4 2.9 1.0 0.9 6.4 6.4 13.0 2.3 1.2 1.8 1.0 1.6 1.6 1.6

RSPt 0.9 0.8 0.7 0.8 0.8 0.6 3.3 0.7 0.9 1.3 1.3 0.8 1.1 3.4 1.5 1.7 0.9 0.7 1.6 1.1 1.9 1.0 0.8 1.2 1.3 1.3 3.0 1.0 0.8 6.7 6.5 13.2 2.2 1.1 1.8 0.8 1.5 1.5 1.5

WIEN2k/default 1.7 1.7 1.8 1.8 1.7 1.4 2.9 1.4 1.5 1.3 0.9 1.7 1.9 3.2 2.2 2.3 1.3 1.5 1.8 1.8 1.7 1.8 1.8 1.9 1.9 1.9 3.8 1.8 1.6 7.1 7.0 13.0 2.8 1.7 1.9 1.6 2.1 2.1 2.1

WIEN2k/enhanced 1.8 1.8 1.8 1.8 1.8 1.5 2.5 1.4 1.5 1.3 0.9 1.8 2.0 2.6 2.1 2.2 1.1 1.5 1.6 1.8 1.4 1.9 2.0 2.0 2.0 2.0 3.8 2.0 1.7 6.9 6.9 12.3 2.8 1.6 1.5 1.7 1.9 1.9 1.9

WIEN2k/acc 0.3 0.2 0.5 0.5 0.2 0.4 3.9 0.9 0.9 0.8 1.7 1.8 0.8 3.8 1.3 1.5 1.2 0.5 1.6 0.8 2.0 0.7 0.3 0.9 1.0 1.0 2.5 0.5 0.3 6.4 6.2 13.4 2.1 1.0 2.0 0.6 1.4 1.3 1.4

GBRV12/ABINIT 0.9 0.8 1.0 1.0 0.8 0.9 4.0 1.3 1.3 1.1 1.9 2.0 0.8 4.1 1.5 1.6 1.5 1.1 2.0 1.1 2.3 1.0 0.9 0.7 0.8 0.7 2.8 1.0 0.7 6.4 6.3 15.1 2.5 1.5 2.4 1.1 1.8 1.7 1.8

GPAW06/GPAW 3.8 3.8 3.8 3.8 3.8 3.5 3.1 3.4 3.5 3.4 3.2 2.6 3.8 4.1 3.6 3.5 3.2 3.5 3.0 3.8 2.8 3.7 3.8 4.0 3.8 4.0 5.6 3.9 3.6 7.4 7.6 12.3 4.5 3.0 3.0 3.6 3.7 3.8 3.7

GPAW09/ABINIT 1.3 1.3 1.3 1.3 1.3 1.3 4.1 1.7 1.7 1.5 2.2 2.1 1.3 1.5 3.6 0.6 1.5 1.4 2.0 1.5 2.4 1.4 1.3 1.6 1.6 1.6 2.5 1.4 1.3 6.5 6.1 13.6 2.3 1.7 2.3 1.2 1.7 1.7 1.7

GPAW09/GPAW 1.5 1.5 1.6 1.6 1.5 1.5 4.1 1.9 1.8 1.7 2.3 2.2 1.5 1.6 3.5 0.6 1.6 1.5 2.1 1.6 2.5 1.6 1.5 1.7 1.7 1.7 2.7 1.5 1.4 6.5 6.1 13.6 2.5 1.8 2.3 1.5 1.8 1.8 1.8

JTH01/ABINIT 1.2 1.2 1.3 1.3 1.2 1.0 3.4 1.0 1.2 0.9 1.3 1.1 1.2 1.5 3.2 1.5 1.6 0.9 1.5 1.4 1.9 1.4 1.3 1.5 1.5 1.5 3.0 1.4 1.1 6.5 6.5 13.0 2.2 1.3 1.5 1.2 1.4 1.4 1.4

JTH02/ABINIT 0.6 0.6 0.7 0.7 0.6 0.6 3.6 0.9 0.9 0.7 1.5 1.5 0.5 1.1 3.5 1.4 1.5 0.9 1.4 0.9 1.9 0.7 0.7 1.2 1.2 1.2 2.6 0.7 0.6 6.3 6.2 13.4 2.2 1.2 1.9 0.7 1.4 1.4 1.4

PSlib031/QE 1.6 1.6 1.7 1.7 1.6 1.5 3.3 1.5 1.4 1.6 1.8 1.6 1.6 2.0 3.0 2.0 2.1 1.5 1.4 1.6 1.5 1.6 1.6 2.0 1.9 2.0 3.1 1.6 1.5 6.1 5.8 12.8 2.4 1.6 1.7 1.5 2.1 2.2 2.1

PSlib100/QE 0.9 0.8 1.0 1.0 0.8 0.8 3.9 1.3 1.3 1.1 1.8 1.8 0.8 1.1 3.8 1.5 1.6 1.4 0.9 1.6 1.7 1.0 0.8 1.1 1.2 1.2 2.2 0.9 0.7 6.1 5.9 13.5 2.1 1.4 1.9 0.9 1.6 1.6 1.6

VASP2007/VASP 2.1 2.1 2.2 2.2 2.0 1.9 2.8 1.9 1.9 1.9 1.7 1.4 2.0 2.3 2.8 2.4 2.5 1.9 1.9 1.5 1.7 1.8 2.1 2.1 2.2 2.1 3.5 2.1 1.9 6.5 6.1 12.4 3.0 2.2 1.7 1.9 2.5 2.4 2.5

VASP2012/VASP 0.7 0.6 0.8 0.8 0.6 0.7 3.9 1.2 1.2 1.0 1.8 1.9 0.7 1.0 3.7 1.4 1.6 1.4 0.7 1.6 1.0 1.8 0.7 1.1 1.2 1.1 2.5 0.8 0.6 6.5 6.3 13.4 2.2 1.2 2.1 0.9 1.6 1.5 1.6

VASPGW2015/VASP 0.4 0.4 0.6 0.6 0.4 0.6 4.0 1.0 1.0 0.8 1.8 2.0 0.3 0.9 3.8 1.3 1.5 1.3 0.7 1.6 0.8 2.1 0.7 1.1 1.1 1.1 2.6 0.5 0.4 6.6 6.2 13.7 2.2 1.1 2.2 0.7 1.5 1.4 1.5

GBRV12/QE 1.1 1.0 1.1 1.1 0.9 1.0 4.0 1.3 1.4 1.2 1.9 2.0 0.9 0.7 4.0 1.6 1.7 1.5 1.2 2.0 1.1 2.1 1.1 1.1 0.4 0.1 2.6 1.0 0.8 6.3 6.4 15.3 2.3 1.4 2.1 1.2 1.6 1.5 1.6

GBRV14/CASTEP 1.1 1.1 1.2 1.2 1.0 1.0 4.0 1.3 1.4 1.3 1.9 2.0 1.0 0.8 3.8 1.6 1.7 1.5 1.2 1.9 1.2 2.2 1.2 1.1 0.4 0.3 2.6 0.9 0.9 6.2 6.3 15.0 2.4 1.6 2.1 1.1 1.5 1.5 1.5

GBRV14/QE 1.0 1.0 1.1 1.1 0.9 1.0 4.1 1.3 1.4 1.3 1.9 2.0 1.0 0.7 4.0 1.6 1.7 1.5 1.2 2.0 1.2 2.1 1.1 1.1 0.1 0.3 2.6 1.0 0.8 6.3 6.3 15.2 2.3 1.4 2.1 1.2 1.6 1.5 1.5

OTFG7/CASTEP 2.5 2.5 2.6 2.6 2.5 2.6 5.8 3.1 2.9 3.0 3.8 3.8 2.5 2.8 5.6 2.5 2.7 3.0 2.6 3.1 2.2 3.5 2.5 2.6 2.6 2.6 2.6 2.2 2.4 4.8 5.7 14.5 2.7 2.9 3.4 2.4 2.6 2.6 2.6

OTFG9/CASTEP 0.4 0.5 0.7 0.7 0.5 0.7 4.1 1.1 1.0 1.0 1.8 2.0 0.5 1.0 3.9 1.4 1.5 1.4 0.7 1.6 0.9 2.1 0.8 0.5 1.0 0.9 1.0 2.2 0.6 6.3 6.2 13.6 2.2 1.1 2.1 0.8 1.5 1.4 1.5

SSSP/QE 0.4 0.3 0.6 0.6 0.3 0.5 3.9 1.0 0.9 0.8 1.6 1.7 0.3 0.7 3.6 1.3 1.4 1.1 0.6 1.5 0.7 1.9 0.6 0.4 0.8 0.9 0.8 2.4 0.6 6.4 6.2 13.6 2.1 1.0 2.0 0.7 1.4 1.2 1.3

Vdb/CASTEP 6.4 6.4 6.4 6.5 6.4 6.5 7.9 6.6 6.4 6.7 7.1 6.9 6.4 6.4 7.4 6.5 6.5 6.5 6.3 6.1 6.1 6.5 6.5 6.6 6.3 6.2 6.3 4.8 6.3 6.4 9.6 16.3 6.6 6.1 6.6 6.4 5.7 5.8 5.7

Vdb2/DACAPO 6.3 6.3 6.3 6.3 6.3 6.3 7.2 6.4 6.4 6.5 7.0 6.9 6.2 6.3 7.6 6.1 6.1 6.5 6.2 5.8 5.9 6.1 6.3 6.2 6.4 6.3 6.3 5.7 6.2 6.2 9.6 17.9 6.2 5.9 6.4 6.1 6.5 6.5 6.5

FHI98pp/ABINIT 13.5 13.4 13.6 13.6 13.4 13.2 13.0 13.7 13.0 13.2 13.0 12.3 13.4 15.1 12.3 13.6 13.6 13.0 13.4 12.8 13.5 12.4 13.4 13.7 15.3 15.0 15.2 14.5 13.6 13.6 16.3 17.9 14.3 8.5 13.0 13.3 13.3 13.6 13.4

HGH/ABINIT 2.2 2.2 2.2 2.2 2.2 2.0 4.9 2.4 2.3 2.2 2.8 2.8 2.1 2.5 4.5 2.3 2.5 2.2 2.2 2.4 2.1 3.0 2.2 2.2 2.3 2.4 2.3 2.7 2.2 2.1 6.6 6.2 14.3 0.9 2.6 2.0 2.0 2.0 2.0

HGH-NLCC/BigDFT 1.1 1.1 1.2 1.2 1.1 1.0 3.6 1.2 1.2 1.1 1.7 1.6 1.0 1.5 3.0 1.7 1.8 1.3 1.2 1.6 1.4 2.2 1.2 1.1 1.4 1.6 1.4 2.9 1.1 1.0 6.1 5.9 8.5 0.9 1.8 1.1 1.5 1.4 1.4

MBK2013/OpenMX 2.1 2.1 2.0 2.0 2.1 1.9 3.2 1.8 1.8 1.8 1.9 1.5 2.0 2.4 3.0 2.3 2.3 1.5 1.9 1.7 1.9 1.7 2.1 2.2 2.1 2.1 2.1 3.4 2.1 2.0 6.6 6.4 13.0 2.6 1.8 2.0 2.2 2.2 2.2

ONCVPSP(PD0.1)/ABINIT 0.7 0.7 0.8 0.8 0.7 0.6 3.7 1.0 1.0 0.8 1.6 1.7 0.6 1.1 3.6 1.2 1.5 1.2 0.7 1.5 0.9 1.9 0.9 0.7 1.2 1.1 1.2 2.4 0.8 0.7 6.4 6.1 13.3 2.0 1.1 2.0 1.3 1.4 1.3

ONCVPSP(SG15)1/CASTEP 1.5 1.4 1.5 1.5 1.4 1.3 4.1 1.6 1.6 1.5 2.1 1.9 1.4 1.8 3.7 1.7 1.8 1.4 1.4 2.1 1.6 2.5 1.6 1.5 1.6 1.5 1.6 2.6 1.5 1.4 5.7 6.5 13.3 2.0 1.5 2.2 1.3 0.3 0.1

ONCVPSP(SG15)1/QE 1.4 1.3 1.4 1.4 1.3 1.3 4.1 1.6 1.6 1.5 2.1 1.9 1.3 1.7 3.8 1.7 1.8 1.4 1.4 2.2 1.6 2.4 1.5 1.4 1.5 1.5 1.5 2.6 1.4 1.2 5.8 6.5 13.6 2.0 1.4 2.2 1.4 0.3 0.3

ONCVPSP(SG15)2/CASTEP 1.4 1.4 1.5 1.5 1.4 1.3 4.1 1.6 1.6 1.5 2.1 1.9 1.4 1.8 3.7 1.7 1.8 1.4 1.4 2.1 1.6 2.5 1.6 1.5 1.6 1.5 1.5 2.6 1.5 1.3 5.7 6.5 13.4 2.0 1.4 2.2 1.3 0.1 0.3

AE

NCPP

USPP

PAW

AE PAW USPP NCPP

Fig. S1. ∆-values between all considered DFT methods (in meV/atom). Methods are listedalphabetically for each of four categories, i.e. all-electron (AE), PAW, ultrasoft (USPP) andnorm-conserving pseudopotential methods (NCPP). The tags stand for code, code/specifi-cation (AE) or potential set/code (PAW/USPP/NCPP), and are explained in full inTables S3–S42. The colour code ranges from green over yellow to red (small to large ∆ values).The mixed potential set SSSP was added to the ultrasoft category, in agreement with its prevalentpotential type. Both the code settings and the DFT-predicted equation-of-state parameters behindthese numbers are listed in Tables S3–S42.

4

Page 5: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S1. Reference structures for the calculation of the ∆ gauge. Elemental crystal struc-tures are represented by their space group number (top) and in the Pearson notation (middle)(with hRx standing for x atoms in the hexagonal setting of the rhombohedral unit cell). The tagon the bottom indicates the magnetic state of each elemental crystal: nm stands for nonmagnetic,fm for ferromagnetic and afm for antiferromagnetic.

5

Page 6: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S2. Precision as a function of numerical convergence. For some all-electron codes,i.e. FHI-aims, FPLO and WIEN2k, the influence of numerical settings on equation-of-state isdemonstrated. Results are expressed in terms of ∆ (in meV/atom) and are referenced with re-spect to the ultimate-precision settings. The corresponding code settings and the DFT-predictedequation-of-state parameters are listed in Tables S5 (FHI-aims default, FHI-aims/tight), Ta-bles S9 (FPLO default, FPLO/default), Tables S13 (WIEN2k default, WIEN2k/default),Tables S6 (FHI-aims enhanced, FHI-aims/really tight), Tables S10 (FPLO enhanced,FPLO/T+F), Tables S14 (WIEN2k enhanced, WIEN2k/enhanced), Tables S7 (FHI-aimsultimate, FHI-aims/tier2), Tables S11 (FPLO ultimate, FPLO/T+F+s) and Tables S15(WIEN2k ultimate, WIEN2k/acc). The ultimate-precision results are the ones used in Fig. 4 ofthe main article.

∆(WIEN2k) ∆(FPLO) ∆(FHI-aims)default 1.7 3.6 0.5enhanced 1.8 0.8 0.5ultimate 0.0 0.0 0.0

6

Page 7: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S3.1. Overview of the most important features and settings of the Elk calculations.

Elk

Name and version of the code: Elk 3.1.5 development version (68)Type of basis set: augmented plane waves + local orbitalsMethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S3.2basis set size see Table S3.2 (Rmin

MT Kmax)k-mesh density see Table S3.2 (k-mesh in the full 1st Brillouin zone of

the primitive cell)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.0005 Ha

METHOD-SPECIFIC INFORMATION

muffin-tin radii see Table S3.2 (RMT )radial mesh 200-700 radial mesh points on a logarithmic grid

up to the muffin-tin radiuslargest `-value of wave function 12largest `-value of nonspherical 12

Hamiltonian and overlap matrixelements inside the spheres

largest `-value in expansion of 9density and potential

ADDITIONAL COMMENTS

Use Elk version 3.1.5 or beyond. Set the internal flag vhighq to .True. for a highly accurate calculation togetherwith the k-mesh and core-valence partition in the table in order to acquire the results described here.

7

Page 8: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S3.2. Elk calculation settings and results per element. Muffin-tin radius RMT , basisset size Rmin

MTKmax, k-mesh in the full 1st Brillouin zone of the primitive cell kpts, valence,equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

RMT [b] RminMT Kmax [–] kpts valence V0 [A3/atom] B0 [GPa] B1 [–]

H 1.00 5.0 10×10×8 1s 17.384 10.427 2.744He 1.40 9.0 15×15×8 1s 17.779 0.866 6.040Li 1.60 9.0 20×20×10 1s 2s 20.222 13.804 3.316Be 1.90 9.0 27×27×15 2s 7.907 123.308 3.314B 1.25 7.0 6×6×3 2s 2p 7.237 235.211 3.827C 1.20 9.0 28×28×8 2s 2p 11.633 208.983 3.567N 1.00 7.0 4×4×4 2s 2p 28.889 54.448 3.754O 1.10 7.0 6×4×4 2s 2p 18.676 50.474 1.552F 1.10 7.0 8×10×6 2s 2p 19.189 34.563 4.309Ne 1.60 9.0 20×20×20 2s 2p 24.292 1.030 0.337Na 2.00 9.0 24×24×24 2s 2p 3s 37.111 7.713 3.645Mg 2.20 9.0 20×20×20 2s 2p 3s 22.959 35.887 3.785Al 2.00 9.0 24×24×24 2p 3s 3p 16.475 77.319 4.461Si 2.00 9.0 24×24×24 3s 3p 20.467 88.468 4.311P 2.00 9.0 14×6×11 3s 3p 21.457 68.188 4.338S 2.00 9.0 28×28×28 3s 3p 17.200 83.361 3.860Cl 1.00 9.0 4×8×4 3s 3p 38.862 19.921 2.962Ar 2.00 9.0 10×10×10 3s 3p 53.103 1.242 −12.069K 2.20 9.0 24×24×24 3s 3p 4s 73.773 3.575 3.604Ca 2.40 9.0 20×20×20 3s 3p 4s 42.252 16.637 3.686Sc 2.00 9.0 26×26×16 3s 3p 3d 4s 24.645 54.346 3.375Ti 1.90 9.0 20×20×20 3s 3p 3d 4s 17.388 109.212 3.955V 1.80 9.0 26×26×26 3s 3p 3d 4s 13.453 182.886 3.886Cr 2.00 9.0 26×26×26 3s 3p 3d 4s 11.774 182.677 7.260Mn 2.00 9.0 16×16×16 3s 3p 3d 4s 11.440 117.306 0.755Fe 2.10 9.0 32×32×32 3s 3p 3d 4s 11.340 195.057 4.982Co 1.93 9.0 35×35×22 3p 3d 4s 10.851 212.235 4.785Ni 2.00 9.0 18×18×18 3p 3d 4s 10.884 199.912 4.919Cu 2.20 9.0 26×26×26 3p 3d 4s 11.935 141.094 5.157Zn 2.20 9.0 24×24×20 3p 3d 4s 15.162 75.313 5.337Ga 2.20 9.0 20×20×20 3d 4s 4p 20.271 49.586 6.295Ge 1.60 9.0 20×20×20 3d 4s 4p 23.877 59.346 4.902As 2.20 9.0 20×20×20 3d 4s 4p 22.589 67.586 5.753Se 2.00 9.0 20×20×20 3d 4s 4p 29.768 47.069 4.655Br 2.10 9.0 4×8×4 3d 4s 4p 39.467 22.398 4.649Kr 3.00 9.0 20×20×20 3d 4s 4p 65.941 0.628 9.334Rb 2.60 9.0 20×20×20 4s 4p 5s 91.216 2.788 3.757Sr 2.60 9.0 20×20×20 4s 4p 5s 54.527 11.003 5.308Y 2.30 9.0 28×28×20 4s 4p 4d 5s 32.891 41.133 3.183Zr 2.20 9.0 28×28×16 4s 4p 4d 5s 23.407 93.791 3.354Nb 2.00 9.0 24×24×24 4s 4p 4d 5s 18.139 170.922 3.837Mo 2.00 9.0 24×24×24 4s 4p 4d 5s 15.787 259.067 4.215Tc 2.00 9.0 20×20×20 4s 4p 4d 5s 14.441 299.311 4.482Ru 1.70 9.0 26×26×14 4s 4p 4d 5s 13.756 312.566 4.899Rh 2.00 9.0 31×31×31 4s 4p 4d 5s 14.029 257.177 5.226

8

Page 9: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 2.20 9.0 24×24×24 4s 4p 4d 15.301 168.586 5.314Ag 2.00 9.0 18×18×18 4s 4p 4d 5s 17.824 91.107 5.828Cd 2.00 9.0 24×24×12 4p 4d 5s 22.584 45.833 7.265In 2.75 9.0 20×20×20 4p 4d 5s 5p 27.519 36.312 4.859Sn 2.60 9.0 20×20×20 4p 4d 5s 5p 36.863 35.285 4.509Sb 2.60 9.0 20×20×20 4d 5s 5p 31.748 50.760 4.419Te 2.60 9.0 20×20×20 4d 5s 5p 34.989 44.798 5.000I 2.50 9.0 4×8×4 4d 5s 5p 50.256 18.718 4.861Xe 2.40 9.0 16×16×16 4d 5s 5p 87.094 0.543 4.640Cs 2.00 9.0 16×16×16 4d 5s 5p 6s 116.896 1.953 1.156Ba 2.20 9.0 16×16×16 4d 5s 5p 6s 63.407 8.693 2.783Lu 2.30 9.0 28×28×20 4f 5s 5p 5d 6s 29.039 46.680 3.474Hf 2.00 9.0 20×20×20 4f 5s 5p 5d 6s 22.522 107.716 4.095Ta 2.00 9.0 16×16×16 4f 5s 5p 5d 6s 18.302 193.210 3.913W 2.00 9.0 20×20×20 4f 5s 5p 5d 6s 16.141 303.515 4.436Re 1.80 9.0 28×28×18 4f 5s 5p 5d 6s 14.955 360.879 4.790Os 2.40 9.0 24×24×13 4f 5s 5p 5d 6s 14.279 397.158 4.623Ir 2.51 9.0 20×20×20 4f 5p 5d 6s 14.497 348.995 5.136Pt 2.40 9.0 16×16×16 4f 5p 5d 6s 15.636 248.371 5.468Au 2.20 9.0 28×28×28 4f 5p 5d 6s 17.969 140.419 5.945Hg 2.00 9.0 28×28×31 5p 5d 6s 29.300 8.098 8.767Tl 1.90 9.0 28×28×20 5p 5d 6s 6p 31.338 26.720 5.138Pb 2.60 9.0 16×16×16 5d 6s 6p 31.973 39.380 4.335Bi 2.60 9.0 20×20×8 5d 6s 6p 36.878 42.650 4.824Po 2.60 9.0 37×37×37 5d 6s 6p 37.528 45.480 5.045Rn 2.60 9.0 10×10×10 5d 6s 6p 92.709 0.560 4.085

9

Page 10: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S4.1. Overview of the most important features and settings of the exciting calcu-lations.

exciting

name and version of the code: exciting boron-9 (69)type of basis set: linearized augmented plane waves + several local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (IORA) (53 )assignment of core / valence states see Table S4.2basis set size see Table S4.2 (Rmin

MT Kmax)k-mesh density see Table S4.2 (k-mesh in the full 1st Brillouin zone of

the primitive cell)reciprocal-space integration method Gaussian smearing with a fictitious

temperature corresponding to 0.001 Ry

METHOD-SPECIFIC INFORMATION

muffin-tin radii see Table S4.2 (RMT )radial mesh 400–1500 radial mesh points on an inverse

cubic grid up to the muffin-tin radiuslargest `-value of wave function 12largest `-value of nonspherical 12

Hamiltonian and overlap matrixelements inside the spheres

largest `-value in expansion of 12density and potential

largest vector in Fourier expansion 35a−10 for I,

of charge density 40a−10 for H, He, O, Cl, Ar and Xe,

45a−10 for Ne

and 30a−10 for remaining elements

ADDITIONAL COMMENTS

none

10

Page 11: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S4.2. exciting calculation settings and results per element. Muffin-tin radius RMT ,basis set size Rmin

MTKmax, k-point mesh in the full 1st Brillouin zone of the primitive cell kpts,valence, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk mod-ulus B1.

RMT [b] RminMT Kmax [–] kpts [–] valence V0 [A3/atom] B0 [GPa] B1 [–]

H 0.5 8 5 x 5 x 5 1s 17.390 10.293 2.679He 1.6 10 10 x 10 x 6 1s 17.766 0.858 6.543Li 1.6 10 21 x 21 x 21 1s2s 20.221 13.852 3.361Be 1.6 10 38 x 38 x 24 1s2s 7.904 123.142 3.266B 1.2 10 5 x 5 x 5 1s2s2p 7.239 237.268 3.463C 1.1 10 35 x 35 x 10 1s2s2p 11.631 208.981 3.570N 0.9 10 3 x 3 x 3 1s2s2p 28.779 53.971 3.683O 1.0 10 7 x 7 x 7 2s2p 18.505 51.214 3.860F 1.1 10 3 x 5 x 3 2s2p 19.127 34.340 4.049Ne 2.0 12 7 x 7 x 7 2s2p 24.292 1.264 7.196Na 1.6 12 17 x 17 x 17 2s2p3s 37.079 7.732 3.681Mg 1.6 12 27 x 27 x 17 2s2p3s 22.933 36.086 3.955Al 1.8 12 32 x 32 x 32 2s2p3s3p 16.487 77.879 4.653Si 1.6 12 24 x 24 x 24 2s2p3s3p 20.454 88.481 4.308P 1.7 12 32 x 9 x 23 2s2p3s3p 21.447 68.108 4.334S 1.6 12 32 x 32 x 32 2s2p3s3p 17.211 84.311 3.828Cl 1.6 12 4 x 8 x 4 2s2p3s3p 38.779 18.987 4.375Ar 2.0 12 7 x 7 x 7 3s3p 52.296 0.752 7.209K 1.8 12 20 x 20 x 20 3s3p4s 73.681 3.594 3.773Ca 1.6 12 24 x 24 x 24 3s3p4s 42.240 17.403 3.232Sc 1.6 12 27 x 27 x 17 3s3p3d4s 24.617 54.821 3.405Ti 1.6 12 29 x 29 x 19 3s3p3d4s 17.386 112.250 3.738V 1.8 12 34 x 34 x 34 3s3p3d4s 13.449 182.314 3.605Cr 1.6 12 29 x 29 x 29 3s3p3d4s 11.772 184.304 7.083Mn 1.6 12 32 x 32 x 23 3s3p3d4s 11.444 121.093 0.907Fe 1.6 12 48 x 48 x 48 3s3p3d4s 11.332 196.349 5.171Co 1.6 12 35 x 35 x 22 3s3p3d4s 10.852 211.465 4.544Ni 1.6 12 37 x 37 x 37 3s3p3d4s 10.882 198.724 5.229Cu 1.8 12 36 x 36 x 36 3s3p3d4s 11.947 141.098 5.089Zn 1.7 12 32 x 32 x 17 3s3p3d4s 15.192 74.341 5.247Ga 2.0 12 23 x 13 x 23 3s3p3d4s4p 20.308 48.885 5.360Ge 1.9 12 23 x 23 x 23 3s3p3d4s4p 23.899 58.988 4.945As 1.8 12 22 x 22 x 8 3s3p3d4s4p 22.595 68.121 4.210Se 1.7 12 10 x 10 x 9 3s3p3d4s4p 29.737 47.018 4.452Br 1.6 12 4 x 8 x 4 3s3p3d4s4p 39.451 22.375 4.838Kr 2.5 12 7 x 7 x 7 3d4s4p 66.039 0.646 7.238Rb 1.9 12 18 x 18 x 18 3p3d4s4p5s 91.043 2.798 3.949Sr 2.0 12 22 x 22 x 22 3d4s4p5s 54.407 11.618 5.334Y 1.9 12 24 x 24 x 16 3d4s4p4d5s 32.852 41.391 3.267Zr 1.8 12 27 x 27 x 17 3d4s4p4d5s 23.390 93.939 3.312Nb 1.8 12 31 x 31 x 31 4s4p4d5s 18.126 168.449 3.665Mo 1.6 12 33 x 33 x 33 4s4p4d5s 15.787 258.380 4.115Tc 1.6 12 31 x 31 x 20 4s4p4d5s 14.436 299.401 4.557Ru 1.6 12 32 x 32 x 20 4s4p4d5s 13.762 312.601 4.875

11

Page 12: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Rh 1.6 12 34 x 34 x 34 4s4p4d5s 14.040 257.642 5.197Pd 1.6 12 33 x 33 x 33 4s4p4d5s 15.310 169.169 5.547Ag 1.6 12 31 x 31 x 31 4s4p4d5s 17.842 91.486 5.772Cd 1.6 12 28 x 28 x 15 4s4p4d5s 22.847 43.724 6.630In 2.0 12 31 x 31 x 20 4s4p4d5s5p 27.474 35.693 5.141Sn 1.9 12 20 x 20 x 20 4s4p4d5s5p 36.833 35.921 4.781Sb 1.8 12 29 x 29 x 11 4s4p4d5s5p 31.750 50.351 4.528Te 2.2 12 20 x 20 x 15 4s4p4d5s5p 34.971 44.698 4.680I 2.1 12 4 x 8 x 4 4s4p4d5s5p 50.229 18.594 5.039Xe 2.5 12 6 x 6 x 6 4d5s5p 87.016 0.541 6.953Cs 1.9 12 17 x 17 x 17 4s4p4d5s5p6s 116.706 1.946 3.982Ba 1.8 12 21 x 21 x 21 4s4p4d5s5p6s 63.294 8.853 0.788Lu 1.8 12 25 x 25 x 16 4f5s5p5d6s 29.060 47.104 3.491Hf 1.8 12 27 x 27 x 17 4f5s5p5d6s 22.534 106.671 3.563Ta 1.8 12 31 x 31 x 31 4f5s5p5d6s 18.277 192.984 3.835W 1.8 12 32 x 32 x 32 4f5s5p5d6s 16.145 302.786 4.226Re 1.8 12 31 x 31 x 19 4f5s5p5d6s 14.960 363.074 4.336Os 1.6 12 31 x 31 x 20 4f5s5p5d6s 14.279 397.148 4.803Ir 1.6 12 34 x 34 x 34 4f5s5p5d6s 14.498 347.970 5.054Pt 2.0 12 33 x 33 x 33 4f5s5p5d6s 15.642 248.632 5.440Au 1.9 12 31 x 31 x 31 4f5s5p5d6s 17.980 139.241 5.799Hg 2.1 12 25 x 25 x 29 4f5s5p5d6s 29.526 8.475 11.302Tl 2.0 12 24 x 24 x 15 4f5s5p5d6s6p 31.427 26.461 5.338Pb 1.9 12 26 x 26 x 26 4f5s5p5d6s6p 32.030 40.202 4.860Bi 1.9 12 19 x 19 x 7 4f5s5p5d6s6p 36.923 42.539 4.632Po 2.3 12 25 x 25 x 25 4f5s5p5d6s6p 37.566 45.342 4.553Rn 2.5 12 6 x 6 x 6 5p5d6s6p 93.131 0.547 6.906

12

Page 13: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S5.1. Overview of the most important features and settings of the FHI-aims/tightcalculations.

FHI-aims/tight

name and version of the code: FHI-aims 081213 (42, 70)type of basis set: numeric atom-centred orbital basis functionsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme atomic zero-order regular approximation (ZORA)

Eqs. (55)/(56) of (42)assignment of core / valence states treated on equal footingbasis set size default for “tight” settings – see Table S5.2k-mesh density see Table S5.3 (k-point grid kpts, and the number of

irreducible k-points in the full 1st Brillouin zoneof the primitive cell # k)

reciprocal-space integration method Gaussian smearing with a fictitiousbroadening corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

Hartree potential lhartree = 6multicentre expansionlogarithmic mesh for free-atom see Table S5.2 (number of points # Nlog betweenquantities 0.001/Z and 100.0 bohr)radial integration mesh see Table S5.2 (number of shells per atom # Nrad,

distributed according to Eq. (18) of (42))anchor distance of radial int. mesh 7 Asmallest (innermost) Lebedev grid 110 pointslargest (outermost) Lebedev grid 434 pointsbasis function confinement ronset see Table S5.2, w = 2.0 A

Eq. (9) of (42)

ADDITIONAL COMMENTS

Radial integration mesh:The “anchor distance of the radial mesh” is the radius of the second-most distant radial integration shell,specified by the “radial base” keyword in FHI-aims. A detailed explanation of the construction of radialintegration grids in FHI-aims can be found in the Appendix of (70).

Basis set character and angular momenta:The set of radial functions used is characterized according to their angular momenta. Each basis setconsists of the core and valence radial functions of a spherical free atom and further groups of radialfunctions, organized in “tiers” (levels). For each element, the table lists the closest noble gas configuration+ valence shells included in the free atom + default radial functions for “tight” settings.

The ASE script (46) used to generate these data is available online (48).

13

Page 14: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S5.2. FHI-aims/tight basis function settings per element. Basis set size, numberof logarithmic grid points Nlog, number of radial grid points Nrad and basis function onset radiusronset.

Basis set character (tight) [–] # Nlog [–] # Nrad [–] ronset [A]H 1s+sp+spsd 1131 49 4.0He 1s+sp+dspf 1187 55 4.0Li [He]+2s+psd+ppsdf 1220 59 4.0Be [He]+2s+psd+pdpsf 1244 63 4.0B [He]+2s2p+psd+fpsgd 1262 65 4.0C [He]+2s2p+psd+fpsgd 1277 69 4.0N [He]+2s2p+pds+fpsgd 1290 71 4.0O [He]+2s2p+pds+fpdgs 1301 73 4.0F [He]+2s2p+pds+fpsdg 1310 75 4.0Ne [Ne]+dps+fdsgp 1319 77 4.0Na [Ne]+3s+psd 1327 81 5.0Mg [Ne]+3s+pds 1334 81 5.0Al [Ne]+3s3p+pdfs+gd 1340 83 4.0Si [Ne]+3s3p+dpfs+dg 1346 85 4.0P [Ne]+3s3p+dpfgs+d 1352 87 4.0S [Ne]+3s3p+dpfs+dg 1357 89 4.0Cl [Ne]+3s3p+dpfsg+d 1362 91 4.0Ar [Ar]+dpfs 1367 93 4.0K [Ar]+4s+dpsf 1371 93 6.0Ca [Ar]+4s+dpdfs 1376 95 5.0Sc [Ar]+4s3d+fpdgs 1380 95 4.0Ti [Ar]+4s3d+fdpgs 1383 97 4.0V [Ar]+4s3d+fdpgs 1387 99 4.0Cr [Ar]+4s3d+fdpgs 1391 101 4.0Mn [Ar]+4s3d+fdpgs 1394 101 4.0Fe [Ar]+4s3d+fpgds 1397 103 4.0Co [Ar]+4s3d+pfdgs+pd 1400 105 4.0Ni [Ar]+4s3d+pfgds+pd 1403 105 4.0Cu [Ar]+4s3d+pfsdg 1406 107 4.0Zn [Ar]+4s3d+pspfd 1409 107 4.0Ga [Ar]+4s4p3d+pdfs 1412 109 4.0Ge [Ar]+4s4p3d+pdfs 1414 109 4.0As [Ar]+4s4p3d+dpfs 1417 111 4.0Se [Ar]+4s4p3d+dpfs 1419 111 4.0Br [Ar]+4s4p3d+dpfs 1421 113 4.0Kr [Kr]+dpfs 1424 113 4.0Rb [Kr]+5s+dpfs 1426 115 6.0Sr [Kr]+5s+dpfs 1428 115 5.0Y [Kr]+5s4d+fpdgs 1430 117 4.0Zr [Kr]+5s4d+fdpgs 1432 117 4.0Nb [Kr]+5s4d+fdpgs 1434 119 4.0Mo [Kr]+5s4d+fdpgs 1436 119 4.0Tc [Kr]+5s4d+fdpgs 1438 121 4.0Ru [Kr]+5s4d+fdpgs 1440 121 4.0Rh [Kr]+5s4d+fpdgs 1442 123 4.0Pd [Kr]+5s4d+pfgsd 1444 125 4.0

14

Page 15: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag [Kr]+5s4d+pfsdg 1446 125 4.0Cd [Kr]+5s4d+pfspgd 1147 125 4.0In [Kr]+5s5p4d+pfds 1449 125 4.0Sn [Kr]+5s5p4d+pdfs 1451 127 4.0Sb [Kr]+5s5p4d+dpfs 1452 127 4.0Te [Kr]+5s5p4d+dfps 1454 129 4.0I [Kr]+5s5p4d+dfps 1455 129 4.0Xe [Xe]+dfps 1457 129 4.0Cs [Xe]+6s+dfps 1458 131 6.0Ba [Xe]+6s+dfps 1460 131 8.0Lu [Xe]+6s5d4f+pdfgs 1479 141 4.0Hf [Xe]+6s5d4f+fdpgs 1480 143 4.0Ta [Xe]+6s5d4f+fdpgs 1482 143 4.0W [Xe]+6s5d4f+fdpgs 1483 143 4.0Re [Xe]+6s5d4f+fdpgs 1484 145 4.0Os [Xe]+6s5d4f+fpdgs 1485 145 4.0Ir [Xe]+6s5d4f+fpgds 1486 145 4.0Pt [Xe]+6s5d4f+fpgsd 1487 145 4.0Au [Xe]+6s5d4f+pfsghd 1488 147 4.0Hg [Xe]+6s5d4f+pfsgpd 1489 147 4.0Tl [Xe]+6s6p5d4f+pfdsg 1490 147 4.0Pb [Xe]+6s6p5d4f+pfdgs 1491 149 4.0Bi [Xe]+6s6p5d4f+pdfsg 1492 149 4.0Po [Xe]+6s6p5d4f+dfpsg 1493 149 4.0Rn [Rn]+dfpgs 1495 151 4.0

15

Page 16: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S5.3. FHI-aims/tight calculation settings and results per element. k-point meshin the full 1st Brillouin zone of the primitive cell kpts and number of irreducible k-points # k,equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 28 x 28 x 20 7840 17.3962 10.3122 2.7059He 40 x 40 x 22 17600 18.0531 0.8652 0.5915Li 38 x 38 x 38 27436 20.2567 13.8364 3.5623Be 52 x 52 x 28 37856 7.9071 123.6848 3.4431B 26 x 26 x 24 8112 7.2391 237.5952 3.4102C 48 x 48 x 12 13824 11.6294 209.0859 3.5920N 16 x 16 x 16 2048 28.8022 54.0235 3.6858O 26 x 24 x 24 7488 18.5125 51.3340 3.9229F 16 x 28 x 14 3136 19.1428 34.2611 4.0537Ne 22 x 22 x 22 5324 24.4318 1.1094 7.0758Na 32 x 32 x 32 16384 37.4501 7.7355 3.6748Mg 36 x 36 x 20 12960 23.0275 36.2098 3.9417Al 24 x 24 x 24 6912 16.4910 77.7480 5.0823Si 32 x 32 x 32 16384 20.4816 88.4431 4.2398P 30 x 8 x 22 2640 21.4463 68.2171 4.3542S 38 x 38 x 38 27436 17.2140 83.8991 4.0258Cl 12 x 24 x 12 1728 38.8495 18.9573 4.3883Ar 16 x 16 x 16 2048 52.8424 0.7432 7.5319K 20 x 20 x 20 4000 73.7482 3.6144 4.0770Ca 18 x 18 x 18 2916 42.2587 17.6785 3.4926Sc 34 x 34 x 20 11560 24.5979 55.2055 3.3369Ti 40 x 40 x 22 17600 17.3744 112.5817 3.6003V 34 x 34 x 34 19652 13.4454 182.7162 3.9668Cr 36 x 36 x 36 23328 11.7796 182.8542 7.0136Mn 28 x 28 x 28 10976 11.3916 120.6594 0.0158Fe 36 x 36 x 36 23328 11.3130 196.5445 4.8490Co 46 x 46 x 24 25392 10.8582 214.0374 4.6214Ni 28 x 28 x 28 10976 10.8904 198.4243 4.9492Cu 28 x 28 x 28 10976 11.9694 140.2334 5.0546Zn 44 x 44 x 20 19360 15.2241 74.4107 5.2677Ga 22 x 12 x 22 2904 20.3697 48.9570 5.4808Ge 30 x 30 x 30 13500 23.9581 59.2613 4.9265As 30 x 30 x 10 4500 22.6350 68.0797 4.2800Se 26 x 26 x 20 6760 29.8545 46.8488 4.4591Br 12 x 24 x 12 1728 39.6550 22.2302 4.8489Kr 16 x 16 x 16 2048 66.6112 0.6016 7.2097Rb 18 x 18 x 18 2916 93.1829 2.6807 3.6910Sr 16 x 16 x 16 2048 54.9431 10.2226 5.9551Y 32 x 32 x 18 9216 32.8086 42.1174 3.0932Zr 36 x 36 x 20 12960 23.3839 94.2078 3.3116Nb 30 x 30 x 30 13500 18.1072 171.2023 3.6924Mo 32 x 32 x 32 16384 15.7737 261.8191 4.3708Tc 42 x 42 x 22 19404 14.4183 301.9407 4.5713Ru 42 x 42 x 24 21168 13.7499 314.2909 4.9149Rh 26 x 26 x 26 8788 14.0416 257.7568 5.2159

16

Page 17: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 26 x 26 x 26 8788 15.3243 169.0745 5.5660Ag 24 x 24 x 24 6912 17.8657 90.6303 6.0521Cd 38 x 38 x 18 12996 22.8702 43.6603 6.9053In 30 x 30 x 20 9000 27.5167 35.8111 5.0756Sn 26 x 26 x 26 8788 36.9687 35.7730 5.0415Sb 26 x 26 x 8 2704 31.8284 50.1747 4.5919Te 26 x 26 x 16 5408 35.1597 44.3034 4.7039I 12 x 22 x 10 1320 50.6789 18.4046 5.0541Xe 14 x 14 x 14 1372 88.0742 0.4745 5.6768Cs 16 x 16 x 16 2048 120.5143 2.0882 3.0910Ba 20 x 20 x 20 4000 63.5384 8.6375 1.6486Lu 32 x 32 x 18 9216 29.1181 47.6255 3.3819Hf 36 x 36 x 20 12960 22.5453 107.8083 3.3978Ta 30 x 30 x 30 13500 18.2850 194.4320 3.5048W 32 x 32 x 32 16384 16.1354 303.1029 4.1867Re 42 x 42 x 22 19404 14.9498 365.0171 4.4286Os 42 x 42 x 24 21168 14.2745 398.3862 4.8135Ir 26 x 26 x 26 8788 14.5011 347.9583 5.1384Pt 26 x 26 x 26 8788 15.6488 248.7646 5.4799Au 24 x 24 x 24 6912 17.9711 139.4401 5.9992Hg 24 x 24 x 28 8064 29.8640 7.1374 10.2806Tl 32 x 32 x 18 9216 31.4701 26.3197 5.5324Pb 20 x 20 x 20 4000 31.9992 39.5202 5.6947Bi 26 x 26 x 8 2704 36.9530 42.6549 4.6156Po 30 x 30 x 30 13500 37.6237 45.1643 4.9981Rn 14 x 14 x 14 1372 93.9401 0.5193 6.4423

17

Page 18: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S6.1. Overview of the most important features and settings of theFHI-aims/really tight calculations.

FHI-aims/really tight

name and version of the code: FHI-aims 081213 (42, 70)type of basis set: numeric atom-centred orbital basis functionsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme atomic zero-order regular approximation (ZORA)

Eqs. (55)/(56) of (42)assignment of core / valence states treated on equal footingbasis set size default for “really tight” settings – see Table S6.2k-mesh density see Table S6.3 (k-point grid kpts, and the number of

irreducible k-points in the full 1st Brillouin zoneof the primitive cell # k)

reciprocal-space integration method Gaussian smearing with a fictitiousbroadening corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

Hartree potential lhartree = 8multicentre expansionlogarithmic mesh for free-atom see Table S6.2 (number of points # Nlog betweenquantities 0.001/Z and 100.0 bohr)radial integration mesh see Table S6.2 (number of shells per atom # Nrad,

distributed according to Eq. (18) of (42))anchor distance of radial int. mesh 7 Asmallest (innermost) Lebedev grid 110 pointslargest (outermost) Lebedev grid 590 pointsbasis function confinement ronset see Table S6.2, w = 2.0 A

Eq. (9) of (42)

ADDITIONAL COMMENTS

Radial integration mesh:The “anchor distance of the radial mesh” is the radius of the second-most distant radial integration shell,specified by the “radial base” keyword in FHI-aims. A detailed explanation of the construction of radialintegration grids in FHI-aims can be found in the Appendix of (70).

Basis set character and angular momenta:The set of radial functions used is characterized according to their angular momenta. Each basis setconsists of the core and valence radial functions of a spherical free atom and further groups of radialfunctions, organized in “tiers” (levels). For each element, the table lists the closest noble gas configuration+ valence shells included in the free atom + default radial functions for “really tight” settings.

The ASE script (46) used to generate these data is available online (48).

18

Page 19: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S6.2. FHI-aims/really tight basis function settings per element. Basis set size,number of logarithmic grid points Nlog, number of radial grid points Nrad and basis functiononset radius ronset.

Basis set character (really tight) [–] # Nlog [–] # Nrad [–] ronset [A]H 1s+sp+spsd 1131 49 4.0He 1s+sp+dspf 1187 55 4.0Li [He]+2s+psd+ppsdf 1220 59 4.0Be [He]+2s+psd+pdpsf 1244 63 4.0B [He]+2s2p+psd+fpsgd 1262 65 4.0C [He]+2s2p+psd+fpsgd 1277 69 4.0N [He]+2s2p+pds+fpsgd 1290 71 4.0O [He]+2s2p+pds+fpdgs 1301 73 4.0F [He]+2s2p+pds+fpsdg 1310 75 4.0Ne [Ne]+dps+fdsgp 1319 77 4.0Na [Ne]+3s+psd 1327 81 5.0Mg [Ne]+3s+pds 1334 81 5.0Al [Ne]+3s3p+pdfs+gd 1340 83 4.0Si [Ne]+3s3p+dpfs+dg 1346 85 4.0P [Ne]+3s3p+dpfgs+d 1352 87 4.0S [Ne]+3s3p+dpfs+dg 1357 89 4.0Cl [Ne]+3s3p+dpfsg+d 1362 91 4.0Ar [Ar]+dpfs 1367 93 4.0K [Ar]+4s+dpsf 1371 93 6.0Ca [Ar]+4s+dpdfs 1376 95 5.0Sc [Ar]+4s3d+fpdgs 1380 95 4.0Ti [Ar]+4s3d+fdpgs 1383 97 4.0V [Ar]+4s3d+fdpgs 1387 99 4.0Cr [Ar]+4s3d+fdpgs 1391 101 4.0Mn [Ar]+4s3d+fdpgs 1394 101 4.0Fe [Ar]+4s3d+fpgds 1397 103 4.0Co [Ar]+4s3d+pfdgs+pd 1400 105 4.0Ni [Ar]+4s3d+pfgds+pd 1403 105 4.0Cu [Ar]+4s3d+pfsdg 1406 107 4.0Zn [Ar]+4s3d+pspfd 1409 107 4.0Ga [Ar]+4s4p3d+pdfs 1412 109 4.0Ge [Ar]+4s4p3d+pdfs 1414 109 4.0As [Ar]+4s4p3d+dpfs 1417 111 4.0Se [Ar]+4s4p3d+dpfs 1419 111 4.0Br [Ar]+4s4p3d+dpfs 1421 113 4.0Kr [Kr]+dpfs 1424 113 4.0Rb [Kr]+5s+dpfs 1426 115 6.0Sr [Kr]+5s+dpfs 1428 115 5.0Y [Kr]+5s4d+fpdgs 1430 117 4.0Zr [Kr]+5s4d+fdpgs 1432 117 4.0Nb [Kr]+5s4d+fdpgs 1434 119 4.0Mo [Kr]+5s4d+fdpgs 1436 119 4.0Tc [Kr]+5s4d+fdpgs 1438 121 4.0Ru [Kr]+5s4d+fdpgs 1440 121 4.0Rh [Kr]+5s4d+fpdgs 1442 123 4.0Pd [Kr]+5s4d+pfgsd 1444 125 4.0

19

Page 20: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag [Kr]+5s4d+pfsdg 1446 125 4.0Cd [Kr]+5s4d+pfspgd 1147 125 4.0In [Kr]+5s5p4d+pfds 1449 125 4.0Sn [Kr]+5s5p4d+pdfs 1451 127 4.0Sb [Kr]+5s5p4d+dpfs 1452 127 4.0Te [Kr]+5s5p4d+dfps 1454 129 4.0I [Kr]+5s5p4d+dfps 1455 129 4.0Xe [Xe]+dfps 1457 129 4.0Cs [Xe]+6s+dfps 1458 131 6.0Ba [Xe]+6s+dfps 1460 131 8.0Lu [Xe]+6s5d4f+pdfgs 1479 141 4.0Hf [Xe]+6s5d4f+fdpgs 1480 143 4.0Ta [Xe]+6s5d4f+fdpgs 1482 143 4.0W [Xe]+6s5d4f+fdpgs 1483 143 4.0Re [Xe]+6s5d4f+fdpgs 1484 145 4.0Os [Xe]+6s5d4f+fpdgs 1485 145 4.0Ir [Xe]+6s5d4f+fpgds 1486 145 4.0Pt [Xe]+6s5d4f+fpgsd 1487 145 4.0Au [Xe]+6s5d4f+pfsghd 1488 147 4.0Hg [Xe]+6s5d4f+pfsgpd 1489 147 4.0Tl [Xe]+6s6p5d4f+pfdsg 1490 147 4.0Pb [Xe]+6s6p5d4f+pfdgs 1491 149 4.0Bi [Xe]+6s6p5d4f+pdfsg 1492 149 4.0Po [Xe]+6s6p5d4f+dfpsg 1493 149 4.0Rn [Rn]+dfpgs 1495 151 4.0

20

Page 21: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S6.3. FHI-aims/really tight calculation settings and results per element. k-point mesh in the full 1st Brillouin zone of the primitive cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 28 x 28 x 20 7840 17.3955 10.3244 2.7385He 40 x 40 x 22 17600 18.0461 0.8494 1.1724Li 38 x 38 x 38 27436 20.2584 13.8120 3.4520Be 52 x 52 x 28 37856 7.9069 123.7151 3.4723B 26 x 26 x 24 8112 7.2393 237.3241 3.4365C 48 x 48 x 12 13824 11.6300 209.1781 3.5981N 16 x 16 x 16 2048 28.8025 54.0466 3.6934O 26 x 24 x 24 7488 18.5125 51.3380 3.9259F 16 x 28 x 14 3136 19.1427 34.2735 4.0643Ne 22 x 22 x 22 5324 24.4391 1.1878 6.9161Na 32 x 32 x 32 16384 37.4512 7.7498 3.6534Mg 36 x 36 x 20 12960 23.0276 36.2237 3.9165Al 24 x 24 x 24 6912 16.4906 77.6090 5.0682Si 32 x 32 x 32 16384 20.4816 88.4550 4.2422P 30 x 8 x 22 2640 21.4475 68.2086 4.3350S 38 x 38 x 38 27436 17.2129 83.8978 4.0272Cl 12 x 24 x 12 1728 38.8503 18.9735 4.3515Ar 16 x 16 x 16 2048 52.8166 0.7159 8.6188K 20 x 20 x 20 4000 73.7990 3.5420 3.6339Ca 18 x 18 x 18 2916 42.2586 17.6922 3.5068Sc 34 x 34 x 20 11560 24.5982 55.1859 3.3562Ti 40 x 40 x 22 17600 17.3742 112.5512 3.6095V 34 x 34 x 34 19652 13.4447 182.7881 3.9742Cr 36 x 36 x 36 23328 11.7791 182.8957 7.0271Mn 28 x 28 x 28 10976 11.3898 120.8318 0.0489Fe 36 x 36 x 36 23328 11.3124 196.5112 4.8600Co 46 x 46 x 24 25392 10.8581 214.0187 4.6290Ni 28 x 28 x 28 10976 10.8897 198.4342 4.9314Cu 28 x 28 x 28 10976 11.9697 140.2311 5.0538Zn 44 x 44 x 20 19360 15.2233 74.3654 5.3050Ga 22 x 12 x 22 2904 20.3706 49.0547 5.4655Ge 30 x 30 x 30 13500 23.9595 59.2474 4.9094As 30 x 30 x 10 4500 22.6362 68.0924 4.2943Se 26 x 26 x 20 6760 29.8549 46.8519 4.4654Br 12 x 24 x 12 1728 39.6548 22.2281 4.8550Kr 16 x 16 x 16 2048 66.5689 0.6176 6.7113Rb 18 x 18 x 18 2916 93.2587 2.6583 3.3988Sr 16 x 16 x 16 2048 54.9390 10.2206 5.9713Y 32 x 32 x 18 9216 32.8087 42.1152 3.0595Zr 36 x 36 x 20 12960 23.3835 94.2045 3.3246Nb 30 x 30 x 30 13500 18.1056 171.3739 3.7435Mo 32 x 32 x 32 16384 15.7738 261.7850 4.3718Tc 42 x 42 x 22 19404 14.4184 301.9200 4.5750Ru 42 x 42 x 24 21168 13.7500 314.2912 4.9135Rh 26 x 26 x 26 8788 14.0413 257.7028 5.2127

21

Page 22: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 26 x 26 x 26 8788 15.3236 169.1674 5.5597Ag 24 x 24 x 24 6912 17.8646 90.6812 6.0497Cd 38 x 38 x 18 12996 22.8703 43.6359 6.8925In 30 x 30 x 20 9000 27.5272 35.8265 4.8812Sn 26 x 26 x 26 8788 36.9675 35.7455 5.0669Sb 26 x 26 x 8 2704 31.8318 50.1728 4.5787Te 26 x 26 x 16 5408 35.1605 44.3231 4.6968I 12 x 22 x 10 1320 50.6794 18.4117 5.0405Xe 14 x 14 x 14 1372 87.8741 0.5371 6.8563Cs 16 x 16 x 16 2048 120.5269 2.0693 3.0468Ba 20 x 20 x 20 4000 63.4673 8.6386 1.7559Lu 32 x 32 x 18 9216 29.1190 47.5978 3.3767Hf 36 x 36 x 20 12960 22.5451 107.8392 3.3980Ta 30 x 30 x 30 13500 18.2845 194.5152 3.4984W 32 x 32 x 32 16384 16.1348 303.1631 4.2057Re 42 x 42 x 22 19404 14.9498 364.9963 4.4396Os 42 x 42 x 24 21168 14.2746 398.3392 4.8159Ir 26 x 26 x 26 8788 14.5006 347.9727 5.1331Pt 26 x 26 x 26 8788 15.6484 248.9114 5.4790Au 24 x 24 x 24 6912 17.9699 139.3879 6.0004Hg 24 x 24 x 28 8064 29.8634 7.1355 10.2613Tl 32 x 32 x 18 9216 31.4711 26.3250 5.5058Pb 20 x 20 x 20 4000 31.9976 39.5440 5.7070Bi 26 x 26 x 8 2704 36.9551 42.6522 4.6769Po 30 x 30 x 30 13500 37.6207 45.2537 5.0490Rn 14 x 14 x 14 1372 93.5297 0.5336 6.4481

22

Page 23: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S7.1. Overview of the most important features and settings of the FHI-aims/tier2calculations.

FHI-aims/tier2

name and version of the code: FHI-aims 081213 (42, 70)type of basis set: numeric atom-centred orbital basis functionsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme atomic zero-order regular approximation (ZORA)

Eqs. (55)/(56) of (42)assignment of core / valence states treated on equal footingbasis set size tier2 – see Table S7.2k-mesh density see Table S7.3 (k-point grid kpts, and the number of

irreducible k-points in the full 1st Brillouin zoneof the primitive cell # k)

reciprocal-space integration method Gaussian smearing with a fictitiousbroadening corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

Hartree potential lhartree = 8multicentre expansionlogarithmic mesh for free-atom see Table S7.2 (number of points # Nlog betweenquantities 0.001/Z and 100.0 bohr)radial integration mesh see Table S7.2 (number of shells per atom # Nrad,

distributed according to Eq. (18) of (42))anchor distance of radial int. mesh 7 Asmallest (innermost) Lebedev grid 110 pointslargest (outermost) Lebedev grid 590 pointsbasis function confinement ronset see Table S7.2, w = 2.0 A

Eq. (9) of (42)

ADDITIONAL COMMENTS

Radial integration mesh:The “anchor distance of the radial mesh” is the radius of the second-most distant radial integration shell,specified by the “radial base” keyword in FHI-aims. A detailed explanation of the construction of radialintegration grids in FHI-aims can be found in the Appendix of (70).

Basis set character and angular momenta:The set of radial functions used is characterized according to their angular momenta. Each basis setconsists of the core and valence radial functions of a spherical free atom and further groups of radialfunctions, organized in “tiers” (levels). For each element, the table lists the closest noble gas configuration+ valence shells included in the free atom + tier1 + tier2 radial functions.

The ASE script (46) used to generate these data is available online (48).

23

Page 24: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S7.2. FHI-aims/tier2 basis function settings per element. Basis set size, numberof logarithmic grid points Nlog, number of radial grid points Nrad and basis function onset radiusronset.

Basis set character (tier2) [–] # Nlog [–] # Nrad [–] ronset [A]H 1s+sp+spsd 1131 49 4.0He 1s+sp+dspf 1187 55 4.0Li [He]+2s+psd+ppsdf 1220 59 4.0Be [He]+2s+psd+pdpsf 1244 63 4.0B [He]+2s2p+psd+fpsgd 1262 65 4.0C [He]+2s2p+psd+fpsgd 1277 69 4.0N [He]+2s2p+pds+fpsgd 1290 71 4.0O [He]+2s2p+pds+fpdgs 1301 73 4.0F [He]+2s2p+pds+fpsdg 1310 75 4.0Ne [Ne]+dps+fdsgp 1319 77 4.0Na [Ne]+3s+psd+psfd 1327 81 5.0Mg [Ne]+3s+pds+fpsd 1334 81 5.0Al [Ne]+3s3p+pdfs+gdsp 1340 83 4.0Si [Ne]+3s3p+dpfs+dgps 1346 85 4.0P [Ne]+3s3p+dpfgs+dpfsg 1352 87 4.0S [Ne]+3s3p+dpfs+dgpfs 1357 89 4.0Cl [Ne]+3s3p+dpfsg+dfsgp 1362 91 4.0Ar [Ar]+dpfs+dgps 1367 93 4.0K [Ar]+4s+dpsf+dsgp 1371 93 6.0Ca [Ar]+4s+dpdfs+gphsfpd 1376 95 5.0Sc [Ar]+4s3d+fpdgs+fdphds 1380 95 4.0Ti [Ar]+4s3d+fdpgs+dhfps 1383 97 4.0V [Ar]+4s3d+fdpgs+dfhdfpgs 1387 99 4.0Cr [Ar]+4s3d+fdpgs+fdhdfgsp 1391 101 4.0Mn [Ar]+4s3d+fdpgs+dhffpdgs 1394 101 4.0Fe [Ar]+4s3d+fpgds+dhffpgs 1397 103 4.0Co [Ar]+4s3d+pfdgs+phdfs 1400 105 4.0Ni [Ar]+4s3d+pfgds+pdhffs 1403 105 4.0Cu [Ar]+4s3d+pfsdg+pdhsf 1406 107 4.0Zn [Ar]+4s3d+pspfd+gpsd 1409 107 4.0Ga [Ar]+4s4p3d+pdfs+gpfhds 1412 109 4.0Ge [Ar]+4s4p3d+pdfs+gdpfhs 1414 109 4.0As [Ar]+4s4p3d+dpfs+ghpfds 1417 111 4.0Se [Ar]+4s4p3d+dpfs+gpdfsh 1419 111 4.0Br [Ar]+4s4p3d+dpfs+gdhpsf 1421 113 4.0Kr [Kr]+dpfs+gdphfs 1424 113 4.0Rb [Kr]+5s+dpfs+dgsp 1426 115 6.0Sr [Kr]+5s+dpfs+gdphsf 1428 115 5.0Y [Kr]+5s4d+fpdgs+fdhps 1430 117 4.0Zr [Kr]+5s4d+fdpgs+fhdpfs 1432 117 4.0Nb [Kr]+5s4d+fdpgs+fdhfps 1434 119 4.0Mo [Kr]+5s4d+fdpgs+fdhfps 1436 119 4.0Tc [Kr]+5s4d+fdpgs+fhfdpgs 1438 121 4.0Ru [Kr]+5s4d+fdpgs+fhfgdps 1440 121 4.0Rh [Kr]+5s4d+fpdgs+fhfdpgs 1442 123 4.0Pd [Kr]+5s4d+pfgsd+fgdhsp 1444 125 4.0

24

Page 25: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag [Kr]+5s4d+pfsdg+fhpds 1446 125 4.0Cd [Kr]+5s4d+pfspgd+fhpsd 1147 125 4.0In [Kr]+5s5p4d+pfds+gpfhfds 1449 125 4.0Sn [Kr]+5s5p4d+pdfs+gpfdhfs 1451 127 4.0Sb [Kr]+5s5p4d+dpfs+gfhdfps 1452 127 4.0Te [Kr]+5s5p4d+dfps+gfhpfds 1454 129 4.0I [Kr]+5s5p4d+dfps+gfhpds 1455 129 4.0Xe [Xe]+dfps+gfdfhps 1457 129 4.0Cs [Xe]+6s+dfps+dfgfhps 1458 131 6.0Ba [Xe]+6s+dfps+fgdhps 1460 131 8.0Lu [Xe]+6s5d4f+pdfgs+ppdhfdgs 1479 141 4.0Hf [Xe]+6s5d4f+fdpgs+fdhpds 1480 143 4.0Ta [Xe]+6s5d4f+fdpgs+dhfgps 1482 143 4.0W [Xe]+6s5d4f+fdpgs+hdfgdps 1483 143 4.0Re [Xe]+6s5d4f+fdpgs+hdfgpds 1484 145 4.0Os [Xe]+6s5d4f+fpdgs+hpfdgs 1485 145 4.0Ir [Xe]+6s5d4f+fpgds+hffgpds 1486 145 4.0Pt [Xe]+6s5d4f+fpgsd+hfdpgs 1487 145 4.0Au [Xe]+6s5d4f+pfsghd+fdpsgh 1488 147 4.0Hg [Xe]+6s5d4f+pfsgpd+hfpsdg 1489 147 4.0Tl [Xe]+6s6p5d4f+pfdsg+phfds 1490 147 4.0Pb [Xe]+6s6p5d4f+pfdgs+hdffps 1491 149 4.0Bi [Xe]+6s6p5d4f+pdfsg+dphffs 1492 149 4.0Po [Xe]+6s6p5d4f+dfpsg+fhpds 1493 149 4.0Rn [Rn]+dfpgs+fdhfsg 1495 151 4.0

25

Page 26: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S7.3. FHI-aims/tier2 calculation settings and results per element. k-point meshin the full 1st Brillouin zone of the primitive cell kpts and number of irreducible k-points # k,equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 28 x 28 x 20 7840 17.3955 10.3244 2.7385He 40 x 40 x 22 17600 18.0461 0.8494 1.1724Li 38 x 38 x 38 27436 20.2584 13.8120 3.4520Be 52 x 52 x 28 37856 7.9069 123.7151 3.4723B 26 x 26 x 24 8112 7.2393 237.3241 3.4365C 48 x 48 x 12 13824 11.6300 209.1781 3.5981N 16 x 16 x 16 2048 28.8025 54.0466 3.6934O 26 x 24 x 24 7488 18.5125 51.3380 3.9259F 16 x 28 x 14 3136 19.1427 34.2735 4.0643Ne 22 x 22 x 22 5324 24.4391 1.1878 6.9161Na 32 x 32 x 32 16384 37.0854 7.7625 3.7955Mg 36 x 36 x 20 12960 22.9569 35.9978 3.9894Al 24 x 24 x 24 6912 16.4921 77.7749 5.0377Si 32 x 32 x 32 16384 20.4535 88.6201 4.2489P 30 x 8 x 22 2640 21.4435 68.1001 4.3366S 38 x 38 x 38 27436 17.2125 83.9136 4.0230Cl 12 x 24 x 12 1728 38.8211 18.9341 4.3405Ar 16 x 16 x 16 2048 52.4645 0.7327 8.6099K 20 x 20 x 20 4000 73.8148 3.5802 3.6558Ca 18 x 18 x 18 2916 42.2161 17.6892 3.4734Sc 34 x 34 x 20 11560 24.6089 54.6364 3.3974Ti 40 x 40 x 22 17600 17.3902 111.5900 3.6297V 34 x 34 x 34 19652 13.4479 182.2043 3.9567Cr 36 x 36 x 36 23328 11.7715 185.0625 6.9532Mn 28 x 28 x 28 10976 11.4777 119.6118 0.0802Fe 36 x 36 x 36 23328 11.3392 194.4014 4.6849Co 46 x 46 x 24 25392 10.8513 214.1797 4.6796Ni 28 x 28 x 28 10976 10.8872 198.1638 4.9449Cu 28 x 28 x 28 10976 11.9615 140.0409 5.2277Zn 44 x 44 x 20 19360 15.1941 75.4154 5.5155Ga 22 x 12 x 22 2904 20.3013 49.1819 5.4723Ge 30 x 30 x 30 13500 23.8905 59.3238 4.9369As 30 x 30 x 10 4500 22.5901 68.2982 4.2925Se 26 x 26 x 20 6760 29.7404 47.0304 4.4686Br 12 x 24 x 12 1728 39.4566 22.3752 4.8436Kr 16 x 16 x 16 2048 66.2448 0.6297 6.6440Rb 18 x 18 x 18 2916 91.1656 2.8045 3.5574Sr 16 x 16 x 16 2048 54.3677 11.4507 5.3802Y 32 x 32 x 18 9216 32.8355 41.4725 3.1396Zr 36 x 36 x 20 12960 23.3940 93.7535 3.2944Nb 30 x 30 x 30 13500 18.1270 170.4048 3.7274Mo 32 x 32 x 32 16384 15.7887 259.4884 4.3507Tc 42 x 42 x 22 19404 14.4381 299.1265 4.5298Ru 42 x 42 x 24 21168 13.7635 312.1158 4.8757Rh 26 x 26 x 26 8788 14.0431 257.0866 5.1885

26

Page 27: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 26 x 26 x 26 8788 15.3106 168.8863 5.5095Ag 24 x 24 x 24 6912 17.8455 91.0431 5.9975Cd 38 x 38 x 18 12996 22.8392 43.9964 6.9580In 30 x 30 x 20 9000 27.5167 35.8699 4.8709Sn 26 x 26 x 26 8788 36.8318 35.8545 5.0021Sb 26 x 26 x 8 2704 31.7533 50.3972 4.5283Te 26 x 26 x 16 5408 34.9740 44.7145 4.6885I 12 x 22 x 10 1320 50.2501 18.6164 5.0436Xe 14 x 14 x 14 1372 86.8790 0.5681 7.2531Cs 16 x 16 x 16 2048 116.7703 2.0044 4.1222Ba 20 x 20 x 20 4000 63.0761 8.8520 2.2069Lu 32 x 32 x 18 9216 29.0652 47.0124 3.5308Hf 36 x 36 x 20 12960 22.5418 107.5910 3.4407Ta 30 x 30 x 30 13500 18.2835 193.6651 3.5015W 32 x 32 x 32 16384 16.1399 301.5926 4.2144Re 42 x 42 x 22 19404 14.9559 363.3583 4.4155Os 42 x 42 x 24 21168 14.2799 396.7276 4.8143Ir 26 x 26 x 26 8788 14.4993 347.6047 5.2287Pt 26 x 26 x 26 8788 15.6401 248.0916 5.4707Au 24 x 24 x 24 6912 17.9752 138.6731 6.1054Hg 24 x 24 x 28 8064 29.5950 7.7226 9.8983Tl 32 x 32 x 18 9216 31.4374 26.6619 5.5187Pb 20 x 20 x 20 4000 31.9622 39.9991 5.6218Bi 26 x 26 x 8 2704 36.9073 42.5965 4.6508Po 30 x 30 x 30 13500 37.5659 45.4307 5.0102Rn 14 x 14 x 14 1372 93.0392 0.5344 6.8771

27

Page 28: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S8.1. Overview of the most important features and settings of the FLEUR calcula-tions.

FLEUR

name and version of the code: FLEUR 0.26 (71)type of basis set: linearized augmented plane waves (+ local orbitals)method: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S8.2basis set size see Table S8.2 (Kmax)k-mesh density see Table S8.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.001 Ry

METHOD-SPECIFIC INFORMATION

muffin-tin radii see Table S8.2 (RMT)radial mesh 981 radial mesh points on a logarithmic grid

up to the muffin-tin radiuslargest `-value of wave function 12largest `-value of nonspherical 6

Hamiltonian and overlap matrixelements inside the spheres

largest `-value in expansion of 12density and potential

largest vector in Fourier expansion 3 × the magnitude of Kmax

of charge density

ADDITIONAL COMMENTS

if RMT ≤ 1.5 an APW+lo basisset was used

28

Page 29: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S8.2. FLEUR calculation settings and results per element. Muffin-tin radius RMT,maximum wavevector Kmax, number of k-points in the full 1st Brillouin zone of the primitivecell # k, semicore and valence shells, equilibrium volume per atom V0, bulk modulus B0, pressurederivative of the bulk modulus B1.

RMT [b] Kmax [1/b] # k [–] semicore | valence V0 [A3/atom] B0 [GPa] B1 [–]H 0.65 5.2 1 089 1s 17.487 10.326 1.524He 2.00 5.0 10 935 1s 17.961 0.768 6.479Li 2.30 4.7 4 913 1s 2s 20.252 13.768 3.349Be 2.00 5.0 10 935 2s 7.907 123.263 3.316B 1.50 4.5 600 2s 2p 7.241 237.280 3.459C 1.30 5.2 1 350 2s 2p 11.636 209.379 3.663N 1.00 6.0 216 2s 2p 28.878 52.302 2.530O 1.10 6.2 064 2s 2p 18.546 49.833 3.019F 1.30 5.0 600 2s 2p 19.180 35.016 5.626Ne 2.20 5.0 3 375 2s 2p 24.938 1.261 10.672Na 2.40 4.7 3 375 2s 2p | 3s 37.469 7.472 3.771Mg 2.30 5.0 10 935 2p | 3s 22.938 36.107 4.063Al 2.30 5.0 4 913 3s 3p 16.495 76.564 4.360Si 2.10 5.0 4 913 3s 3p 20.463 88.518 4.340P 2.00 5.5 1 680 3s 3p 21.470 74.223 3.384S 2.30 5.0 15 625 3s 3p 17.233 83.410 4.163Cl 1.80 5.0 240 3s 3p 38.918 18.987 4.570Ar 2.50 4.5 3 375 3s 3p 52.601 0.712 8.863K 2.50 4.5 6 859 3s 3p | 4s 73.669 3.589 3.789Ca 2.40 4.7 9 261 3s 3p | 4s 42.234 17.333 3.469Sc 2.30 5.0 10 935 3s 3p | 3d 4s 24.625 54.591 3.439Ti 2.10 5.2 16 337 3s 3p | 3d 4s 17.395 112.192 3.590V 2.10 5.2 29 791 3s 3p | 3d 4s 13.469 184.157 3.910Cr 2.10 5.2 13 824 3s 3p | 3d 4s 11.810 184.128 7.278Mn 2.10 5.2 15 680 3s 3p | 3d 4s 11.489 122.568 1.076Fe 2.10 5.2 29 791 3s 3p | 3d 4s 11.385 197.580 3.644Co 2.20 5.0 9 375 3p | 3d 4s 10.885 219.434 5.322Ni 2.20 5.0 15 625 3p | 3d 4s 10.905 202.173 5.059Cu 2.28 5.0 15 625 3d 4s 11.972 141.149 5.088Zn 2.40 4.7 3 757 3d | 4s 15.220 75.199 5.358Ga 2.30 5.0 1 152 3d | 4s 4p 20.311 48.302 5.271Ge 2.30 5.0 4 913 3d | 4s 4p 23.926 59.091 4.991As 2.30 5.0 2 197 3d | 4s 4p 22.617 68.500 4.296Se 2.20 5.0 486 3d | 4s 4p 29.791 47.313 4.630Br 2.10 5.0 360 3d | 4s 4p 39.483 22.434 4.779Kr 2.50 4.5 3 375 4s 4p 66.261 0.620 10.392Rb 2.50 4.5 6 859 4s 4p | 5s 91.066 2.799 3.806Sr 2.40 5.0 9 261 4s 4p | 5s 54.493 11.282 4.542Y 2.30 5.0 9 375 4s 4p | 4d 5s 32.861 41.027 1.790Zr 2.30 5.0 9 375 4s 4p | 4d 5s 23.404 93.599 3.105Nb 2.30 5.0 15 625 4s 4p | 4d 5s 18.163 168.662 3.233Mo 2.20 5.0 15 625 4s 4p | 4d 5s 15.806 259.112 4.433Tc 2.20 5.0 9 375 4s 4p | 4d 5s 14.450 300.101 4.553Ru 2.20 5.0 9 375 4p | 4d 5s 13.783 313.162 4.916Rh 2.20 5.0 15 625 4p | 4d 5s 14.061 258.234 5.246

29

Page 30: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 2.30 5.0 15 625 4p | 4d 5s 15.332 169.300 5.735Ag 2.30 5.0 15 625 4s 4p | 4d 5s 17.844 89.574 5.954Cd 2.50 4.7 3 757 4d | 5s 22.895 43.604 7.093In 2.40 5.0 1 089 4d | 5s 5p 27.582 34.820 5.579Sn 2.30 5.0 4 913 4d | 5s 5p 36.855 35.856 4.720Sb 2.40 5.0 2 197 4d | 5s 5p 31.756 50.566 4.570Te 2.30 5.0 405 4d | 5s 5p 34.999 44.735 4.676I 2.50 4.5 480 4d | 5s 5p 50.274 18.717 5.223Xe 2.50 4.5 3 375 4d | 5s 5p 86.920 0.563 7.631Cs 2.40 4.5 15 625 5s 5p | 6s 116.618 1.959 3.306Ba 2.40 4.5 15 625 5s 5p | 6s 63.209 8.883 3.167Lu 2.30 5.0 9 375 4f 5s 5p | 5d 6s 29.052 47.001 3.775Hf 2.30 5.0 9 375 4f 5s 5p | 5d 6s 22.544 107.882 3.124Ta 2.30 5.0 15 625 4f 5s 5p | 5d 6s 18.290 189.938 3.421W 2.30 5.0 15 625 5s 5p | 5d 6s 16.153 303.713 4.465Re 2.30 5.0 9 375 5s 5p | 5d 6s 14.972 364.930 4.596Os 2.30 5.0 9 375 5p | 5d 6s 14.295 399.584 4.766Ir 2.30 5.0 15 625 5p | 5d 6s 14.505 349.950 5.100Pt 2.30 5.0 15 625 5p | 5d 6s 15.627 250.406 5.834Au 2.30 5.0 15 625 5p | 5d 6s 18.007 140.321 6.015Hg 2.30 5.0 6 859 5p 5d | 6s 29.612 8.055 8.899Tl 2.30 5.0 4 693 5d | 6s 6p 31.352 27.379 5.404Pb 2.30 5.0 15 625 5d | 6s 6p 31.987 39.651 4.823Bi 2.40 5.0 2 197 5d | 6s 6p 36.922 42.647 4.822Po 2.40 5.0 13 824 5d | 6s 6p 37.598 45.146 5.365Rn 2.50 4.5 3 375 5d | 6s 6p 93.218 0.500 8.101

30

Page 31: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S9.1. Overview of the most important features and settings of the FPLO/defaultcalculations.

FPLO/default

name and version of the code: FPLO 14.00-49 (41)type of basis set: numerical atom-centered local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Section additional comments and Table S9.2basis set size default (see below): 5-33 basis orbitals

(typical basis set size of 20)k-mesh density see Table S9.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method linear tetrahedron method (72)

METHOD-SPECIFIC INFORMATION

numerical settings all settings are default settings except fork-mesh (see Table S9.2)

ADDITIONAL COMMENTS

In Table S9.2, the basis set is denoted in the following way: semi-core orbitals are separated by a /, Dnlmeans double basis orbitals, e.g. D3p=3p4p. Ultra soft elements require a (non default) fixed compact supportradius (as was used in the FPLO/T+F+s set of calculations, see Table S11.1). For this reason some of thoseelements (Xe, Rn, Hg) are excluded from the tables. The use of the linear tetrahedron method allows to keepthe relatively small default k-mesh, except for the cases C, Al, Ag, where we used a higher k-point numberfor testing reasons.

31

Page 32: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S9.2. FPLO/default calculation settings and results per element. k-point meshin the full 1st Brillouin zone of the primitive cell kpts and number of irreducible k-points #k, valence, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

kpts [–] # k [–] semi-core/valence V0 [A3/atom] B0 [GPa] B1 [–]H 12× 12× 12 1 728 / D1s 2p 17.814 10.242 2.733He 12× 12× 12 1 728 / D1s 2p 18.006 0.821 6.521Li 12× 12× 12 1 728 1s / D2s D2p 3d 20.296 13.834 3.120Be 12× 12× 12 1 728 1s / D2s D2p 3d 7.960 121.966 3.319B 12× 12× 12 1 728 1s / D2s D2p 3d 7.363 232.928 3.469C 12× 12× 30 4 320 1s / D2s D2p 3d 11.682 208.922 3.591N 12× 12× 12 1 728 1s / D2s D2p 3d 29.250 54.097 3.779O 12× 12× 12 1 728 1s / D2s D2p 3d 18.912 50.506 3.896F 12× 12× 12 1 728 1s / D2s D2p 3d 19.479 33.690 4.080Ne 12× 12× 12 1 728 1s / D2s D2p 3d 24.632 1.212 7.111Na 12× 12× 12 1 728 2s 2p / D3s D3p 3d 37.269 7.732 3.648Mg 12× 12× 12 1 728 2s 2p / D3s D3p 3d 22.958 36.094 4.040Al 30× 30× 30 27 000 2s 2p / D3s D3p 3d 16.511 77.636 4.572Si 12× 12× 12 1 728 2s 2p / D3s D3p 3d 20.563 87.877 4.293P 12× 12× 12 1 728 2s 2p / D3s D3p 3d 21.710 65.989 4.346S 12× 12× 12 1 728 2s 2p / D3s D3p 3d 17.506 82.463 4.066Cl 12× 12× 12 1 728 2s 2p / D3s D3p 3d 40.005 17.915 4.425Ar 12× 12× 12 1 728 2s 2p / D3s D3p 3d 53.005 0.707 8.199K 12× 12× 12 1 728 3s 3p / D4s 4p D3d 73.927 3.550 4.271Ca 12× 12× 12 1 728 3s 3p / D4s 4p D3d 42.376 17.676 2.763Sc 12× 12× 12 1 728 3s 3p / D4s D3d 4p 24.700 54.659 3.483Ti 12× 12× 12 1 728 3s 3p / D4s D3d 4p 17.487 111.484 3.577V 12× 12× 12 1 728 3s 3p / D4s D3d 4p 13.475 181.755 3.911Cr 12× 12× 12 1 728 3s 3p / D4s D3d 4p 11.807 181.337 7.401Mn 12× 12× 12 1 728 3s 3p / D4s D3d 4p 11.136 139.431 7.920Fe 12× 12× 12 1 728 3s 3p / D4s D3d 4p 11.339 194.220 5.085Co 12× 12× 12 1 728 3s 3p / D4s D3d 4p 10.904 217.288 4.927Ni 12× 12× 12 1 728 3s 3p / D4s D3d 4p 10.933 199.420 4.953Cu 12× 12× 12 1 728 3s 3p / D4s D3d 4p 12.006 140.602 5.131Zn 12× 12× 12 1 728 3s 3p / D4s D3d 4p 15.228 76.333 5.243Ga 12× 12× 12 1 728 3s 3p 3d / D4s D4p 4d 20.624 47.270 5.055Ge 12× 12× 12 1 728 3s 3p 3d / D4s D4p 4d 24.074 58.206 4.819As 12× 12× 12 1 728 3s 3p 3d / D4s D4p 4d 22.844 67.087 3.977Se 12× 12× 12 1 728 3s 3p 3d / D4s D4p 4d 30.411 45.391 4.449Br 12× 12× 12 1 728 3s 3p 3d / D4s D4p 4d 40.571 21.231 4.758Kr 12× 12× 12 1 728 3s 3p 3d / D4s D4p 4d 67.977 0.653 0.695Rb 12× 12× 12 1 728 4s 4p / D5s 5p D4d 91.012 2.820 6.216Sr 12× 12× 12 1 728 4s 4p / D5s 5p D4d 54.519 11.780 4.029Y 12× 12× 12 1 728 4s 4p / D5s D4d 5p 32.972 41.360 3.493Zr 12× 12× 12 1 728 4s 4p / D5s D4d 5p 23.564 93.640 3.559Nb 12× 12× 12 1 728 4s 4p / D5s D4d 5p 18.248 169.905 3.789Mo 12× 12× 12 1 728 4s 4p / D5s D4d 5p 15.959 257.816 4.163Tc 12× 12× 12 1 728 4s 4p / D5s D4d 5p 14.604 295.456 4.472Ru 12× 12× 12 1 728 4s 4p / D5s D4d 5p 13.908 310.410 4.914Rh 12× 12× 12 1 728 4s 4p / D5s D4d 5p 14.221 252.623 5.199

32

Page 33: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 12× 12× 12 1 728 4s 4p / D5s D4d 5p 15.530 163.813 5.388Ag 30× 30× 30 27 000 4s 4p / D5s D4d 5p 18.064 89.425 5.818Cd 12× 12× 12 1 728 4s 4p / D5s D4d 5p 22.980 42.652 7.573In 12× 12× 12 1 728 4s 4p 4d / D5s 5d D5p 27.762 34.797 5.249Sn 12× 12× 12 1 728 4s 4p 4d / D5s 5d D5p 37.371 34.251 4.851Sb 12× 12× 12 1 728 4s 4p 4d / D5s 5d D5p 32.267 48.865 4.961Te 12× 12× 12 1 728 4s 4p 4d / D5s 5d D5p 35.738 44.276 4.753I 12× 12× 12 1 728 4s 4p 4d / D5s 5d D5p 52.230 17.377 4.847Cs 12× 12× 12 1 728 5s 5p / D6s D5d 6p 120.034 3.023 −1.799Ba 12× 12× 12 1 728 5s 5p / D6s 5d 6p 64.746 5.905 4.374Lu 12× 12× 12 1 728 5s 5p / D6s D5d 6p D4f 29.242 44.618 1.473Hf 12× 12× 12 1 728 4f 5s 5p / D6s D5d 6p 22.687 107.319 2.917Ta 12× 12× 12 1 728 4f 5s 5p / D6s D5d 6p 18.372 192.520 4.079W 12× 12× 12 1 728 4f 5s 5p / D6s D5d 6p 16.281 299.936 4.293Re 12× 12× 12 1 728 4f 5s 5p / D6s D5d 6p 15.104 350.456 4.364Os 12× 12× 12 1 728 4f 5s 5p / D6s D5d 6p 14.421 386.707 5.033Ir 12× 12× 12 1 728 4f 5s 5p / D6s D5d 6p 14.687 336.516 5.339Pt 12× 12× 12 1 728 5s 5p / D6s D5d 6p 15.861 248.654 4.888Au 12× 12× 12 1 728 5s 5p / D6s D5d 6p 18.201 136.117 5.586Tl 12× 12× 12 1 728 5s 5p 5d / D6s 6d D6p 32.192 25.795 −0.186Pb 12× 12× 12 1 728 5s 5p 5d / D6s 6d D6p 32.238 41.750 7.836Bi 12× 12× 12 1 728 5s 5p 5d / D6s 6d D6p 37.260 41.671 7.016Po 12× 12× 12 1 728 5s 5p 5d / D6s 6d D6p 37.996 44.318 5.586

33

Page 34: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S10.1. Overview of the most important features and settings of the FPLO/T+F calcu-lations.

FPLO/T+F

name and version of the code: FPLO 14.00-49 (41)type of basis set: numerical atom-centered local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Section additional comments and Table S10.2basis set size enhanced (see below): 21-56 basis orbitals

(typical basis set size of 35)k-mesh density see Table S10.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method linear tetrahedron method (72)

METHOD-SPECIFIC INFORMATION

numerical settings all settings are default settingsexcept for the basis and k-mesh(see below and Table S10.2).

ADDITIONAL COMMENTS

We enhanced the default basis according to the following scheme. The core and semi-core orbitals stayuntouched. A double valence basis orbital (e.g. 3d4d) becomes a triple basis orbital (e.g. 3d4d5d) withthe charge parameter Q3 = Q2 + 2 and compression parameter P3 = max(0.85, P2). A single valence basisorbital becomes a double basis orbital with Q2 = Q1 + 2 and P2 = max(0.85, P1). An additional f-orbital isadded with Q = 4 and P = 1. For H and He additionally a single d-orbital (Q = 5, P = 1) is added to thedefault basis. In Table S10.2, the basis set is denoted in the following way: semi-core orbitals are separated bya /, Dnl means double basis orbitals, e.g. D3p=3p4p, Tnl means triple basis orbitals, e.g. T3p=3p4p5p. Theadditional nominal 5f orbital for Lu is of course not identical to the 5f part of its T4f basis states but rather aneffective 7f state. Ultra soft elements require a (non default) fixed compact support radius (as was used in theFPLO/T+F+s set of calculations, see Table S11.1). For this reason some of those elements (Xe, Rn, Hg) areexcluded from the tables. The use of the linear tetrahedron method allows to keep the relatively small defaultk-mesh, except for the cases C, Al, Ag, where we used a higher k-point number for testing reasons.

34

Page 35: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S10.2. FPLO/T+F calculation settings and results per element. k-point mesh in thefull 1st Brillouin zone of the primitive cell kpts and number of irreducible k-points # k, valence,equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

kpts [–] # k [–] semi-core/valence V0 [A3/atom] B0 [GPa] B1 [–]H 12× 12× 12 1 728 / T1s D2p 4f 3d 17.427 10.245 2.612He 12× 12× 12 1 728 / T1s D2p 4f 3d 17.892 0.836 6.491Li 12× 12× 12 1 728 1s / T2s T2p D3d 4f 20.302 13.721 3.142Be 12× 12× 12 1 728 1s / T2s T2p D3d 4f 7.911 123.155 3.311B 12× 12× 12 1 728 1s / T2s T2p D3d 4f 7.274 235.966 3.464C 12× 12× 30 4 320 1s / T2s T2p D3d 4f 11.652 207.885 3.572N 12× 12× 12 1 728 1s / T2s T2p D3d 4f 28.870 53.512 3.756O 12× 12× 12 1 728 1s / T2s T2p D3d 4f 18.695 49.733 3.844F 12× 12× 12 1 728 1s / T2s T2p D3d 4f 19.331 33.727 4.041Ne 12× 12× 12 1 728 1s / T2s T2p D3d 4f 24.480 1.221 7.123Na 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 37.179 7.715 3.670Mg 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 22.936 35.882 4.141Al 30× 30× 30 27 000 2s 2p / T3s T3p D3d 4f 16.488 77.482 4.593Si 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 20.483 88.289 4.297P 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 21.496 67.764 4.332S 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 17.260 84.276 4.129Cl 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 39.134 18.579 4.403Ar 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 52.686 0.719 8.192K 12× 12× 12 1 728 3s 3p / T4s D4p T3d 4f 73.926 3.527 4.289Ca 12× 12× 12 1 728 3s 3p / T4s D4p T3d 4f 42.320 17.476 2.595Sc 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 24.618 54.688 3.413Ti 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 17.396 111.947 3.551V 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 13.447 181.646 3.880Cr 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.785 184.253 7.314Mn 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.468 100.527 8.437Fe 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.359 191.502 5.356Co 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 10.878 216.897 4.965Ni 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 10.908 199.051 4.972Cu 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.974 140.348 5.146Zn 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 15.207 75.445 5.292Ga 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 20.383 48.761 5.182Ge 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 23.924 58.958 4.915As 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 22.633 67.560 4.039Se 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 29.856 46.692 4.446Br 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 39.636 22.145 4.752Kr 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 67.564 0.635 0.529Rb 12× 12× 12 1 728 4s 4p / T5s D5p T4d 4f 90.955 2.805 6.262Sr 12× 12× 12 1 728 4s 4p / T5s D5p T4d 4f 54.443 11.700 4.070Y 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 32.862 41.364 3.525Zr 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 23.403 94.148 3.428Nb 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 18.117 169.586 3.694Mo 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 15.806 259.205 4.263Tc 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 14.467 297.489 4.445Ru 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 13.793 310.576 4.937Rh 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 14.078 255.504 5.197

35

Page 36: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 15.350 166.938 5.306Ag 30× 30× 30 27 000 4s 4p / T5s T4d D5p 4f 17.883 90.451 5.784Cd 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 22.835 43.273 7.811In 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 27.588 35.164 5.243Sn 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 36.922 35.119 4.834Sb 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 31.824 50.010 4.952Te 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 35.169 45.240 4.734I 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 50.976 18.078 3.423Cs 12× 12× 12 1 728 5s 5p / T6s T5d D6p 5f 120.111 3.015 −1.820Ba 12× 12× 12 1 728 5s 5p / T6s D5d D6p 4f 63.901 6.052 6.146Lu 12× 12× 12 1 728 5s 5p / T6s T5d D6p T4f 5f 29.183 44.303 1.445Hf 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 22.584 106.895 2.931Ta 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 18.279 192.499 4.046W 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 16.178 301.300 4.285Re 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 14.994 352.329 4.370Os 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 14.314 389.219 5.053Ir 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 14.532 342.719 5.373Pt 12× 12× 12 1 728 5s 5p / T6s T5d D6p 5f 15.691 254.342 4.624Au 12× 12× 12 1 728 5s 5p / T6s T5d D6p 5f 18.021 138.071 4.300Tl 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 31.889 24.827 −0.475Pb 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 31.972 43.115 7.784Bi 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 36.734 43.808 6.951Po 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 37.458 45.587 5.567

36

Page 37: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S11.1. Overview of the most important features and settings of the FPLO/T+F+scalculations.

FPLO/T+F+s

name and version of the code: FPLO 14.00-49 (41)type of basis set: numerical atom-centered local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Section additional comments and Table S11.2basis set size enhanced (see below): 21-56 basis orbitals

(typical basis set size of 35)k-mesh density see Table S11.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method linear tetrahedron method (72)

METHOD-SPECIFIC INFORMATION

numerical settings all settings are default settingsexcept for the basis, the compact support andk-mesh (see below and Table S11.2).

ADDITIONAL COMMENTS

We enhanced the default basis according to the following scheme. The core and semi-core orbitals stay untouched.A double valence basis orbital (e.g. 3d4d) becomes a triple basis orbital (e.g. 3d4d5d) with the charge parameterQ3 = Q2 + 2 and compression parameter P3 = max(0.85, P2). A single valence basis orbital becomes a doublebasis orbital with Q2 = Q1 + 2 and P2 = max(0.85, P1). An additional f-orbital is added with Q = 4 and P = 1.For H and He additionally a single d-orbital (Q = 5, P = 1) is added to the default basis. The compact supportradius was fixed for all volumes to its default value at the equilibrium volume. This option is only needed for verysoft elements. We use it for all elements for consistency. In Table S11.2, the basis set is denoted in the followingway: semi-core orbitals are separated by a /, Dnl means double basis orbitals, e.g. D3p=3p4p, Tnl means triple basisorbitals, e.g. T3p=3p4p5p. The additional nominal 5f orbital for Lu is of course not identical to the 5f part of its T4fbasis states but rather an effective 7f state. The use of the linear tetrahedron method allows to keep the relativelysmall default k-mesh, except for the cases C, Al, Ag, where we used a higher k-point number for testing reasons.

37

Page 38: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S11.2. FPLO/T+F+s calculation settings and results per element. k-point mesh in thefull 1st Brillouin zone of the primitive cell kpts and number of irreducible k-points # k, valence,equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

kpts [–] # k [–] semi-core/valence V0 [A3/atom] B0 [GPa] B1 [–]H 12× 12× 12 1 728 / T1s D2p 4f 3d 17.416 10.230 2.787He 12× 12× 12 1 728 / T1s D2p 4f 3d 17.907 0.721 6.620Li 12× 12× 12 1 728 1s / T2s T2p D3d 4f 20.187 14.044 3.204Be 12× 12× 12 1 728 1s / T2s T2p D3d 4f 7.875 128.283 2.983B 12× 12× 12 1 728 1s / T2s T2p D3d 4f 7.151 251.656 3.253C 12× 12× 30 4 320 1s / T2s T2p D3d 4f 11.612 210.856 3.464N 12× 12× 12 1 728 1s / T2s T2p D3d 4f 28.869 53.468 3.696O 12× 12× 12 1 728 1s / T2s T2p D3d 4f 18.670 49.820 3.972F 12× 12× 12 1 728 1s / T2s T2p D3d 4f 19.327 33.714 4.038Ne 12× 12× 12 1 728 1s / T2s T2p D3d 4f 24.473 1.320 6.856Na 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 36.671 8.485 3.166Mg 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 22.857 36.700 4.009Al 30× 30× 30 27 000 2s 2p / T3s T3p D3d 4f 16.460 78.338 4.699Si 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 20.448 89.612 4.316P 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 21.439 69.231 4.278S 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 17.171 85.775 4.033Cl 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 39.117 18.691 4.401Ar 12× 12× 12 1 728 2s 2p / T3s T3p D3d 4f 52.751 0.668 4.416K 12× 12× 12 1 728 3s 3p / T4s D4p T3d 4f 73.618 3.634 3.674Ca 12× 12× 12 1 728 3s 3p / T4s D4p T3d 4f 42.049 18.471 2.626Sc 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 24.594 55.191 3.388Ti 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 17.385 113.098 3.476V 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 13.435 183.541 3.783Cr 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.763 187.691 7.436Mn 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.469 101.103 8.298Fe 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.351 193.245 5.231Co 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 10.880 217.588 5.055Ni 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 10.910 199.949 4.840Cu 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 11.976 141.049 4.912Zn 12× 12× 12 1 728 3s 3p / T4s T3d D4p 4f 15.205 75.275 5.178Ga 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 20.144 53.313 4.927Ge 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 23.932 58.748 4.903As 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 22.599 68.041 4.117Se 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 29.730 47.950 4.356Br 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 39.560 22.399 4.801Kr 12× 12× 12 1 728 3s 3p 3d / T4s T4p D4d 4f 66.250 0.685 6.981Rb 12× 12× 12 1 728 4s 4p / T5s D5p T4d 4f 90.498 2.925 3.551Sr 12× 12× 12 1 728 4s 4p / T5s D5p T4d 4f 54.421 11.754 4.369Y 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 32.761 42.457 3.021Zr 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 23.355 95.945 3.286Nb 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 18.112 170.838 3.714Mo 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 15.790 262.153 4.249Tc 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 14.475 297.705 4.348Ru 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 13.802 311.999 4.809Rh 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 14.095 258.215 4.981

38

Page 39: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 15.349 173.757 5.380Ag 30× 30× 30 27 000 4s 4p / T5s T4d D5p 4f 17.876 91.828 5.729Cd 12× 12× 12 1 728 4s 4p / T5s T4d D5p 4f 22.877 44.230 6.688In 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 27.474 36.355 5.227Sn 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 36.748 37.120 4.718Sb 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 31.701 51.432 4.495Te 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 35.074 44.726 4.656I 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 50.758 18.094 5.013Xe 12× 12× 12 1 728 4s 4p 4d / T5s D5d T5p 4f 88.064 0.484 9.704Cs 12× 12× 12 1 728 5s 5p / T6s T5d D6p 4f 116.596 1.968 3.455Ba 12× 12× 12 1 728 5s 5p / T6s D5d D6p 4f 63.231 8.927 3.873Lu 12× 12× 12 1 728 5s 5p / T6s T5d D6p T4f 5f 29.065 47.356 3.411Hf 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 22.514 108.991 3.395Ta 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 18.289 193.127 3.695W 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 16.165 303.073 4.203Re 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 14.989 361.595 4.402Os 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 14.313 395.763 4.793Ir 12× 12× 12 1 728 4f 5s 5p / T6s T5d D6p 5f 14.545 345.626 4.945Pt 12× 12× 12 1 728 5s 5p / T6s T5d D6p 5f 15.703 245.707 5.290Au 12× 12× 12 1 728 5s 5p / T6s T5d D6p 5f 18.062 138.811 5.251Hg 12× 12× 12 1 728 5s 5p / T6s T5d D6p 5f 29.925 7.571 8.395Tl 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 31.424 27.221 5.134Pb 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 31.985 40.331 4.575Bi 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 36.868 42.959 4.691Po 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 37.558 45.949 4.855Rn 12× 12× 12 1 728 5s 5p 5d / T6s D6d T6p 5f 94.269 0.537 7.620

39

Page 40: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S12.1. Overview of the most important features and settings of the RSPt calcula-tions.

RSPt

name and version of the code: RSPt repository revision 1904 (40)type of basis set: linear muffin-tin orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S12.2basis set size see Table S12.2k-mesh density see Table S12.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method modified tetrahedron method on a Fourier

quadrature mesh (73)

METHOD-SPECIFIC INFORMATION

muffin-tin radii 95% of touching, rescaled with volume,except for O and Xe, which had fixedradii of 1.10 and 2.70 bohr radii, respectively

radial mesh 450-600 radial mesh points on a logarithmicgrid, selected automatically.

wave function ` cutoff 8potential and density ` cutoff 8interstitial Fourier mesh see Table S12.2

basis set specification

The default choice (repository revision 1904) is described by the letter ‘V’, indicating ‘valence’, i.e. basisfunctions corresponding to the selected valence electrons, always including s, p and d basis functions abovethe completely filled semi-core shells. Basis functions for the interstitial are spherical Hankel functions atkinetic energies 0.3, -0.6 and -2.3 Ry, the first one being replaced by the average kinetic energy over theinterstitial. s and p basis functions are by default attached to all three tails, d functions, occupied f functionsand semi-core states to tails 1 and 2 and higher polarization functions are attached to only the “interstitialaverage” tail. The most common basis setting is then describable as V+4f, indicating that f electrons wereadded to the normal setting.More complex variations are denoted by specifically singling out the modified shells and describe themseparately after the ‘V+’ symbol, specifying the choice of linearization energy in parentheses () andattached tails in square brackets []. For example, the Na basis (V+4f, including 2s, 2p and 3s electrons)could explicitly be given as:2s(0)[1,2] 2p(0)[1,2] 3s(20)[1,2,3] 3s(21)[1,2,3] 3d(0)[1,2] 4f(0)[1]The meaning of the choices of linearization energies are explained in the RSPt manual.

ADDITIONAL COMMENTS

The LMTO basis set required for high accuracy varies predictably across the periodic table, with the notableexception of Cl, which required a very large basis. The reason for this anomaly is not clear, but goodconvergence was nevertheless achievable. This appears to be a special feature of the Cl dimeric crystalwhich has not been observed in other Cl compounds. A very large basis was also required for the 5d series,where a crossover of the 4f and 5p semi-core bands occur.

40

Page 41: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S12.2. RSPt calculation settings and results per element. Basis (see explanation under‘basis set specification’, Table S12.1), interstitial Fourier mesh, number of k-points in the full 1stBrillouin zone of the primitive cell # k, valence, equilibrium volume per atom V0, bulk modulusB0, pressure derivative of the bulk modulus B1.

Basis FFT # k [–] Valence V0 [ A3

atom ] B0 [GPa] B1 [–]gridH V (42,42,64) 3 888 1s 17.348 10.504 2.580He V (24,24,40) 4 000 1s 17.865 0.824 6.457Li V (30,30,30) 8 000 1s 2s 20.248 13.748 3.129Be V (24,24,40) 2 000 1s 2s 7.906 123.165 3.309B V+4f (45,45,48) 576 2s 2p 7.246 236.771 3.269C V+4f (20,20,72) 4 608 2s 2p 11.649 207.772 3.572N V (64,64,64) 1 000 2s 2p 28.894 53.658 3.683O V (96,96,96) 216 2s 2p 18.566 49.923 3.796F V (96,64,96) 144 2s 2p 19.251 34.415 4.039Ne V (32,32,32) 1 728 2s 2p 27.716 0.496 11.006Na V+4f (30,30,30) 4 608 2s 2p 3s 37.022 7.799 3.759Mg V+4f (24,24,40) 4 000 2s 2p 3s 22.923 36.225 4.024Al V+4f (20,20,20) 6 912 2p 3s 3p 16.493 78.166 4.854Si V+4f (25,25,25) 2 048 2p 3s 3p 20.492 87.962 4.319P V+4f (24,90,36) 560 2p 3s 3p 21.571 67.049 4.338S V+4f (20,20,20) 7 942 3s 3p 17.223 83.465 4.115

Cl V+4f+5g1 4d[3] (48,27,60) 1 024 3s 3p 38.938 24.938 0.1064s[1,2] 4p[1,2]Ar V+4f (32,32,32) 4 096 3s 3p 54.467 0.613 8.809K V+4f (25,25,25) 5 832 3s 3p 4s 73.708 3.601 3.646Ca V+4f (20,20,20) 6 912 3s 3p 4s 42.247 17.565 3.210Sc V+4f (24,24,40) 4 000 3s 3p 3d 4s 24.650 54.649 3.291Ti V+4f (24,24,40) 4 000 3s 3p 3d 4s 17.415 111.675 3.615V V+4f (25,25,25) 4 096 3s 3p 3d 4s 13.470 182.345 3.857Cr V+4f (25,25,25) 32 768 3s 3p 3d 4s 11.838 183.708 −1.489Mn V+4f (24,24,36) 9 216 3s 3p 3d 4s 11.461 118.129 0.173Fe V+4f (25,25,25) 32 768 3s 3p 3d 4s 11.344 195.786 5.599Co V+4f (24,24,40) 20 480 3s 3p 3d 4s 10.866 213.590 4.849Ni V+4f (32,32,32) 16 384 3s 3p 3d 4s 10.898 198.488 4.891Cu V+4f (20,20,20) 16 384 3s 3p 3d 4s 11.965 140.904 5.046Zn V+4f (20,20,40) 4 000 3s 3p 3d 4s 15.214 74.774 5.409Ga V+4f (36,64,36) 864 3d 4s 4p 20.402 48.421 4.979Ge V+4f (25,24,25) 4 000 3d 4s 4p 24.029 58.900 4.572As V+4f (36,36,108) 1 944 3d 4s 4p 22.666 68.064 4.156Se V+4f 4d[3] (36,36,45) 3 375 3d 4s 4p 29.932 46.243 4.363Br V+4f 4d[3] (81,54,96) 1 024 3d 4s 4p 39.875 21.933 4.828Kr V+4f (48,48,48) 4 096 3d 4s 4p 66.723 0.632 6.257Rb V+4f (25,25,25) 4 097 4s 4p 5s 90.905 2.798 3.730Sr V+4f (20,20,20) 6 912 4s 4p 5s 54.449 6.989 9.328Y V+4f (24,24,40) 4 000 4s 4p 4d 5s 32.886 41.158 3.078Zr V+4f (24,24,40) 4 000 4s 4p 4d 5s 23.422 93.632 3.357Nb V+4f (25,25,25) 4 096 4s 4p 4d 5s 18.156 169.960 3.551Mo V+4f (25,25,25) 13 824 4s 4p 4d 5s 15.813 258.382 4.198Tc V+4f (24,24,40) 4 000 4s 4p 4d 5s 14.460 299.496 5.134

41

Page 42: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ru V+4f (24,24,40) 4 000 4s 4p 4d 5s 13.791 310.790 4.907Rh V+4f (20,20,20) 6 912 4s 4p 4d 5s 14.071 256.396 5.221Pd V+4f (20,20,20) 6 912 4s 4p 4d 5s 15.339 168.636 5.534Ag V+4f (25,25,25) 6 912 4s 4p 4d 5s 17.870 90.926 5.774Cd V+4f (20,20,40) 4 000 4s 4p 4d 5s 22.904 42.213 4.704In V+4f 4d[3] (24,24,36) 3 888 4p 4d 5s 5p 27.512 35.448 4.948Sn V+4f 4d[3] (25,25,25) 4 000 4p 4d 5s 5p 37.019 35.578 4.576Sb V+4f 4d[3] (36,36,96) 1 125 4p 4d 5s 5p 31.829 49.781 4.567Te V+4f 4d[3] (27,27,36) 3 072 4d 5s 5p 35.186 43.951 4.589I V+4f 4d[3] (96,56,128) 1 024 4d 5s 5p 50.795 17.952 5.295Xe V+4f 4d[3] (48,48,48) 4 096 4d 5s 5p 92.929 0.539 2.652Cs V+4f[1,2] (25,25,25) 4 096 4d 5s 5p 6s 117.168 1.887 1.462Ba V+4f[1,2] (25,25,25) 4 096 4d 5s 5p 6s 63.267 9.097 2.649

Lu V+5p(-1)[1,2,3] (24,24,40) 4 000 4f 5s 5p 5d 6s 29.090 47.059 3.6224f(-1)[1,2,3]

Hf V+5p(-1)[1,2,3] (24,24,40) 4 000 4f 5s 5p 5d 6s 22.540 106.803 3.4264f(-1)[1,2,3]

Ta V+5p(-1)[1,2,3] (20,20,20) 13 824 4f 5s 5p 5d 6s 18.299 193.397 3.4564f(-1)[1,2,3]

W V+5p(-1)[1,2,3] (20,20,20) 3 456 4f 5s 5p 5d 6s 16.156 299.772 4.3384f(-1)[1,2,3]

Re V+5p(-1)[1,2,3] (24,24,40) 4 000 4f 5s 5p 5d 6s 14.979 362.519 4.3254f(-1)[1,2,3]

Os V+5p(-1)[1,2,3] (24,24,40) 6 912 4f 5s 5p 5d 6s 14.297 396.392 4.7354f(-1)[1,2,3]

Ir V+5p(-1)[1,2,3] (20,20,20) 6 912 4f 5s 5p 5d 6s 14.516 347.483 5.1254f(-1)[1,2,3]Pt V+5f (20,20,20) 6 912 5s 5p 5d 6s 15.666 247.747 5.421Au V+5f (20,20,20) 6 912 5s 5p 5d 6s 18.005 139.347 6.081Hg V+5f (27,27,24) 8 000 5s 5p 5d 6s 30.003 6.958 10.265Tl V+5f (24,24,40) 4 000 5p 5d 6s 6p 31.475 26.455 5.771Pb V+5f 5d(-1)[1,2,3] (20,20,20) 6 912 5p 5d 6s 6p 31.995 38.841 6.350Bi V+5f 5d(-1)[1,2,3] (27,27,72) 4 693 5p 5d 6s 6p 37.021 43.647 7.254Po V+5f 5d(-1)[1,2,3] (20,20,20) 13 824 5d 6s 6p 37.694 45.007 4.887Rn V+5f 5d(-1)[1,2,3] (20,20,20) 6 912 5d 6s 6p 92.476 0.704 5.013

42

Page 43: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S13.1. Overview of the most important features and settings of the WIEN2k/defaultcalculations.

WIEN2k/default

name and version of the code: WIEN2k 13.1 (74)type of basis set: augmented plane waves + local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S13.2basis set size see Table S13.2 (Rmin

MT Kmax)k-mesh density see Table S13.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.001 Ry

METHOD-SPECIFIC INFORMATION

muffin-tin radii see Table S13.2 (RMT )radial mesh 781 radial mesh points on a logarithmic grid

up to the muffin-tin radiuslargest `-value of wave function 12largest `-value of nonspherical 6

Hamiltonian and overlap matrixelements inside the spheres

largest `-value in expansion of 6density and potential

largest vector in Fourier expansion 3 × the magnitude of the smallest vectorof charge density

IFFT-factor 4

ADDITIONAL COMMENTS

none

43

Page 44: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S13.2. WIEN2k/default calculation settings and results per element. Muffin-tinradius RMT , basis set size Rmin

MTKmax, number of k-points in the full 1st Brillouin zone of theprimitive cell # k, valence, equilibrium volume per atom V0, bulk modulus B0, pressure derivativeof the bulk modulus B1.

RMT [b] RminMT Kmax [–] # k [–] valence V0 [A3/atom] B0 [GPa] B1 [–]

H 0.67 3.0 1 152 1s 17.496 10.191 −0.037He 2.50 6.5 2 601 1s 18.060 0.812 8.280Li 2.50 4.5 1 728 1s 2s 20.408 11.327 4.312Be 1.97 5.0 5 808 2s 7.937 103.830 3.278B 1.49 5.0 1 331 2s 2p 7.290 225.838 2.938C 1.27 5.5 1 600 2s 2p 11.687 208.174 3.720N 0.99 6.0 343 2s 2p 29.007 50.154 −0.755O 1.10 6.5 1 452 2s 2p 18.723 51.975 6.084F 1.27 7.0 1 176 2s 2p 19.423 34.082 4.364Ne 2.50 6.5 3 375 2s 2p 24.057 2.772 11.180Na 2.50 6.5 1 000 2s 2p 3s 36.983 7.861 3.066Mg 2.50 6.5 2 048 2s 2p 3s 22.929 36.166 3.956Al 2.50 6.5 5 832 2p 3s 3p 16.550 75.857 3.831Si 2.11 4.5 2 197 2p 3s 3p 20.507 103.451 −4.838P 1.98 5.5 1 152 3s 3p 21.705 65.829 3.234S 2.30 6.0 5 832 3s 3p 17.344 82.202 6.455Cl 1.78 6.5 845 3s 3p 39.267 18.497 5.329Ar 2.50 6.5 1 728 3s 3p 47.660 0.714 3.158K 2.50 6.5 1 331 3s 3p 4s 74.028 2.625 22.468Ca 2.50 6.5 2 197 3s 3p 4s 42.852 14.445 8.368Sc 2.50 7.5 1 800 3s 3p 3d 4s 24.640 54.204 2.363Ti 2.50 7.5 2 601 3s 3p 3d 4s 17.464 114.425 3.843V 2.32 7.5 6 859 3s 3p 3d 4s 13.522 187.103 2.757Cr 2.16 7.5 3 375 3s 3p 3d 4s 11.814 186.309 6.087Mn 2.27 8.0 4 212 3s 3p 3d 4s 11.569 127.069 0.131Fe 2.19 8.0 8 000 3s 3p 3d 4s 11.360 210.015 9.079Co 2.21 8.0 4 851 3s 3p 3d 4s 10.885 210.300 5.103Ni 2.22 8.0 8 000 3s 3p 3d 4s 10.915 206.288 4.812Cu 2.29 8.0 8 000 3s 3p 3d 4s 11.980 142.316 4.711Zn 2.37 8.0 3 249 3s 3p 3d 4s 15.261 76.280 4.972Ga 2.26 7.5 1 440 3d 4s 4p 20.254 50.476 5.568Ge 2.23 7.5 1 728 3d 4s 4p 24.015 60.326 2.912As 2.28 7.5 1 000 3d 4s 4p 22.698 68.305 4.433Se 2.15 7.5 1 296 3d 4s 4p 29.941 47.355 4.357Br 2.11 7.5 845 3d 4s 4p 39.755 22.699 4.740Kr 2.50 7.5 1 331 3d 4s 4p 68.906 0.618 5.462Rb 2.50 6.5 1 331 4s 4p 5s 91.212 3.451 5.407Sr 2.50 6.5 1 728 4s 4p 5s 54.412 9.858 −1.868Y 2.50 7.5 1 183 4s 4p 4d 5s 32.898 41.870 2.438Zr 2.50 7.5 1 800 4s 4p 4d 5s 23.345 96.099 3.776Nb 2.50 8.0 4 913 4s 4p 4d 5s 18.219 178.639 4.749Mo 2.45 7.5 5 832 4s 4p 4d 5s 15.874 261.403 4.312Tc 2.43 8.0 3 240 4s 4p 4d 5s 14.507 306.493 4.923Ru 2.38 8.0 3 610 4s 4p 4d 5s 13.822 319.882 5.006

44

Page 45: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Rh 2.42 8.0 6 859 4s 4p 4d 5s 14.095 266.550 5.644Pd 2.49 8.0 6 859 4s 4p 4d 5s 15.363 174.405 6.035Ag 2.50 8.0 5 832 4s 4p 4d 5s 17.799 97.075 5.353Cd 2.50 8.0 2 312 4s 4p 4d 5s 22.839 43.724 3.937In 2.50 8.0 3 375 4p 4d 5s 5p 27.294 34.755 5.810Sn 2.50 8.0 1 331 4p 4d 5s 5p 37.005 35.939 2.900Sb 2.50 8.0 1 331 4p 4d 5s 5p 31.823 51.163 4.387Te 2.50 8.0 847 4d 5s 5p 35.059 44.950 5.397I 2.47 8.0 400 4d 5s 5p 50.565 18.667 5.193Xe 2.50 8.0 1 331 4d 5s 5p 90.308 0.444 −3.761Cs 2.50 6.5 1 000 4d 5s 5p 6s 115.272 1.835 −4.281Ba 2.50 6.5 1 331 4d 5s 5p 6s 63.033 11.901 13.433Lu 2.50 8.5 1 800 4f 5s 5p 5d 6s 28.986 47.210 4.093Hf 2.50 8.0 2 304 4f 5s 5p 5d 6s 22.487 107.477 3.335Ta 2.50 8.0 4 913 4f 5s 5p 5d 6s 18.312 194.973 4.318W 2.46 8.0 5 832 4f 5s 5p 5d 6s 16.230 311.316 4.134Re 2.46 8.0 3 240 4f 5s 5p 5d 6s 15.029 370.255 4.228Os 2.41 8.5 3 240 4f 5s 5p 5d 6s 14.347 401.787 4.878Ir 2.45 8.5 6 859 4f 5s 5p 5d 6s 14.576 353.286 5.496Pt 2.50 8.5 5 832 5s 5p 5d 6s 15.725 256.514 4.108Au 2.50 8.5 5 832 5s 5p 5d 6s 17.972 144.367 5.937Hg 2.50 8.5 3 375 5s 5p 5d 6s 29.580 6.460 9.813Tl 2.50 8.5 1 183 5p 5d 6s 6p 31.431 26.447 5.091Pb 2.50 8.5 2 744 5p 5d 6s 6p 32.047 38.802 5.281Bi 2.50 8.5 343 5p 5d 6s 6p 36.923 42.917 3.864Po 2.50 8.5 2 744 5d 6s 6p 37.670 45.819 5.821Rn 2.50 8.5 1 331 5d 6s 6p 93.469 0.609 43.588

45

Page 46: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S14.1. Overview of the most important features and settings of the WIEN2k/enhancedcalculations.

WIEN2k/enhanced

name and version of the code: WIEN2k 13.1 (74)type of basis set: augmented plane waves + local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S14.2basis set size see Table S14.2 (Rmin

MT Kmax)k-mesh density see Table S14.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.001 Ry

METHOD-SPECIFIC INFORMATION

muffin-tin radii see Table S14.2 (RMT )radial mesh 781 radial mesh points on a logarithmic grid

up to the muffin-tin radiuslargest `-value of wave function 12largest `-value of nonspherical 6

Hamiltonian and overlap matrixelements inside the spheres

largest `-value in expansion of 6density and potential

largest vector in Fourier expansion 3 × the magnitude of the smallest vectorof charge density

IFFT-factor 4

ADDITIONAL COMMENTS

Compared to WIEN2k/default (Tables S13), this data set uses larger numbers of k-points and largerRmin

MT Kmax, but the muffin-tin radii have remained the same.

46

Page 47: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S14.2. WIEN2k/enhanced calculation settings and results per element. Muffin-tinradius RMT , basis set size Rmin

MTKmax, number of k-points in the full 1st Brillouin zone of theprimitive cell # k, valence, equilibrium volume per atom V0, bulk modulus B0, pressure derivativeof the bulk modulus B1.

RMT [b] RminMT Kmax [–] # k [–] valence V0 [A3/atom] B0 [GPa] B1 [–]

H 0.67 5.0 7 260 1s 17.390 10.275 2.870He 2.50 10.0 15 376 1s 17.839 0.873 6.261Li 2.50 10.0 8 000 1s 2s 20.222 13.847 3.338Be 1.97 10.0 31 941 2s 7.910 123.336 3.321B 1.49 7.5 6 859 2s 2p 7.247 237.549 3.474C 1.27 7.5 10 890 2s 2p 11.655 209.603 3.598N 0.99 7.5 2 197 2s 2p 28.885 54.220 3.724O 1.10 7.5 7 581 2s 2p 18.651 51.884 4.034F 1.27 8.0 6 336 2s 2p 19.293 35.044 4.065Ne 2.50 10.0 21 952 2s 2p 24.326 1.227 6.302Na 2.50 10.0 4 913 2s 2p 3s 37.082 7.728 3.687Mg 2.50 10.0 11 760 2s 2p 3s 22.939 36.016 4.048Al 2.50 10.0 32 768 2p 3s 3p 16.528 77.896 4.579Si 2.11 10.0 13 824 2p 3s 3p 20.524 88.803 4.340P 1.98 10.0 6 174 3s 3p 21.570 68.599 4.400S 2.30 10.0 29 791 3s 3p 17.346 85.445 4.434Cl 1.78 10.0 3 528 3s 3p 39.130 19.245 4.503Ar 2.50 10.0 10 648 3s 3p 52.107 0.793 11.869K 2.50 10.0 8 000 3s 3p 4s 73.694 3.589 3.779Ca 2.50 10.0 12 167 3s 3p 4s 42.202 17.283 3.240Sc 2.50 10.0 10 935 3s 3p 3d 4s 24.667 54.588 3.440Ti 2.50 10.0 14 400 3s 3p 3d 4s 17.485 113.575 3.598V 2.32 10.0 39 304 3s 3p 3d 4s 13.525 184.748 3.886Cr 2.16 10.0 21 952 3s 3p 3d 4s 11.852 183.741 7.420Mn 2.27 10.0 22 528 3s 3p 3d 4s 11.591 125.142 −1.697Fe 2.19 10.0 46 656 3s 3p 3d 4s 11.412 199.196 6.058Co 2.21 10.0 24 624 3s 3p 3d 4s 10.911 219.058 4.728Ni 2.22 10.0 46 656 3s 3p 3d 4s 10.945 202.388 5.028Cu 2.29 10.0 42 875 3s 3p 3d 4s 12.011 142.894 5.086Zn 2.37 10.0 16 335 3s 3p 3d 4s 15.300 74.941 5.311Ga 2.26 10.0 6 800 3d 4s 4p 20.361 49.171 5.399Ge 2.23 10.0 10 648 3d 4s 4p 24.035 59.288 5.053As 2.28 10.0 3 703 3d 4s 4p 22.717 68.891 4.299Se 2.15 10.0 6 400 3d 4s 4p 29.927 47.490 4.475Br 2.11 10.0 3 200 3d 4s 4p 39.689 22.605 4.933Kr 2.50 10.0 8 000 3d 4s 4p 66.007 0.640 7.350Rb 2.50 10.0 5 832 4s 4p 5s 91.035 2.775 4.290Sr 2.50 10.0 9 261 4s 4p 5s 54.564 11.302 3.960Y 2.50 10.0 8 750 4s 4p 4d 5s 32.867 41.200 3.112Zr 2.50 10.0 11 760 4s 4p 4d 5s 23.407 93.948 3.300Nb 2.50 10.0 29 791 4s 4p 4d 5s 18.251 173.352 4.024Mo 2.45 10.0 32 768 4s 4p 4d 5s 15.901 262.805 4.334Tc 2.43 10.0 17 408 4s 4p 4d 5s 14.530 303.673 4.650Ru 2.38 10.0 19 602 4s 4p 4d 5s 13.845 316.446 4.989

47

Page 48: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Rh 2.42 10.0 39 304 4s 4p 4d 5s 14.133 261.017 5.341Pd 2.49 10.0 35 937 4s 4p 4d 5s 15.406 171.793 5.703Ag 2.50 10.0 29 791 4s 4p 4d 5s 17.888 92.004 5.811Cd 2.50 10.0 10 933 4s 4p 4d 5s 22.915 43.937 7.033In 2.50 10.0 19 683 4p 4d 5s 5p 27.506 34.823 4.729Sn 2.50 10.0 8 000 4p 4d 5s 5p 36.995 36.209 4.964Sb 2.50 10.0 8 000 4p 4d 5s 5p 31.868 50.719 4.609Te 2.50 10.0 5 200 4d 5s 5p 35.086 45.022 4.745I 2.47 10.0 2 527 4d 5s 5p 50.510 18.798 5.138Xe 2.50 10.0 6 859 4d 5s 5p 87.107 0.530 6.910Cs 2.50 10.0 4 913 4d 5s 5p 6s 116.088 2.038 5.664Ba 2.50 10.0 8 000 4d 5s 5p 6s 63.258 8.431 2.003Lu 2.50 12.0 9 464 4f 5s 5p 5d 6s 29.084 46.937 3.388Hf 2.50 12.0 11 760 4f 5s 5p 5d 6s 22.555 107.335 3.513Ta 2.50 12.0 29 791 4f 5s 5p 5d 6s 18.348 196.621 3.724W 2.46 12.0 32 768 4f 5s 5p 5d 6s 16.244 304.845 4.340Re 2.46 12.0 17 408 4f 5s 5p 5d 6s 15.046 367.029 4.532Os 2.41 12.0 17 408 4f 5s 5p 5d 6s 14.360 400.613 4.895Ir 2.45 12.0 35 937 4f 5s 5p 5d 6s 14.591 351.433 5.217Pt 2.50 12.0 32 768 5s 5p 5d 6s 15.734 251.419 5.596Au 2.50 12.0 29 791 5s 5p 5d 6s 18.030 140.251 5.916Hg 2.50 12.0 17 576 5s 5p 5d 6s 29.628 8.045 10.276Tl 2.50 12.0 8 125 5p 5d 6s 6p 31.422 26.730 5.397Pb 2.50 12.0 15 625 5p 5d 6s 6p 32.034 39.390 4.738Bi 2.50 12.0 2 166 5p 5d 6s 6p 36.970 42.652 4.639Po 2.50 12.0 13 824 5d 6s 6p 37.613 45.478 4.931Rn 2.50 12.0 5 832 5d 6s 6p 93.358 0.516 3.056

48

Page 49: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S15.1. Overview of the most important features and settings of the WIEN2k/acccalculations.

WIEN2k/acc

name and version of the code: WIEN2k 13.1 (74)type of basis set: augmented plane waves + local orbitalsmethod: all-electron

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S15.2basis set size see Table S15.2 (Rmin

MT Kmax)k-mesh density see Table S15.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.001 Ry

METHOD-SPECIFIC INFORMATION

muffin-tin radii see Table S15.2 (RMT )radial mesh 781 radial mesh points on a logarithmic grid

up to the muffin-tin radiuslargest `-value of wave function 12largest `-value of nonspherical 6

Hamiltonian and overlap matrixelements inside the spheres

largest `-value in expansion of 6density and potential

largest vector in Fourier expansion 3 × the magnitude of the smallest vectorof charge density

IFFT-factor 4

ADDITIONAL COMMENTS

none

49

Page 50: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S15.2. WIEN2k/acc calculation settings and results per element. Muffin-tin radiusRMT , basis set size Rmin

MTKmax, number of k-points in the full 1st Brillouin zone of the primitivecell # k, valence, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of thebulk modulus B1.

RMT [b] RminMT Kmax [–] # k [–] valence V0 [A3/atom] B0 [GPa] B1 [–]

H 0.50 5.0 7 260 1s 17.388 10.284 2.711He 1.60 10.0 15 376 1s 17.771 0.847 7.708Li 1.60 10.0 8 000 1s 2s 20.219 13.839 3.336Be 1.80 10.0 31 941 2s 7.910 122.903 3.036B 1.18 7.5 6 859 2s 2p 7.240 237.290 3.468C 1.10 7.5 10 890 2s 2p 11.637 208.991 3.579N 0.99 7.5 2 197 2s 2p 28.885 54.220 3.724O 1.00 7.5 7 581 2s 2p 18.559 51.378 3.895F 1.10 8.0 6 336 2s 2p 19.167 34.325 3.935Ne 1.60 10.0 21 952 2s 2p 24.249 1.406 14.437Na 1.60 10.0 4 913 2s 2p 3s 37.469 7.472 3.771Mg 1.60 10.0 11 760 2s 2p 3s 22.936 35.933 4.067Al 1.75 10.0 32 768 2p 3s 3p 16.480 78.077 4.570Si 1.57 10.0 13 824 2p 3s 3p 20.453 88.545 4.306P 1.73 10.0 6 174 3s 3p 21.471 68.208 4.348S 1.60 10.0 29 791 3s 3p 17.184 83.407 4.261Cl 1.60 10.0 3 528 3s 3p 38.889 19.081 4.343Ar 1.60 10.0 10 648 3s 3p 52.385 0.743 7.256K 1.60 10.0 8 000 3s 3p 4s 73.679 3.574 4.593Ca 1.60 10.0 12 167 3s 3p 4s 42.199 17.114 3.312Sc 1.60 10.0 10 935 3s 3p 3d 4s 24.620 54.393 3.424Ti 1.60 10.0 14 400 3s 3p 3d 4s 17.390 112.213 3.583V 1.60 10.0 39 304 3s 3p 3d 4s 13.452 181.674 3.745Cr 1.60 10.0 21 952 3s 3p 3d 4s 11.773 183.899 7.158Mn 1.60 10.0 22 528 3s 3p 3d 4s 11.447 118.632 −0.206Fe 1.60 10.0 46 656 3s 3p 3d 4s 11.344 197.652 5.801Co 1.93 10.0 24 624 3s 3p 3d 4s 10.864 216.489 4.363Ni 1.85 10.0 46 656 3s 3p 3d 4s 10.891 199.970 5.006Cu 1.78 10.0 42 875 3s 3p 3d 4s 11.957 141.121 4.845Zn 1.70 10.0 16 335 3s 3p 3d 4s 15.195 74.572 5.271Ga 2.04 10.0 6 800 3d 4s 4p 20.307 49.223 5.384Ge 1.93 10.0 10 648 3d 4s 4p 23.915 59.128 4.988As 1.82 10.0 3 703 3d 4s 4p 22.589 68.285 4.225Se 1.72 10.0 6 400 3d 4s 4p 29.744 47.070 4.441Br 1.64 10.0 3 200 3d 4s 4p 39.447 22.415 4.870Kr 1.60 10.0 8 000 3d 4s 4p 65.658 0.671 9.857Rb 1.89 10.0 5 832 4s 4p 5s 90.809 2.787 5.798Sr 1.76 10.0 9 261 4s 4p 5s 54.527 11.256 3.490Y 1.67 10.0 8 750 4s 4p 4d 5s 32.844 41.593 3.016Zr 1.60 10.0 11 760 4s 4p 4d 5s 23.385 93.684 3.207Nb 1.60 10.0 29 791 4s 4p 4d 5s 18.137 171.270 3.548Mo 1.60 10.0 32 768 4s 4p 4d 5s 15.786 258.928 4.332Tc 1.60 10.0 17 408 4s 4p 4d 5s 14.437 299.149 4.459Ru 1.60 10.0 19 602 4s 4p 4d 5s 13.762 312.502 4.953

50

Page 51: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Rh 1.60 10.0 39 304 4s 4p 4d 5s 14.040 257.824 5.321Pd 1.60 10.0 35 937 4s 4p 4d 5s 15.310 168.629 5.562Ag 1.60 10.0 29 791 4s 4p 4d 5s 17.847 90.148 5.420Cd 1.60 10.0 10 933 4s 4p 4d 5s 22.835 44.082 6.969In 1.98 10.0 19 683 4p 4d 5s 5p 27.471 34.937 4.781Sn 1.88 10.0 8 000 4p 4d 5s 5p 36.817 36.030 4.637Sb 1.80 10.0 8 000 4p 4d 5s 5p 31.730 50.367 4.516Te 2.17 10.0 5 200 4d 5s 5p 34.977 44.787 4.691I 2.06 10.0 2 527 4d 5s 5p 50.233 18.654 5.046Xe 2.00 10.0 6 859 4d 5s 5p 86.681 0.548 6.344Cs 1.90 10.0 4 913 4d 5s 5p 6s 117.080 1.982 2.141Ba 1.83 10.0 8 000 4d 5s 5p 6s 63.140 8.677 3.771Lu 1.60 12.0 9 464 4f 5s 5p 5d 6s 29.054 46.384 2.943Hf 1.60 12.0 11 760 4f 5s 5p 5d 6s 22.532 107.004 3.498Ta 1.60 12.0 29 791 4f 5s 5p 5d 6s 18.286 195.147 3.714W 1.60 12.0 32 768 4f 5s 5p 5d 6s 16.139 301.622 4.279Re 1.60 12.0 17 408 4f 5s 5p 5d 6s 14.958 362.850 4.517Os 1.60 12.0 17 408 4f 5s 5p 5d 6s 14.280 397.259 4.844Ir 1.60 12.0 35 937 4f 5s 5p 5d 6s 14.500 347.680 5.179Pt 1.97 12.0 32 768 5s 5p 5d 6s 15.642 248.711 5.465Au 1.87 12.0 29 791 5s 5p 5d 6s 17.975 139.109 5.757Hg 2.06 12.0 17 576 5s 5p 5d 6s 29.612 8.055 8.899Tl 1.98 12.0 8 125 5p 5d 6s 6p 31.390 26.865 5.489Pb 1.91 12.0 15 625 5p 5d 6s 6p 32.003 39.544 4.533Bi 1.85 12.0 2 166 5p 5d 6s 6p 36.905 42.630 4.705Po 2.31 12.0 13 824 5d 6s 6p 37.587 45.458 4.926Rn 2.16 12.0 5 832 5d 6s 6p 92.685 0.564 8.618

51

Page 52: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S16.1. Overview of the most important features and settings of the GBRV12/ABINITcalculations.

GBRV12/ABINIT

name and version of the code: ABINIT 7.10.2 (75–77)type of basis set: plane wavesmethod: projector-augmented wave (GBRV 1.2 (78))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S16.2 (Zval)basis set size plane-wave cutoff energy = 100 Ryk-mesh density see Table S16.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

energy cutoff for the double grid 300 Ry

ADDITIONAL COMMENTS

The ASE script (46) used to generate these data is available online (48).

52

Page 53: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S16.2. GBRV12/ABINIT calculation settings and results per element. Valence Zval,k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 6 020 17.944 10.485 2.784He N/A N/A N/A N/A N/A N/ALi 3 38×38×38 27 436 20.235 13.871 3.345Be 4 52×52×28 9 828 7.915 122.838 3.315B 3 26×26×24 12 324 7.243 237.546 3.469C 4 48×48×12 10 512 11.654 209.140 3.570N 5 16×16×16 688 29.089 54.218 3.763O 6 26×24×24 7 488 18.692 50.450 3.872F 7 16×28×14 3 136 19.543 34.056 4.301Ne N/A N/A N/A N/A N/A N/ANa 9 32×32×32 16 384 36.992 7.784 3.691Mg 10 36×36×20 9 900 22.988 36.026 4.396Al 3 24×24×24 364 16.488 77.769 5.002Si 4 32×32×32 8 448 20.454 88.933 4.329P 5 30×8×22 1 320 21.731 67.222 4.345S 6 38×38×38 27 436 17.193 84.050 4.072Cl 7 12×24×12 864 38.784 18.961 4.376Ar N/A N/A N/A N/A N/A N/AK 9 20×20×20 220 73.821 3.569 3.774Ca 10 18×18×18 165 42.227 17.617 3.379Sc 11 34×34×20 8 840 24.651 54.467 3.382Ti 12 40×40×22 4 620 17.413 111.832 3.600V 13 34×34×34 969 13.433 183.055 3.890Cr 14 36×36×36 2 280 11.821 181.629 7.079Mn 15 28×28×28 5 488 11.391 110.008 0.632Fe 16 36×36×36 2 280 11.400 191.717 5.167Co 17 46×46×24 13 248 10.838 214.939 4.748Ni 18 28×28×28 1 120 10.860 200.929 5.103Cu 19 28×28×28 560 11.971 141.234 5.039Zn 20 44×44×20 14 740 15.252 74.329 5.423Ga 19 22×12×22 1 452 20.348 48.645 5.501Ge 14 30×30×30 6 975 23.886 58.951 4.859As 5 30×30×10 6 825 22.704 68.719 4.323Se 6 26×26×20 3 510 29.742 47.284 4.475Br 7 12×24×12 864 39.609 22.386 4.861Kr N/A N/A N/A N/A N/A N/ARb 9 18×18×18 165 91.082 2.790 3.681Sr 10 16×16×16 120 54.474 11.248 5.167Y 11 32×32×18 2 448 32.842 41.367 3.154Zr 12 36×36×20 9 900 23.380 93.932 3.276Nb 13 30×30×30 680 18.131 170.040 3.698Mo 14 32×32×32 816 15.785 259.439 4.326Tc 15 42×42×22 9 702 14.423 300.194 4.525Ru 16 42×42×24 5 544 13.745 313.485 4.873Rh 15 26×26×26 455 14.094 256.311 5.218

53

Page 54: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 16 26×26×26 455 15.292 169.102 5.480Ag 19 24×24×24 364 17.894 89.126 6.066Cd 12 38×38×18 9 918 22.858 45.002 7.049In 13 30×30×20 1 200 27.534 35.843 5.086Sn 14 26×26×26 4 563 36.705 36.249 4.909Sb 15 26×26×8 4 108 31.701 50.933 4.528Te 6 26×26×16 8 216 34.926 45.262 4.745I 7 12×22×10 660 50.138 18.684 5.066Xe N/A N/A N/A N/A N/A N/ACs 9 16×16×16 120 116.795 1.967 3.618Ba 10 20×20×20 220 63.391 8.772 2.089Lu N/A N/A N/A N/A N/A N/AHf 12 36×36×20 3 420 22.579 107.548 3.402Ta 13 30×30×30 680 18.297 196.061 3.576W 14 32×32×32 816 16.123 304.147 4.187Re 15 42×42×22 5 082 14.978 365.298 4.444Os 16 42×42×24 5 544 14.251 398.704 4.811Ir 15 26×26×26 455 14.498 349.186 5.150Pt 16 26×26×26 455 15.615 248.578 5.494Au 11 24×24×24 364 17.959 138.821 5.985Hg 12 24×24×28 1 092 29.576 7.708 9.838Tl 13 32×32×18 7 056 31.421 26.534 5.433Pb 14 20×20×20 220 31.969 39.691 5.552Bi 15 26×26×8 4 108 36.948 42.229 4.639Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

54

Page 55: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S17.1. Overview of the most important features and settings of the GPAW06/GPAWcalculations.

GPAW06/GPAW

name and version of the code: GPAW 0.8.0 (79, 80)type of basis set: grid-basedmethod: projector-augmented wave (GPAW 0.6 (81))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S17.2 (Zval)basis set size real-space grid spacing = 0.075 Ak-mesh density see Table S17.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.1 eV

METHOD-SPECIFIC INFORMATION

none

ADDITIONAL COMMENTS

none

55

Page 56: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S17.2. GPAW06/GPAW calculation settings and results per element. Valence Zval, k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 15 × 15 × 11 257 17.465 10.332 2.932He 2 21 × 21 × 11 288 17.693 0.841 6.728Li 1 15 × 15 × 15 344 20.278 14.028 3.412Be 2 21 × 21 × 11 288 8.009 123.338 3.371B 3 13 × 13 × 13 231 7.242 237.135 3.527C 4 17 × 17 × 9 261 11.648 208.653 3.623N 5 11 × 11 × 11 226 28.910 54.005 3.666O 6 15 × 15 × 13 784 19.280 53.607 3.964F 7 17 × 17 × 7 1 012 19.207 33.730 4.501Ne 8 13 × 13 × 13 84 23.751 2.057 20.674Na 1 15 × 15 × 15 344 37.045 7.814 3.913Mg 2 21 × 21 × 11 288 22.971 36.255 4.182Al 3 13 × 13 × 13 84 16.515 78.209 4.610Si 4 15 × 15 × 15 120 20.521 88.830 4.361P 5 15 × 5 × 11 224 21.531 68.072 4.436S 6 19 × 19 × 19 670 17.224 83.735 4.316Cl 7 13 × 13 × 13 595 38.953 19.016 4.590Ar 8 13 × 13 × 13 84 52.661 0.838 3.274K 9 15 × 15 × 15 120 73.782 3.605 2.491Ca 10 13 × 13 × 13 84 42.456 17.399 3.193Sc 11 21 × 21 × 11 288 24.670 53.839 2.540Ti 12 21 × 21 × 11 288 17.257 114.395 3.714V 5 15 × 15 × 15 120 13.729 185.469 4.379Cr 6 15 × 15 × 15 120 11.870 161.790 6.665Mn 7 13 × 13 × 13 196 11.746 126.641 1.116Fe 8 15 × 15 × 15 120 11.478 196.731 5.034Co 9 21 × 21 × 11 288 10.921 212.449 4.997Ni 10 13 × 13 × 13 84 10.917 203.624 4.602Cu 11 13 × 13 × 13 84 12.100 139.364 4.594Zn 12 21 × 21 × 11 288 15.250 75.075 4.797Ga 3 13 × 13 × 11 504 20.524 50.277 5.242Ge 4 15 × 15 × 15 120 23.979 60.055 4.840As 5 17 × 17 × 7 204 22.636 68.863 4.434Se 6 13 × 13 × 13 595 29.749 47.176 4.607Br 7 13 × 13 × 13 595 40.382 20.802 4.658Kr 8 13 × 13 × 13 84 65.583 0.807 13.160Rb 9 15 × 15 × 15 120 91.172 2.694 3.056Sr 10 13 × 13 × 13 84 55.154 11.183 3.684Y N/A N/A N/A N/A N/A N/AZr 12 21 × 21 × 11 288 23.458 94.850 3.384Nb 5 15 × 15 × 15 120 18.232 174.183 3.783Mo 6 15 × 15 × 15 120 15.888 263.725 4.375Tc N/A N/A N/A N/A N/A N/ARu 8 21 × 21 × 11 288 14.090 310.945 4.874Rh 9 13 × 13 × 13 84 14.321 255.152 5.424

56

Page 57: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 10 13 × 13 × 13 84 15.415 167.311 5.975Ag 11 13 × 13 × 13 84 18.067 90.687 5.520Cd 12 21 × 21 × 11 288 22.875 43.266 6.282In 13 19 × 19 × 15 440 27.533 35.147 5.603Sn 14 15 × 15 × 15 120 36.899 35.991 4.899Sb N/A N/A N/A N/A N/A N/ATe 16 13 × 13 × 13 595 34.171 46.105 4.812I 7 13 × 13 × 13 595 51.154 17.551 4.878Xe N/A N/A N/A N/A N/A N/ACs 9 15 × 15 × 15 120 117.011 2.115 3.588Ba 10 15 × 15 × 15 120 63.514 8.930 2.947Lu N/A N/A N/A N/A N/A N/AHf N/A N/A N/A N/A N/A N/ATa 5 15 × 15 × 15 120 18.523 198.352 3.991W 6 15 × 15 × 15 120 16.440 307.490 4.351Re N/A N/A N/A N/A N/A N/AOs 8 21 × 21 × 11 288 14.517 397.939 4.975Ir 9 13 × 13 × 13 84 14.699 351.625 5.385Pt 10 13 × 13 × 13 84 15.790 247.633 5.666Au 11 13 × 13 × 13 84 18.207 137.822 5.772Hg N/A N/A N/A N/A N/A N/ATl N/A N/A N/A N/A N/A N/APb 14 13 × 13 × 13 84 32.103 39.060 5.556Bi 15 17 × 17 × 7 204 36.973 42.857 4.761Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

57

Page 58: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S18.1. Overview of the most important features and settings of the GPAW09/ABINITcalculations.

GPAW09/ABINIT

name and version of the code: ABINIT 7.10.2 (75–77)type of basis set: plane wavesmethod: projector-augmented wave (GPAW 0.9 (27, 81))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S18.2 (Zval)basis set size plane-wave cutoff energy = 100 Ryk-mesh density see Table S18.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

energy cutoff for the double grid 300 Ry

ADDITIONAL COMMENTS

The ASE script (46) used to generate these data is available online (48).

58

Page 59: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S18.2. GPAW09/ABINIT calculation settings and results per element. Valence Zval,k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 7 840 17.458 10.341 2.685He 2 40×40×22 8 800 17.788 0.865 6.239Li 1 38×38×38 27 436 20.256 14.042 3.381Be 2 52×52×28 18 928 8.002 123.654 3.345B 3 26×26×24 8 112 7.231 237.929 3.472C 4 48×48×12 6 912 11.626 209.404 3.555N 5 16×16×16 176 28.780 54.296 3.732O 6 26×24×24 3 744 18.404 52.120 3.892F 7 16×28×14 3 136 19.155 34.243 3.637Ne 8 22×22×22 286 24.355 1.188 5.750Na 7 32×32×32 16 384 37.065 7.701 3.691Mg 10 36×36×20 6 480 22.898 36.138 4.069Al 3 24×24×24 364 16.513 78.189 4.943Si 4 32×32×32 16 384 20.523 88.382 4.324P 5 30×8×22 1 320 21.521 68.100 4.347S 6 38×38×38 27 436 17.236 84.023 4.073Cl 7 12×24×12 864 38.861 19.035 4.348Ar 8 16×16×16 120 52.281 0.764 7.317K 9 20×20×20 220 73.581 3.582 3.263Ca 10 18×18×18 165 42.406 17.823 3.114Sc 11 34×34×20 5 780 24.623 54.640 3.463Ti 12 40×40×22 8 800 17.437 112.133 3.590V 13 34×34×34 969 13.546 181.724 3.741Cr 6 36×36×36 1 140 11.807 163.069 7.502Mn 15 28×28×28 2 744 11.389 113.075 2.438Fe 8 36×36×36 1 140 11.504 190.093 5.333Co 9 46×46×24 12 696 10.920 215.299 4.613Ni 16 28×28×28 560 10.980 203.358 5.003Cu 11 28×28×28 560 12.091 137.197 5.006Zn 12 44×44×20 9 680 15.165 75.779 5.348Ga 3 22×12×22 1 452 20.439 50.032 5.445Ge 4 30×30×30 13 500 23.959 60.081 4.912As 5 30×30×10 4 500 22.633 68.924 4.326Se 6 26×26×20 6 760 29.748 47.391 4.484Br 7 12×24×12 432 39.717 22.387 4.849Kr 8 16×16×16 120 66.017 0.648 7.967Rb 9 18×18×18 165 91.041 2.794 3.712Sr 10 16×16×16 120 54.868 10.859 5.279Y 11 32×32×18 4 608 32.860 41.314 3.161Zr 12 36×36×20 6 480 23.395 93.592 3.236Nb 13 30×30×30 680 18.084 169.770 3.667Mo 14 32×32×32 816 15.797 256.468 4.277Tc N/A N/A N/A N/A N/A N/ARu 16 42×42×24 10 584 13.720 309.854 4.850Rh 15 26×26×26 455 14.106 253.846 5.285

59

Page 60: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 16 26×26×26 455 15.257 170.297 5.559Ag 17 24×24×24 364 17.811 92.108 6.431Cd 12 38×38×18 6 498 22.595 46.201 7.041In 13 30×30×20 1 200 27.382 36.297 4.991Sn 14 26×26×26 8 788 36.852 35.770 4.918Sb 15 26×26×8 2 704 31.745 50.334 4.539Te 6 26×26×16 5 408 34.843 45.097 4.717I 7 12×22×10 330 50.547 18.595 5.079Xe 8 14×14×14 84 86.765 0.542 7.216Cs 9 16×16×16 120 116.931 1.965 3.482Ba 10 20×20×20 220 63.561 8.967 2.102Lu N/A N/A N/A N/A N/A N/AHf 12 36×36×20 6 480 22.540 108.654 3.432Ta 13 30×30×30 680 18.281 195.086 3.689W 14 32×32×32 816 16.098 304.135 4.117Re 13 42×42×22 9 702 14.934 364.161 4.401Os 14 42×42×24 10 584 14.210 399.271 4.821Ir 15 26×26×26 455 14.457 348.721 5.208Pt 16 26×26×26 455 15.600 246.477 5.552Au 11 24×24×24 364 18.178 137.671 5.898Hg 18 24×24×28 1 092 29.547 8.559 10.946Tl 13 32×32×18 4 608 31.159 27.221 5.427Pb 14 20×20×20 220 31.889 40.089 5.587Bi 15 26×26×8 2 704 36.989 42.457 4.651Po N/A N/A N/A N/A N/A N/ARn 8 14×14×14 84 92.788 0.544 6.684

60

Page 61: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S19.1. Overview of the most important features and settings of the GPAW09/GPAWcalculations.

GPAW09/GPAW

name and version of the code: GPAW 0.10.0 (79, 80)type of basis set: grid-basedmethod: projector-augmented wave (GPAW 0.9 (81))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S19.2 (Zval)basis set size real-space grid spacing = 0.08 Ak-mesh density see Table S19.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

none

ADDITIONAL COMMENTS

The ASE script (46) used to generate these data is available online (48).

61

Page 62: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S19.2. GPAW09/GPAW calculation settings and results per element. Valence Zval, k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 7 840 17.462 10.329 2.743He 2 40×40×22 8 800 17.583 0.869 4.874Li 1 38×38×38 27 436 20.240 14.133 3.452Be 2 52×52×28 18 928 8.008 123.420 3.367B 3 26×26×24 8 112 7.243 237.629 3.306C 4 48×48×12 6 912 11.648 208.928 3.570N 5 16×16×16 176 28.820 53.862 3.438O 6 26×24×24 3 744 18.544 51.859 4.098F 7 16×28×14 3 136 19.248 34.060 3.942Ne 8 22×22×22 286 26.239 1.341 −11.527Na 7 32×32×32 16 384 37.233 7.596 3.726Mg 10 36×36×20 6 480 22.890 36.229 4.019Al 3 24×24×24 364 16.515 78.213 4.950Si 4 32×32×32 16 384 20.521 88.720 4.275P 5 30×8×22 1 320 21.528 68.008 4.475S 6 38×38×38 27 436 17.223 82.420 3.634Cl 7 12×24×12 864 38.957 19.009 4.331Ar 8 16×16×16 120 52.308 0.729 11.207K 9 20×20×20 220 73.556 3.692 3.519Ca 10 18×18×18 165 42.402 17.543 3.633Sc 11 34×34×20 5 780 24.576 54.970 3.340Ti 12 40×40×22 8 800 17.430 111.636 4.185V 13 34×34×34 969 13.541 182.380 3.743Cr 6 36×36×36 1 140 11.851 163.951 7.354Mn 15 28×28×28 2 744 11.476 121.042 0.651Fe 8 36×36×36 1 140 11.480 193.333 4.672Co 9 46×46×24 12 696 10.920 216.119 4.685Ni 16 28×28×28 560 10.985 205.177 4.946Cu 11 28×28×28 560 12.088 136.753 5.333Zn 12 44×44×20 9 680 15.137 75.919 5.174Ga 3 22×12×22 1 452 20.519 50.233 5.498Ge 4 30×30×30 13 500 23.980 60.822 4.653As 5 30×30×10 4 500 22.635 68.909 4.327Se 6 26×26×20 6 760 29.745 46.787 4.714Br 7 12×24×12 432 39.762 22.245 4.937Kr 8 16×16×16 120 66.011 0.630 7.875Rb 9 18×18×18 165 90.856 2.902 4.385Sr 10 16×16×16 120 54.894 10.763 5.398Y 11 32×32×18 4 608 32.831 41.332 3.153Zr 12 36×36×20 6 480 23.330 93.859 3.469Nb 13 30×30×30 680 18.047 170.104 3.770Mo 14 32×32×32 816 15.771 257.627 4.177Tc N/A N/A N/A N/A N/A N/ARu 16 42×42×24 10 584 13.737 309.051 4.941Rh 15 26×26×26 455 14.140 253.090 5.323

62

Page 63: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 16 26×26×26 455 15.303 170.356 5.671Ag 17 24×24×24 364 17.819 92.070 5.907Cd 12 38×38×18 6 498 22.586 46.655 6.882In 13 30×30×20 1 200 27.300 36.377 5.114Sn 14 26×26×26 8 788 36.611 35.531 4.797Sb 15 26×26×8 2 704 31.594 50.515 4.618Te 6 26×26×16 5 408 34.707 45.463 4.746I 7 12×22×10 330 50.586 18.572 5.013Xe 8 14×14×14 84 89.606 0.566 −10.282Cs 9 16×16×16 120 117.021 1.977 3.783Ba 10 20×20×20 220 63.616 8.932 2.515Lu N/A N/A N/A N/A N/A N/AHf 12 36×36×20 6 480 22.593 108.853 3.468Ta 13 30×30×30 680 18.305 195.375 3.704W 14 32×32×32 816 16.119 304.069 4.135Re 13 42×42×22 9 702 14.927 364.389 4.430Os 14 42×42×24 10 584 14.196 399.494 4.818Ir 15 26×26×26 455 14.453 348.437 5.056Pt 16 26×26×26 455 15.624 245.066 5.231Au 11 24×24×24 364 18.222 136.482 5.312Hg 18 24×24×28 1 092 29.087 8.844 8.576Tl 13 32×32×18 4 608 31.129 27.726 5.192Pb 14 20×20×20 220 31.774 40.658 5.247Bi 15 26×26×8 2 704 36.831 42.685 4.415Po N/A N/A N/A N/A N/A N/ARn 8 14×14×14 84 92.855 0.681 9.916

63

Page 64: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S20.1. Overview of the most important features and settings of the JTH01/ABINITcalculations.

JTH01/ABINIT

name and version of the code: ABINIT 7.5.3 (75–77)type of basis set: plane wavesmethod: projector-augmented wave (JTH1 (27, 82, 83))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S20.2basis set size cutoff energy = 20 Hak-mesh density 6 750/N k-points in the

full first Brillouin zone of an N -atom cellreciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.002 Ha

METHOD-SPECIFIC INFORMATION

PAW radii see Table S20.2 (RPAW )PAW cutoff energy 20 HaPAW cutoff augmentation energy 40 HaPartial-wave basis size 2 elements per `-value

except for H, He, Li (one p element)and Ga, Ge, In, K, Kr, Pb and Sn (one d element)

ADDITIONAL COMMENTS

PAW dataset generator ATOMPAW 3.1.0.2 (82)

64

Page 65: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S20.2. JTH01/ABINIT calculation settings and results per element. Valence, PAWradius RPAW , equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

valence RPAW [a.u.] V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 1p0 1.0 17.42891 10.28346 3.719He 1s2 1p0 1.3 17.82441 0.83567 6.413Li 1s2 2s1 1p0 1.6 20.23673 13.80591 3.344Be 1s2 2s2 1.3 7.90902 122.23427 2.891B 2s2 2p1 1.7 7.24585 237.21331 3.487C 2s2 2p2 1.55 11.66043 213.85783 2.594N 2s2 2p3 1.2 28.93696 55.05401 2.963O 2s2 2p4 1.4 18.58836 51.34026 3.880F 2s2 2p5 1.4 19.29223 35.23528 4.276Ne 2s2 2p6 1.8 24.23408 1.33457 13.286Na 2s2 2p6 3s1 1.8 37.11691 7.99425 3.227Mg 2s2 2p6 3s2 1.9 22.99185 35.65583 4.271Al 3s2 3p1 1.9 16.47564 77.73267 4.560Si 3s2 3p2 1.9 20.53424 88.13173 4.364P 3s2 3p3 1.9 21.57113 67.40838 4.364S 3s2 3p4 1.9 17.31878 80.58862 3.863Cl 3s2 3p5 1.8 39.16074 18.46534 4.448Ar 3s2 3p6 1.8 52.23071 0.74955 6.567K 3s2 3p6 4s1 3d0 2.1 73.77139 3.62522 3.658Ca 3s2 3p6 4s2 3d0 1.9 42.13974 17.44360 3.823Sc 3s2 3p6 4s2 3d1 2.4 24.64343 54.20351 3.356Ti 3s2 3p6 4s1 3d3 2.3 17.43943 111.33248 3.582V 3s2 3p6 4s2 3d3 2.2 13.50749 180.77544 3.818Cr 3s2 3p6 4s1 3d5 2.1 11.89846 174.61933 6.518Mn 3s2 3p6 4s1 3d6 2.1 11.58353 110.57780 2.073Fe 3s2 3p6 4s1 3d7 2.1 11.46507 185.27502 4.325Co 3s2 3p6 4s1 3d8 2.1 10.94555 209.20659 5.147Ni 3s2 3p6 4s2 3d8 2.1 10.98538 195.04959 4.806Cu 3s2 3p6 4s1 3d10 2.2 12.00941 139.35753 5.169Zn 4s2 4p0 3d10 2.3 15.31269 74.63335 5.868Ga 4s2 4p1 3d10 2.31 20.39324 49.90232 5.286Ge 4s2 4p2 3d10 2.3 24.16805 59.14874 4.895As 4s2 4p3 2.2 22.55430 68.80630 4.400Se 4s2 4p4 2.2 29.96519 46.92162 4.420Br 4s2 4p5 2.2 39.76958 22.16956 4.958Kr 4s2 4p6 4d0 2.2 65.61745 0.66575 7.041Rb 4s2 4p6 5s1 4d0 2.3 91.11045 2.75660 3.576Sr 4s2 4p6 5s1 4d1 2.21 54.63677 11.62676 3.449Y 4s2 4p6 5s2 4d1 2.21 32.88362 40.84671 3.093Zr 4s2 4p6 5s1 4d3 2.21 23.39812 93.38537 3.308Nb 4s2 4p6 5s1 4d4 2.21 18.13594 169.36451 3.672Mo 4s2 4p6 5s1 4d5 2.2 15.81129 259.30147 4.058Tc 4s2 4p6 5s1 4d6 2.2 14.46649 301.41262 4.603Ru 4s2 4p6 5s1 4d7 2.2 13.82013 307.96378 4.297Rh 4s2 4p6 5s1 4d8 2.4 14.08022 261.48262 5.066Pd 4s2 4p6 5s1 4d9 2.5 15.32170 166.63735 5.830

65

Page 66: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 5s1 5p0 4d10 2.5 17.82260 91.32391 5.846Cd 5s2 5p0 4d9.5 2.5 22.76797 44.17371 6.759In 5s2 5p1 5d0 2.9 27.56282 36.88450 5.224Sn 5s2 5p2 5d0 2.7 36.90882 36.05080 4.883Sb 5s2 5p3 2.3 31.81352 50.68865 4.654Te 5s2 5p4 2.3 34.97375 45.13662 4.735I 5s2 5p5 2.3 50.41409 18.72654 5.018Xe 5s2 5p6 2.4 87.14873 0.53582 4.918Cs 5s2 5p6 6s1 5d0 2.45 117.82868 2.05877 1.843Ba 5s2 5p6 6s2 5d0 2.3 63.23845 8.77715 2.243Lu 5s2 5p6 6s2 5d1 4f14 2.5 29.05223 47.68307 3.519Hf 5s2 5p6 6s2 5d2 2.41 22.54013 107.62002 3.303Ta 5s2 5p6 6s2 5d3 2.41 18.30301 195.94631 3.794W 5s2 5p6 6s2 5d4 2.41 16.17507 303.98275 4.152Re 5s2 5p6 6s2 5d5 2.4 14.98499 364.96449 4.376Os 5p6 6s1 5d7 2.5 14.32062 425.11571 4.549Ir 5p6 6s1 5d8 2.5 14.55237 347.21064 5.034Pt 6s1 7p0 5d9 2.5 15.68200 250.05791 5.560Au 6s1 7p0 5d10 2.5 18.01243 140.30702 5.501Hg 6s2 7p0 5d10 2.4 29.65450 8.84950 12.145Tl 6s2 6p1 2.9 31.42413 27.78389 5.431Pb 6s2 6p2 6d0 2.9 32.02008 41.11044 5.147Bi 6s2 6p3 2.9 36.92694 43.22333 4.717Po 6s2 6p4 2.9 37.57228 46.07731 4.848Rn 6s2 6p6 2.3 92.80198 0.61546 8.807

66

Page 67: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S21.1. Overview of the most important features and settings of the JTH02/ABINITcalculations.

JTH02/ABINIT

name and version of the code: ABINIT 7.7.3 (75–77)type of basis set: plane wavesmethod: projector-augmented wave (JTH2 (27, 82, 83))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S21.2basis set size cutoff energy = 20 Hak-mesh density 6 750/N k-points in the

full first Brillouin zone of an N -atom cellreciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.002 Ha

METHOD-SPECIFIC INFORMATION

PAW radii see Table S21.2 (RPAW )PAW cutoff energy 20 HaPAW cutoff augmentation energy 40 HaPartial-wave basis size 2 elements per `-value

except for H, He, Li (one p element)and In, K, Kr, Pb, Rb and Sn (one d element)

ADDITIONAL COMMENTS

PAW dataset generator ATOMPAW 4.0.0.8 (82)

67

Page 68: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S21.2. JTH02/ABINIT calculation settings and results per element. Valence, PAWradius RPAW , equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

valence RPAW [a.u.] V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 1p0 0.9 17.49784 10.19793 3.158He 1s2 1p0 1.3 17.82456 0.83536 6.413Li 1s2 2s1 1p0 1.6 20.23660 13.80609 3.344Be 1s2 2s2 1.3 7.90864 122.23486 2.890B 2s2 2p1 1.7 7.24518 237.25091 3.487C 2s2 2p2 1.5 11.67933 212.34059 2.615N 2s2 2p3 1.2 28.93191 55.07215 2.964O 2s2 2p4 1.4 18.58084 51.38422 3.881F 2s2 2p5 1.4 19.17107 35.54535 4.280Ne 2s2 2p6 1.8 24.24011 1.32984 13.318Na 2s2 2p6 3s1 1.6 37.14517 7.96228 3.165Mg 2s2 2p6 3s2 1.9 22.99173 35.65411 4.272Al 3s2 3p1 1.9 16.47447 77.74370 4.560Si 3s2 3p2 1.9 20.43663 88.78771 4.362P 3s2 3p3 1.9 21.43844 67.88073 4.375S 3s2 3p4 1.9 17.16799 83.68796 4.129Cl 3s2 3p5 1.8 38.88399 18.80925 4.305Ar 3s2 3p6 1.8 52.20238 0.75000 6.572K 3s2 3p6 4s1 3d0 2.1 73.78410 3.62429 3.657Ca 3s2 3p6 4s2 3d0 1.9 42.13759 17.44248 3.821Sc 3s2 3p6 4s2 3d1 2.4 24.62186 54.28881 3.361Ti 3s2 3p6 4s1 3d3 2.3 17.44179 111.26898 3.586V 3s2 3p6 4s2 3d3 2.2 13.49462 180.72451 3.812Cr 3s2 3p6 4s1 3d5 2.1 11.76507 176.02398 6.499Mn 3s2 3p6 4s1 3d6 2.1 11.46933 109.23894 1.795Fe 3s2 3p6 4s1 3d7 2.1 11.35042 188.26412 4.337Co 3s2 3p6 4s1 3d8 2.1 10.88408 212.91538 5.008Ni 3s2 3p6 4s2 3d8 1.8 10.92726 195.27345 4.504Cu 3s2 3p6 4s1 3d10 2.0 11.98367 143.88972 3.113Zn 4s2 4p0 3d10 2.3 15.17410 75.61000 5.861Ga 4s2 4p1 3d10 2.1 20.35737 48.97476 5.259Ge 4s2 4p2 3d10 2.3 23.95958 58.74576 4.844As 4s2 4p3 2.1 22.62141 68.66612 4.408Se 4s2 4p4 2.2 29.76678 47.18222 4.410Br 4s2 4p5 2.2 39.42359 22.42968 4.955Kr 4s2 4p6 4d0 2.2 65.58856 0.66720 7.045Rb 4s2 4p6 5s1 4d0 2.3 91.35346 2.76524 3.710Sr 4s2 4p6 5s1 4d1 2.3 54.83515 11.56932 3.512Y 4s2 4p6 5s2 4d1 2.21 32.87966 40.84792 3.095Zr 4s2 4p6 5s1 4d3 2.21 23.39635 93.35861 3.307Nb 4s2 4p6 5s1 4d4 2.21 18.13436 169.29464 3.675Mo 4s2 4p6 5s1 4d5 2.2 15.81522 259.13798 4.065Tc 4s2 4p6 5s1 4d6 2.2 14.42049 300.50292 4.496Ru 4s2 4p6 5s1 4d7 2.2 13.75825 310.20598 4.882Rh 4s2 4p6 5s1 4d8 2.4 14.02331 259.21608 5.199Pd 4s2 4p6 5s1 4d9 2.5 15.34098 165.54672 5.834

68

Page 69: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 5s1 5p0 4d10 2.5 17.82774 91.16985 5.846Cd 5s2 5p0 4d9.5 2.5 22.83952 43.96281 6.457In 5s2 5p1 5d0 2.9 27.56008 36.89393 5.224Sn 5s2 5p2 5d0 2.7 36.90498 36.06134 4.883Sb 5s2 5p3 2.3 31.81108 50.69800 4.654Te 5s2 5p4 2.3 34.97177 45.14244 4.735I 5s2 5p5 2.3 50.40996 18.73037 5.018Xe 5s2 5p6 2.4 86.82364 0.53258 3.803Cs 5s2 5p6 6s1 5d0 2.2 117.24092 1.95497 4.664Ba 5s2 5p6 6s2 5d0 2.3 63.61502 8.95960 1.790Lu 5s2 5p6 6s2 5d1 4f14 2.5 29.05320 47.69130 3.517Hf 5s2 5p6 6s2 5d2 2.41 22.54152 107.55827 3.302Ta 5s2 5p6 6s2 5d3 2.41 18.30307 195.82211 3.794W 5s2 5p6 6s2 5d4 2.41 16.15981 304.55240 4.143Re 5s2 5p6 6s2 5d5 2.4 14.96913 365.51908 4.377Os 5p6 6s1 5d7 2.5 14.29122 401.51823 4.791Ir 5p6 6s1 5d8 2.5 14.50797 349.66966 5.029Pt 6s1 7p0 5d9 2.5 15.67922 250.16206 5.560Au 6s1 7p0 5d10 2.5 18.01120 140.30086 5.501Hg 6s2 7p0 5d10 2.4 29.54526 9.07820 12.115Tl 6s2 6p1 2.9 31.42148 27.79113 5.431Pb 6s2 6p2 6d0 2.9 32.01765 41.11989 5.147Bi 6s2 6p3 2.9 36.92422 43.23146 4.717Po 6s2 6p4 2.9 37.57022 46.08312 4.848Rn 6s2 6p6 2.3 92.79747 0.61552 8.806

69

Page 70: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S22.1. Overview of the most important features and settings of the PSlib031/QEcalculations.

PSlib031/QE

name and version of the code: QUANTUM ESPRESSO 5.1 (84)type of basis set: plane wavesmethod: projector-augmented wave (pslibrary.0.3.1 (85, 86))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S22.2basis set size see Table S22.2 (wave function cutoff ewfc

cut )k-mesh density 20× 20× 20reciprocal-space integration method Marzari-Vanderbilt cold smearing (87) with a fictitious

temperature corresponding to 0.002 Ry(0.02 Ry when required to achieve convergence)

METHOD-SPECIFIC INFORMATION

wave function cutoff see Table S22.2 (ewfccut )

density cutoff see Table S22.2 (erhocut )

ADDITIONAL COMMENTS

none

70

Page 71: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S22.2. PSlib031/QE calculation settings and results per element. Wave functioncutoff ewfc

cut , density cutoff erhocut , valence, equilibrium volume per atom V0, bulk modulus B0,pressure derivative of the bulk modulus B1.

ewfccut [Ry] erhocut [Ry] valence V0 [A3/atom] B0 [GPa] B1 [–]

H 92 442 1s1 17.420 10.298 2.701He 150 1200 1s2 17.415 0.949 6.256Li 156 710 1s22s1 20.235 13.836 3.332Be 60 394 2s22p0 7.862 124.309 3.289B 86 340 2s22p1 7.245 235.870 3.158C 74 294 2s22p2 11.627 209.434 3.578N 78 528 2s22p3 29.134 54.223 3.752O 100 800 2s22p4 18.617 50.669 3.851F 150 1200 2s22p5 19.301 34.133 4.069Ne 150 1200 2s22p6 24.068 1.377 6.489Na 103 408 2s22p63s0.53p0 37.082 7.729 3.656Mg 26 174 3s23p0 22.877 36.591 4.056Al 72 290 3s23p1 16.457 78.017 4.603Si 76 302 3s23p2 20.419 88.927 4.321P 34 158 3s23p3 21.337 68.787 4.296S 34 154 3s23p4 17.139 84.008 4.070Cl 72 292 3s23p5 38.137 19.637 4.510Ar 150 1200 3s23p6 52.301 0.756 7.320K 68 322 3s23p64s1 73.797 3.599 3.176Ca 72 340 3s23p64s2 41.921 17.533 3.415Sc 92 954 3s23p63d14s2 24.629 54.741 3.409Ti 100 1476 3s23p63d24s24p0 17.394 112.325 3.565V 94 428 3s23p63d34s2 13.500 182.264 3.858Cr 125 598 3s23p63d54s1 11.851 182.668 6.635Mn 92 488 3s23p63d54s2 11.486 115.607 2.903Fe 128 1564 3s23p63d64s24p0 11.355 204.968 4.680Co 80 472 3d74s24p0 10.910 222.678 4.984Ni 82 472 3d84s24p0 10.931 201.439 4.921Cu 66 266 3d9.54s1.54p0 12.106 128.272 7.367Zn 150 1200 3d104s24p0 15.176 73.491 5.510Ga 66 268 3d104s24p1 20.451 49.270 4.194Ge 72 480 3d104s24p2 23.904 59.112 4.860As 40 206 4s24p3 22.625 68.706 4.260Se 42 190 4s24p4 29.873 47.772 4.386Br 50 216 4s24p5 39.551 22.884 4.890Kr 150 1200 4s24p6 66.025 0.649 7.248Rb 56 434 4s24p65s15p0 91.030 2.793 3.781Sr 62 760 4s24p65s25p0 54.919 11.825 3.261Y 72 504 4s24p64d15s25p0 32.885 40.918 3.030Zr 82 652 4s24p64d25s25p0 23.465 94.667 3.366Nb 84 728 4s24p64d45s2 18.149 170.207 3.713Mo 96 898 4s24p64d55s15p0 15.807 259.658 4.235Tc 124 1664 4s24p64d55s25p0 14.444 300.193 4.531Ru 200 1500 4s24p64d65s25p0 13.835 304.887 4.852Rh 110 878 4s24p64d85s15p0 14.126 256.731 5.227

71

Page 72: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 64 266 4d9.55s0.55p0 15.404 168.009 5.573Ag 64 330 4d9.55s0.55p0 17.955 90.966 5.944Cd 74 358 4d9.55s25p0.5 22.867 44.465 6.380In 96 380 4d105s25p1 27.480 35.615 4.997Sn 50 204 4d105s25p2 36.970 35.620 4.762Sb 66 264 5s25p3 31.774 50.934 4.536Te 150 1200 4d105s25p4 35.098 44.362 4.707I 48 218 5s25p5 49.976 19.217 5.057Xe 250 2500 4d105s25p6 85.869 0.687 7.742Cs 70 280 5s25p66s1 117.457 1.959 3.565Ba 56 332 5s25p66s26p0 63.773 8.357 0.020Lu N/A N/A N/A N/A N/A N/AHf 86 348 5s25p65d26s26p0 22.467 107.785 3.419Ta 94 774 5s25p65d36s26p0 18.200 194.393 3.699W 98 394 5s25p65d46s26p0 16.203 299.994 4.181Re 108 434 5s25p65d56s26p0 14.905 365.474 4.466Os 62 248 5d66s26p0 14.329 402.978 4.861Ir 54 722 5d76s26p0 14.633 350.053 5.178Pt 78 802 5d96s16p0 15.848 247.572 5.580Au 52 714 5d106s16p0 18.162 138.698 6.082Hg 58 232 5d106s26p0 28.986 8.604 9.801Tl 70 300 5d106s26p1 31.358 26.875 5.353Pb 94 378 5d106s26p2 31.993 39.669 4.767Bi 86 344 5d106s26p3 36.885 42.820 4.643Po 106 894 5d106s26p4 37.545 45.750 4.876Rn 150 1200 5d106s26p6 93.146 0.545 7.199

72

Page 73: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S23.1. Overview of the most important features and settings of the PSlib100/QEcalculations.

PSlib100/QE

name and version of the code: QUANTUM ESPRESSO 5.1 (84)type of basis set: plane wavesmethod: projector-augmented wave (pslibrary.1.0.0 (85, 88))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S23.2basis set size see Table S23.2 (wave function cutoff ewfc

cut )k-mesh density 20× 20× 20reciprocal-space integration method Marzari-Vanderbilt cold smearing (87) with a fictitious

temperature corresponding to 0.002 Ry(0.02 Ry when required to achieve convergence)

METHOD-SPECIFIC INFORMATION

wave function cutoff see Table S23.2 (ewfccut )

density cutoff see Table S23.2 (erhocut )

ADDITIONAL COMMENTS

Co and Tc do not converge.

73

Page 74: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S23.2. PSlib100/QE calculation settings and results per element. Wave functioncutoff ewfc

cut , density cutoff erhocut , valence, equilibrium volume per atom V0, bulk modulus B0,pressure derivative of the bulk modulus B1.

ewfccut [Ry] erhocut [Ry] valence V0 [A3/atom] B0 [GPa] B1 [–]

H 100 450 1s1 17.420 10.298 2.701He 100 410 1s2 17.773 0.867 6.675Li 210 820 1s22s12p0 20.225 13.837 3.332Be 170 780 1s22s22p0 7.897 123.072 3.286B 90 650 2s22p1 7.255 237.375 3.477C 80 660 2s22p2 11.646 209.465 3.577N 90 640 2s22p3 29.421 53.564 3.789O 100 650 2s22p4 19.537 51.449 4.026F 100 640 2s22p5 19.261 34.300 4.097Ne 110 530 2s22p6 24.253 1.431 13.082Na 140 650 2s22p63s1 37.178 7.705 3.714Mg 200 800 2s22p63s23p0 22.952 36.034 4.020Al 60 290 3s23p1 16.476 77.977 4.664Si 90 350 3s23p2 20.448 88.920 4.327P 70 350 3s23p3 21.457 68.210 4.335S 80 370 3s23p4 17.218 83.692 4.038Cl 90 450 3s23p5 38.549 19.476 4.429Ar 100 450 3s23p6 52.312 0.742 7.335K 90 560 3s23p64s14p0 73.694 3.586 3.770Ca 90 550 3s23p64s24p0 42.159 17.351 3.311Sc 100 810 3s23p63d14s2 24.584 54.831 3.405Ti 110 1150 3s23p63d24s2 17.453 111.307 3.549V 100 1300 3s23p63d34s2 13.517 181.522 3.836Cr 100 920 3s23p63d44s2 11.837 182.041 6.560Mn 120 1410 3s23p63d54s2 11.443 115.696 2.712Fe 150 1000 3s23p63d64s2 11.358 203.810 4.636Co 150 960 3s23p63d74s2 N/A N/A N/ANi 150 960 3s23p63d84s2 10.928 197.978 4.903Cu 150 660 3s23p63d104s1 11.988 140.068 5.060Zn 150 800 3s23p63d104s2 15.261 73.058 5.414Ga 120 490 3d104s24p1 20.299 49.119 5.293Ge 90 480 3d104s24p2 23.905 59.055 4.823As 90 580 3d104s24p3 22.625 68.220 4.232Se 110 500 3d104s24p4 29.742 47.867 4.338Br 120 580 3d104s24p5 39.310 23.003 4.846Kr 130 620 3d104s24p6 66.107 0.636 3.324Rb 70 520 4s24p65s15p0 90.994 2.789 3.763Sr 80 530 4s24p65s25p0 54.920 11.825 3.262Y 80 520 4s24p64d15s25p0 32.847 40.821 3.013Zr 100 540 4s24p64d25s25p0 23.387 94.293 3.333Nb 100 540 4s24p64d35s25p0 18.150 170.260 3.710Mo 100 620 4s24p64d45s25p0 15.802 260.025 4.229Tc 120 850 4s24p64d55s25p0 N/A N/A N/ARu 110 720 4s24p64d65s2 13.774 313.121 4.892Rh 110 730 4s24p64d75s2 14.051 257.621 5.205

74

Page 75: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 120 1080 4s24p64d85s2 15.307 169.707 5.540Ag 130 820 4s24p64d95s2 17.844 90.965 5.839Cd 130 1070 4s24p64d105s2 22.855 44.097 6.445In 90 430 4d105s25p1 27.538 35.509 5.065Sn 100 500 4d105s25p2 36.845 35.871 4.909Sb 100 500 4d105s25p3 31.818 50.348 4.514Te 170 660 4d105s25p4 35.066 45.025 4.615I 140 560 4d105s25p5 49.996 19.177 5.066Xe 90 430 4d105s25p6 87.000 0.536 6.634Cs 70 520 5s25p66s1 116.498 1.975 3.568Ba 80 360 5s25p66s2 63.551 8.658 2.910Lu 346 1382 4d104f145s25p65d16s2 29.039 46.988 3.447Hf 100 640 4d104f145s25p65d26s2 22.521 107.118 4.290Ta 110 1060 4f145s25p65d36s2 18.260 194.192 3.730W 110 760 4f145s25p65d46s2 16.118 302.789 4.187Re 110 880 4f145s25p65d56s2 14.935 364.693 4.458Os 140 900 4f145s25p65d66s26p0 14.257 398.320 4.812Ir 130 900 4f145s25p65d76s2 14.492 348.622 5.111Pt 160 800 4f145s25p65d86s2 15.627 249.162 5.481Au 140 760 4f145s25p65d106s16p0 17.939 140.383 5.988Hg 150 850 5s25p65d106s2 29.373 7.879 9.958Tl 90 420 5d106s26p1 31.381 26.834 5.361Pb 100 430 5d106s26p2 32.010 39.624 4.767Bi 90 910 5d106s26p3 36.909 42.773 4.641Po 100 910 5d106s26p4 37.589 45.723 4.877Rn 100 430 5d106s26p6 93.380 0.539 3.228

75

Page 76: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S24.1. Overview of the most important features and settings of the VASP2007/VASPcalculations.

VASP2007/VASP

name and version of the code: VASP 5.2.2 (89, 90)type of basis set: plane wavesmethod: projector-augmented wave (VASP 2007 (35))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S24.2 (valence Zval)basis set size see Table S24.2 (cutoff energy Ecut)k-mesh density see Table S24.2 (k-point grid kpts in the full 1st Brillouin

zone of the primitive (∗) or conventional cell)reciprocal-space integration method Blochl tetrahedron method (91)

METHOD-SPECIFIC INFORMATION

FFT grid wavevectors up to 2Gcut = 2√

2meEcut

h2 includedaugmentation charge grid wavevectors up to 4Gcut included

ADDITIONAL COMMENTS

none

76

Page 77: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S24.2. VASP2007/VASP calculation settings per element. PAW potential, valenceZval, cutoff energy Ecut, k-mesh in the full 1st Brillouin zone of the conventional cell kpts (ofthe primitive cell for elements with an asterisk∗).

potential Zval [–] Ecut [eV] kpts [–]H PAW PBE H 15Jun2001 1 400 15 × 15 × 11He PAW PBE He 05Jan2001 2 600 21 × 21 × 11Li∗ PAW PBE Li sv 23Jan2001 3 400 15 × 15 × 15Be PAW PBE Be 06Sep2000 2 400 21 × 21 × 11B∗ PAW PBE B 06Sep2000 3 600 9 × 9 × 9C PAW PBE C 08Apr2002 4 600 17 × 17 × 9N PAW PBE N 08Apr2002 5 600 11 × 11 × 11O PAW PBE O 08Apr2002 6 600 15 × 15 × 13F PAW PBE F 08Apr2002 7 600 9 × 13 × 7Ne PAW PBE Ne 05Jan2001 8 600 13 × 13 × 13Na∗ PAW PBE Na pv 05Jan2001 7 400 15 × 15 × 15Mg PAW PBE Mg 05Jan2001 2 400 21 × 21 × 11Al PAW PBE Al 04Jan2001 3 400 13 × 13 × 13Si∗ PAW PBE Si 05Jan2001 4 400 15 × 15 × 15P PAW PBE P 17Jan2003 5 400 15 × 5 × 11S PAW PBE S 17Jan2003 6 400 19 × 19 × 19Cl PAW PBE Cl 17Jan2003 7 400 13 × 13 × 13Ar PAW PBE Ar 07Sep2000 8 400 13 × 13 × 13K PAW PBE K sv 06Sep2000 9 400 15 × 15 × 15Ca PAW PBE Ca pv 06Sep2000 8 400 13 × 13 × 13Sc PAW PBE Sc sv 07Sep2000 11 400 21 × 21 × 11Ti PAW PBE Ti pv 07Sep2000 10 400 21 × 21 × 11V PAW PBE V pv 07Sep2000 11 400 15 × 15 × 15Cr PAW PBE Cr pv 07Sep2000 12 400 15 × 15 × 15Mn PAW PBE Mn pv 07Sep2000 13 400 13 × 13 × 13Fe PAW PBE Fe 06Sep2000 8 400 15 × 15 × 15Co PAW PBE Co 06Sep2000 9 400 15 × 15 × 15Ni PAW PBE Ni 06Sep2000 10 400 13 × 13 × 13Cu PAW PBE Cu 05Jan2001 11 400 13 × 13 × 13Zn PAW PBE Zn 06Sep2000 12 400 21 × 21 × 11Ga PAW PBE Ga d 06Sep2000 13 400 11 × 11 × 11Ge∗ PAW PBE Ge d 06Sep2000 14 400 15 × 15 × 15As PAW PBE As 06Sep2000 5 400 17 × 17 × 7Se PAW PBE Se 06Sep2000 6 400 13 × 13 × 13Br PAW PBE Br 06Sep2000 7 400 13 × 13 × 13Kr PAW PBE Kr 07Sep2000 8 400 13 × 13 × 13Rb PAW PBE Rb sv 06Sep2000 9 400 15 × 15 × 15Sr PAW PBE Sr sv 07Sep2000 10 400 13 × 13 × 13Y PAW PBE Y sv 06Sep2000 11 400 21 × 21 × 11Zr PAW PBE Zr sv 07Sep2000 12 400 21 × 21 × 11Nb PAW PBE Nb pv 08Apr2002 11 400 15 × 15 × 15Mo PAW PBE Mo pv 08Apr2002 12 400 15 × 15 × 15Tc PAW PBE Tc pv 06Sep2000 13 400 21 × 21 × 11Ru PAW PBE Ru 06Sep2000 8 400 21 × 21 × 11Rh PAW PBE Rh 06Sep2000 9 400 13 × 13 × 13Pd PAW PBE Pd 05Jan2001 10 400 13 × 13 × 13

77

Page 78: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag PAW PBE Ag 06Sep2000 11 400 13 × 13 × 13Cd PAW PBE Cd 06Sep2000 12 400 21 × 21 × 11In PAW PBE In d 06Sep2000 13 400 19 × 19 × 13Sn∗ PAW PBE Sn d 06Sep2000 14 400 15 × 15 × 15Sb PAW PBE Sb 06Sep2000 5 400 17 × 17 × 7Te PAW PBE Te 08Apr2002 6 400 13 × 13 × 13I PAW PBE I 08Apr2002 7 400 13 × 13 × 13Xe PAW PBE Xe 07Sep2000 8 400 13 × 13 × 13Cs PAW PBE Cs sv 08Apr2002 9 400 15 × 15 × 15Ba PAW PBE Ba sv 06Sep2000 10 400 15 × 15 × 15Lu PAW PBE Lu 3 06Sep2000 9 400 21 × 21 × 11Hf PAW PBE Hf pv 06Sep2000 10 400 21 × 21 × 11Ta PAW PBE Ta pv 07Sep2000 11 400 15 × 15 × 15W PAW PBE W pv 06Sep2000 12 400 15 × 15 × 15Re PAW PBE Re 17Jan2003 7 400 21 × 21 × 11Os PAW PBE Os pv 20Jan2003 14 400 21 × 21 × 11Ir PAW PBE Ir 06Sep2000 9 400 13 × 13 × 13Pt PAW PBE Pt 05Jan2001 10 400 13 × 13 × 13Au PAW PBE Au 06Sep2000 11 400 13 × 13 × 13Hg PAW PBE Hg 06Sep2000 12 400 15 × 15 × 15Tl PAW PBE Tl d 06Sep2000 13 400 21 × 21 × 11Pb PAW PBE Pb d 06Sep2000 14 400 13 × 13 × 13Bi PAW PBE Bi d 06Sep2000 15 400 17 × 17 × 7Po PAW PBE Po d 25May2007 16 400 19 × 19 × 19Rn PAW PBE Rn 28Aug2006 8 400 13 × 13 × 13

78

Page 79: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S24.3. VASP2007/VASP calculation results per element. Equilibrium volume peratom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

V0 [A3/atom] B0 [GPa] B1 [–]H 17.445 10.101 3.032He 17.721 0.923 7.416Li 20.286 13.801 3.159Be 7.920 123.305 3.293B 7.251 237.006 3.467C 11.661 208.405 3.558N 29.648 56.413 3.859O 19.186 51.428 4.058F 19.541 34.185 4.203Ne 24.606 1.071 14.475Na 37.074 7.688 3.044Mg 22.847 36.471 3.919Al 16.487 77.287 4.651Si 20.446 88.790 4.296P 21.359 68.513 4.338S 17.167 83.524 4.136Cl 38.207 19.154 4.334Ar 52.652 0.788 7.351K 73.844 3.592 3.818Ca 42.169 17.518 3.017Sc 24.659 54.370 3.406Ti 17.371 112.521 3.599V 13.484 181.621 4.020Cr 11.834 176.751 7.166Mn 11.569 115.449 0.354Fe 11.375 185.742 4.910Co 10.875 210.783 4.994Ni 10.942 193.681 4.919Cu 12.026 136.757 5.097Zn 15.288 74.193 5.624Ga 20.356 48.928 5.087Ge 23.911 58.826 4.777As 22.686 68.726 4.294Se 29.829 47.229 4.480Br 39.467 22.463 4.850Kr 66.559 0.683 4.824Rb 91.238 2.790 3.729Sr 54.541 11.132 4.594Y 32.921 41.378 3.203Zr 23.530 93.781 3.584Nb 18.337 171.753 3.970Mo 15.917 262.885 4.342Tc 14.596 298.498 4.545Ru 13.844 311.518 4.951Rh 14.179 254.234 5.250Pd 15.444 168.191 5.636

79

Page 80: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 18.054 89.106 5.778Cd 23.008 43.780 7.225In 27.538 35.433 5.335Sn 36.859 35.843 4.852Sb 31.794 50.899 4.544Te 34.961 44.964 4.721I 50.123 18.720 5.090Xe 87.770 0.525 7.764Cs 116.957 1.974 3.483Ba 63.554 8.863 3.107Lu 29.469 47.159 3.438Hf 22.496 107.831 3.478Ta 18.325 194.286 3.972W 16.226 304.396 4.298Re 14.933 372.481 4.548Os 14.360 400.928 4.948Ir 14.566 345.973 5.173Pt 15.723 248.060 5.534Au 18.182 136.424 5.914Hg 29.944 7.623 12.941Tl 31.521 26.464 5.429Pb 32.079 39.787 4.403Bi 36.985 42.539 4.550Po 37.534 45.385 4.633Rn 93.106 0.553 7.240

80

Page 81: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S25.1. Overview of the most important features and settings of the VASP2012/VASPcalculations.

VASP2012/VASP

name and version of the code: VASP 5.2.12 (89, 90)type of basis set: plane wavesmethod: projector-augmented wave (VASP 2012 (35))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S25.2 (valence Zval)basis set size see Table S25.2 (cutoff energy Ecut)k-mesh density see Table S25.2 (k-point grid kpts in the full 1st Brillouin

zone of the primitive (∗) or conventional cell)reciprocal-space integration method Blochl tetrahedron method (91)

METHOD-SPECIFIC INFORMATION

FFT grid wavevectors up to 2Gcut = 2√

2meEcut

h2 includedaugmentation charge grid wavevectors up to 4Gcut included

ADDITIONAL COMMENTS

none

81

Page 82: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S25.2. VASP2012/VASP calculation settings per element. PAW potential, valenceZval, cutoff energy Ecut, k-mesh in the full 1st Brillouin zone of the conventional cell kpts (ofthe primitive cell for elements with an asterisk∗).

potential Zval [–] Ecut [eV] kpts [–]H PAW PBE H h 06Feb2004 1 900 15 × 15 × 11He PAW PBE He 05Jan2001 2 600 21 × 21 × 11Li∗ PAW PBE Li sv 10Sep2004 3 700 15 × 15 × 15Be PAW PBE Be 06Sep2000 2 400 21 × 21 × 11B∗ PAW PBE B 06Sep2000 3 600 13 × 13 × 13C PAW PBE C 08Apr2002 4 600 17 × 17 × 9N PAW PBE N h 06Feb2004 5 900 11 × 11 × 11O PAW PBE O h 06Feb2004 6 900 15 × 15 × 13F PAW PBE F h 06Feb2004 7 900 9 × 13 × 7Ne PAW PBE Ne 05Jan2001 8 600 13 × 13 × 13Na∗ PAW PBE Na pv 19Sep2006 7 400 15 × 15 × 15Mg PAW PBE Mg 13Apr2007 2 400 21 × 21 × 11Al PAW PBE Al 04Jan2001 3 400 13 × 13 × 13Si∗ PAW PBE Si 05Jan2001 4 400 15 × 15 × 15P PAW PBE P 06Sep2000 5 400 15 × 5 × 11S PAW PBE S 06Sep2000 6 400 19 × 19 × 19Cl PAW PBE Cl h 21Jan2003 7 900 13 × 13 × 13Ar PAW PBE Ar 07Sep2000 8 400 13 × 13 × 13K PAW PBE K sv 06Sep2000 9 400 15 × 15 × 15Ca PAW PBE Ca sv 06Sep2000 10 400 13 × 13 × 13Sc PAW PBE Sc sv 07Sep2000 11 400 21 × 21 × 11Ti PAW PBE Ti sv 26Sep2005 12 400 21 × 21 × 11V PAW PBE V sv 02Aug2007 13 400 15 × 15 × 15Cr PAW PBE Cr pv 02Aug2007 12 400 15 × 15 × 15Mn PAW PBE Mn pv 02Aug2007 13 400 13 × 13 × 13Fe PAW PBE Fe 06Sep2000 8 400 15 × 15 × 15Co PAW PBE Co 02Aug2007 9 400 21 × 21 × 11Ni PAW PBE Ni 02Aug2007 10 400 13 × 13 × 13Cu PAW PBE Cu 22Jun2005 11 400 13 × 13 × 13Zn PAW PBE Zn 06Sep2000 12 400 21 × 21 × 11Ga PAW PBE Ga d 06Jul2010 13 400 11 × 11 × 11Ge∗ PAW PBE Ge d 03Jul2007 14 400 15 × 15 × 15As PAW PBE As 22Sep2009 5 400 17 × 17 × 7Se PAW PBE Se 06Sep2000 6 400 13 × 13 × 13Br PAW PBE Br 06Sep2000 7 400 13 × 13 × 13Kr PAW PBE Kr 07Sep2000 8 400 13 × 13 × 13Rb PAW PBE Rb sv 06Sep2000 9 400 15 × 15 × 15Sr PAW PBE Sr sv 07Sep2000 10 400 13 × 13 × 13Y PAW PBE Y sv 25May2007 11 400 21 × 21 × 11Zr PAW PBE Zr sv 04Jan2005 12 400 21 × 21 × 11Nb PAW PBE Nb sv 25May2007 13 400 15 × 15 × 15Mo PAW PBE Mo sv 02Feb2006 14 400 15 × 15 × 15Tc PAW PBE Tc pv 04Feb2005 13 400 21 × 21 × 11Ru PAW PBE Ru pv 28Jan2005 14 400 21 × 21 × 11Rh PAW PBE Rh pv 25Jan2005 15 400 13 × 13 × 13Pd PAW PBE Pd 04Jan2005 10 400 13 × 13 × 13

82

Page 83: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag PAW PBE Ag 02Apr2005 11 400 13 × 13 × 13Cd PAW PBE Cd 06Sep2000 12 400 21 × 21 × 11In PAW PBE In d 06Sep2000 13 400 19 × 19 × 15Sn∗ PAW PBE Sn d 06Sep2000 14 400 15 × 15 × 15Sb PAW PBE Sb 06Sep2000 5 400 17 × 17 × 7Te PAW PBE Te 08Apr2002 6 400 13 × 13 × 13I PAW PBE I 08Apr2002 7 400 13 × 13 × 13Xe PAW PBE Xe 07Sep2000 8 400 13 × 13 × 13Cs PAW PBE Cs sv 08Apr2002 9 400 15 × 15 × 15Ba PAW PBE Ba sv 06Sep2000 10 400 15 × 15 × 15Lu PAW PBE Lu 3 06Sep2000 9 400 21 × 21 × 11Hf PAW PBE Hf pv 06Sep2000 10 400 21 × 21 × 11Ta PAW PBE Ta pv 07Sep2000 11 400 15 × 15 × 15W PAW PBE W pv 06Nov2007 12 400 15 × 15 × 15Re PAW PBE Re 17Jan2003 7 400 21 × 21 × 11Os PAW PBE Os 17Jan2003 8 400 21 × 21 × 11Ir PAW PBE Ir 06Sep2000 9 400 13 × 13 × 13Pt PAW PBE Pt 04Feb2005 10 400 13 × 13 × 13Au PAW PBE Au 04Oct2007 11 400 13 × 13 × 13Hg PAW PBE Hg 06Sep2000 12 400 15 × 15 × 15Tl PAW PBE Tl d 06Sep2000 13 400 21 × 21 × 11Pb PAW PBE Pb d 06Sep2000 14 400 13 × 13 × 13Bi PAW PBE Bi d 06Sep2000 15 400 17 × 17 × 7Po PAW PBE Po d 25May2007 16 400 19 × 19 × 19Rn PAW PBE Rn 28Aug2006 8 400 13 × 13 × 13

83

Page 84: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S25.3. VASP2012/VASP calculation results per element. Equilibrium volume peratom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

V0 [A3/atom] B0 [GPa] B1 [–]H 17.411 10.313 2.703He 17.721 0.922 7.423Li 20.238 13.820 3.663Be 7.918 123.340 3.293B 7.247 237.345 3.475C 11.660 208.499 3.558N 28.839 54.099 3.692O 18.523 51.113 3.916F 19.176 34.576 4.166Ne 24.604 1.071 14.688Na 37.043 7.687 2.993Mg 22.867 36.579 3.921Al 16.487 77.293 4.653Si 20.446 88.803 4.313P 21.359 68.516 4.337S 17.167 83.513 4.125Cl 38.555 19.075 4.359Ar 52.635 0.789 7.351K 73.789 3.600 3.850Ca 42.322 17.388 2.944Sc 24.657 54.410 3.404Ti 17.360 111.491 3.686V 13.476 181.679 4.082Cr 11.756 180.144 7.166Mn 11.459 110.946 −0.051Fe 11.353 186.831 4.924Co 10.821 209.710 4.534Ni 10.885 195.436 4.842Cu 12.011 137.416 4.896Zn 15.252 74.387 5.639Ga 20.374 48.662 5.082Ge 23.888 58.754 4.831As 22.671 68.755 4.299Se 29.806 47.268 4.481Br 39.432 22.480 4.847Kr 66.507 0.681 4.840Rb 91.088 2.793 3.799Sr 54.553 11.106 4.159Y 32.781 41.204 3.123Zr 23.408 93.545 3.475Nb 18.117 170.563 4.051Mo 15.829 259.543 4.197Tc 14.415 300.268 4.504Ru 13.767 313.047 4.901Rh 14.053 256.275 5.185Pd 15.295 169.058 5.594

84

Page 85: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 17.836 90.687 5.765Cd 22.956 43.620 6.994In 27.506 35.211 5.364Sn 36.824 35.751 4.814Sb 31.766 50.927 4.546Te 34.961 44.960 4.717I 50.123 18.720 5.090Xe 87.660 0.526 7.830Cs 116.955 1.974 3.488Ba 63.587 8.864 3.126Lu 29.389 47.256 3.443Hf 22.448 108.212 3.420Ta 18.295 194.986 3.849W 16.152 305.640 4.265Re 14.932 372.367 4.540Os 14.272 405.451 4.957Ir 14.518 349.151 5.180Pt 15.613 249.470 5.505Au 17.959 139.237 5.869Hg 30.074 6.845 13.752Tl 31.429 26.514 5.355Pb 31.994 39.897 4.733Bi 36.892 42.635 4.555Po 37.535 45.373 4.639Rn 93.079 0.553 7.260

85

Page 86: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S26.1. Overview of the most important features and settings of the VASPGW2015/VASPcalculations.

VASPGW2015/VASP

name and version of the code: VASP 5.2.12 (89, 90)type of basis set: plane wavesmethod: projector-augmented wave (VASP 5.4 2015 GW-ready (35))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S26.2 (valence Zval)basis set size see Table S26.2 (cutoff energy Ecut)k-mesh density see Table S26.2 (k-point grid kpts in the full 1st Brillouin

zone of the primitive (∗) or conventional cell)reciprocal-space integration method Blochl tetrahedron method (91)

METHOD-SPECIFIC INFORMATION

FFT grid wavevectors up to 2Gcut = 2√

2meEcut

h2 includedaugmentation charge grid wavevectors up to 4Gcut included

ADDITIONAL COMMENTS

Aspherical contributions from the gradient corrections inside the PAW spheres have been included.

86

Page 87: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S26.2. VASPGW2015/VASP calculation settings per element. PAW potential, valenceZval, cutoff energy Ecut, k-mesh in the full 1st Brillouin zone of the conventional cell kpts (ofthe primitive cell for elements with an asterisk∗).

potential Zval [–] Ecut [eV] kpts [–]H PAW H h GW 21Apr2008 1 900 15 × 15 × 11He PAW He GW 13May2007 2 600 21 × 21 × 11Li∗ PAW Li sv GW 25Mar2010 3 600 15 × 15 × 15Be PAW Be sv GW 31Mar2010 4 700 21 × 21 × 11B∗ PAW B GW 28Sep2005 3 600 13 × 13 × 13C PAW C GW 28Sep2005 4 600 17 × 17 × 9N PAW PBE N h GW 03Jul2013 5 1200 11 × 11 × 11O PAW PBE O h GW 22May2013 6 1200 15 × 15 × 13F PAW PBE F h GW 03Jul2013 7 1300 9 × 13 × 7Ne PAW PBE Ne GW 21Aug2013 8 500 13 × 13 × 13Na∗ PAW PBE Na sv GW 11May2015 9 600 15 × 15 × 15Mg PAW Mg sv GW 20Apr2010 10 600 21 × 21 × 11Al PAW Al GW 19Mar2012 3 400 13 × 13 × 13Si∗ PAW Si GW 04May2012 4 400 15 × 15 × 15P PAW P GW 19Mar2012 5 400 15 × 5 × 11S PAW S GW 19Mar2012 6 400 19 × 19 × 19Cl PAW Cl GW 19Mar2012 7 400 13 × 13 × 13Ar PAW PBE Ar GW 21Aug2013 8 400 13 × 13 × 13K PAW K sv GW 31Mar2010 9 400 15 × 15 × 15Ca PAW Ca sv GW 31Mar2010 10 400 13 × 13 × 13Sc PAW Sc sv GW 05Dec2013 11 400 21 × 21 × 11Ti PAW Ti sv GW 05Dec2013 12 400 21 × 21 × 11V PAW V sv GW 05Dec2013 13 500 15 × 15 × 15Cr PAW Cr sv GW 05Dec2013 14 500 15 × 15 × 15Mn PAW Mn sv GW 05Dec2013 15 500 13 × 13 × 13Fe PAW Fe sv GW 05Dec2013 16 500 15 × 15 × 15Co PAW Co sv GW 05Dec2013 17 500 21 × 21 × 11Ni PAW Ni sv GW 05Dec2013 18 500 13 × 13 × 13Cu PAW Cu sv GW 10Dec2015 11 700 13 × 13 × 13Zn PAW Zn sv GW 05Dec2013 12 600 21 × 21 × 11Ga PAW Ga d GW 15Mar2013 13 600 11 × 11 × 11Ge∗ PAW Ge d GW 19Mar2013 14 400 15 × 15 × 15As PAW As GW 20Mar2012 5 400 17 × 17 × 7Se PAW Se GW 20Mar2012 6 400 13 × 13 × 13Br PAW PBE Br GW 20Mar2012 7 400 13 × 13 × 13Kr PAW PBE Kr GW 21Aug2013 8 400 13 × 13 × 13Rb PAW Rb sv GW 23Mar2010 9 400 15 × 15 × 15Sr PAW Sr sv GW 23Mar2010 10 400 15 × 15 × 15Y PAW Y sv GW 05Dec2013 11 400 21 × 21 × 11Zr PAW Zr sv GW 05Dec2013 12 400 21 × 21 × 11Nb PAW Nb sv GW 05Dec2013 13 400 15 × 15 × 15Mo PAW Mo sv GW 05Dec2013 14 400 15 × 15 × 15Tc PAW Tc sv GW 05Dec2013 15 500 21 × 21 × 11Ru PAW Ru sv GW 05Dec2013 16 500 21 × 21 × 11Rh PAW Rh sv GW 05Dec2013 17 500 13 × 13 × 13Pd PAW Pd sv GW 05Dec2013 18 500 13 × 13 × 13

87

Page 88: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag PAW Ag sv GW 05Dec2013 19 500 13 × 13 × 13Cd PAW Cd sv GW 22Nov2013 20 500 21 × 21 × 11In PAW In d GW 15Mar2013 13 400 19 × 19 × 15Sn∗ PAW PBE Sn d GW 15Mar2013 14 400 15 × 15 × 15Sb PAW Sb d GW 15Mar2013 15 400 17 × 17 × 7Te PAW Te GW 22Mar2012 6 400 13 × 13 × 13I PAW PBE I GW 12Mar2012 7 400 13 × 13 × 13Xe PAW Xe GW 08Jan2009 8 400 13 × 13 × 13Cs PAW Cs sv GW 23Mar2010 9 400 15 × 15 × 15Ba PAW Ba sv GW 23Mar2010 10 400 15 × 15 × 15Lu N/A N/A N/A N/AHf PAW Hf sv GW 05Jan2015 12 400 21 × 21 × 11Ta PAW Ta sv GW 23Mar2010 13 400 15 × 15 × 15W PAW W sv GW 23Mar2010 14 500 15 × 15 × 15Re PAW Re sv GW 23Mar2010 15 500 21 × 21 × 11Os PAW Os sv GW 23Mar2010 16 500 21 × 21 × 11Ir PAW Ir sv GW 23Mar2010 17 500 13 × 13 × 13Pt PAW Pt sv GW 23Mar2010 18 500 13 × 13 × 13Au PAW Au sv GW 13Sep2013 19 500 13 × 13 × 13Hg N/A N/A N/A N/ATl N/A N/A N/A N/APb PAW Pb d 06Oct2005 14 400 13 × 13 × 13Bi PAW PBE Bi d GW 22Jun2012 15 400 17 × 17 × 7Po N/A N/A N/A N/ARn N/A N/A N/A N/A

88

Page 89: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S26.3. VASPGW2015/VASP calculation results per element. Equilibrium volume peratom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

V0 [A3/atom] B0 [GPa] B1 [–]H 17.408 10.304 2.709He 17.860 0.833 6.602Li 20.200 13.685 3.607Be 7.889 124.461 3.512B 7.237 237.067 3.470C 11.631 208.827 3.566N 28.823 53.953 3.688O 18.553 50.827 3.839F 19.152 34.335 4.081Ne 24.837 1.042 11.848Na 37.228 7.701 3.824Mg 22.929 35.978 4.171Al 16.463 77.705 4.639Si 20.460 88.753 4.297P 21.469 68.019 4.332S 17.197 83.516 4.122Cl 38.885 18.919 4.392Ar 52.808 0.759 7.016K 73.554 3.617 4.034Ca 42.097 17.361 3.283Sc 24.594 54.028 3.248Ti 17.404 112.362 3.350V 13.452 182.503 4.006Cr 11.792 185.194 6.902Mn 11.450 118.394 −0.420Fe 11.344 198.092 4.936Co 10.856 215.805 4.676Ni 10.903 200.339 5.190Cu 11.946 141.246 4.665Zn 15.218 74.858 5.134Ga 20.380 48.679 5.297Ge 23.972 58.134 4.914As 22.640 68.880 4.301Se 29.779 47.281 4.477Br 39.408 22.478 4.843Kr 66.060 0.687 6.131Rb 91.022 2.803 3.800Sr 54.602 11.214 3.356Y 32.892 39.076 −0.220Zr 23.401 93.901 3.469Nb 18.138 169.124 3.898Mo 15.802 259.889 4.225Tc 14.436 297.758 4.523Ru 13.759 312.769 4.953Rh 14.033 258.072 5.512Pd 15.298 169.795 5.717

89

Page 90: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 17.831 91.103 5.782Cd 22.872 42.435 6.720In 27.445 35.386 5.301Sn 36.793 35.820 4.834Sb 31.748 50.474 4.437Te 34.879 45.036 4.719I 50.014 18.760 5.082Xe 87.080 0.530 8.485Cs 116.910 1.953 3.351Ba 63.303 8.859 2.959Lu N/A N/A N/AHf 22.493 108.685 3.382Ta 18.267 194.813 3.835W 16.122 304.961 4.169Re 14.946 365.437 4.564Os 14.285 399.358 4.884Ir 14.489 348.745 5.221Pt 15.636 248.407 5.473Au 17.977 139.248 5.893Hg N/A N/A N/ATl N/A N/A N/APb 32.008 39.910 4.738Bi 36.851 42.590 4.566Po N/A N/A N/ARn N/A N/A N/A

90

Page 91: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S27.1. Overview of the most important features and settings of the GBRV12/QE cal-culations.

GBRV12/QE

name and version of the code: QUANTUM ESPRESSO 5.1 (84)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (GBRV 1.2 (78))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S27.2 (Zval)basis set size wave function cutoff = 50 Ryk-mesh density 20× 20× 20reciprocal-space integration method Marzari-Vanderbilt cold smearing (87) with a fictitious

temperature corresponding to 0.002 Ry(0.02 Ry when required to achieve convergence)

METHOD-SPECIFIC INFORMATION

wave function cutoff 50 Rydensity cutoff 250 Ry

ADDITIONAL COMMENTS

none

91

Page 92: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S27.2. GBRV12/QE calculation settings and results per element. Valence Zval, equi-librium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

Zval [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 17.932 10.488 2.746He N/A N/A N/A N/ALi 3 20.245 13.809 3.362Be 4 7.957 123.035 3.374B 3 7.247 235.781 3.448C 4 11.633 207.935 3.551N 5 29.272 54.662 3.771O 6 18.739 50.533 3.936F 7 19.539 34.202 4.453Ne N/A N/A N/A N/ANa 9 37.083 7.697 3.895Mg 10 22.955 36.079 4.160Al 3 16.498 76.956 4.785Si 4 20.434 88.589 4.309P 5 21.724 67.174 4.335S 6 17.200 82.677 3.692Cl 7 38.824 18.943 4.489Ar N/A N/A N/A N/AK 9 73.711 3.604 3.118Ca 10 42.226 17.369 3.032Sc 11 24.607 54.521 3.398Ti 12 17.405 111.975 3.467V 13 13.443 182.712 4.061Cr 14 11.869 174.060 6.711Mn 15 11.687 121.937 −0.485Fe 16 11.426 174.765 7.580Co 17 10.852 216.635 4.919Ni 18 10.892 198.555 4.861Cu 19 11.982 140.397 5.031Zn 20 15.219 74.684 5.409Ga 19 20.383 48.640 5.421Ge 14 23.894 59.013 5.110As 5 22.712 68.635 4.294Se 6 29.737 47.281 4.516Br 7 39.602 22.356 4.896Kr N/A N/A N/A N/ARb 9 91.018 2.796 3.784Sr 10 54.524 11.388 4.584Y 11 32.856 41.199 3.007Zr 12 23.381 94.498 3.430Nb 13 18.115 169.439 3.256Mo 14 15.775 261.446 4.246Tc 15 14.425 300.141 4.533Ru 16 13.744 312.974 4.875Rh 15 14.072 258.886 5.184Pd 16 15.322 171.293 5.590

92

Page 93: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 19 17.877 90.607 5.627Cd 12 22.942 43.690 6.955In 13 27.632 35.670 4.911Sn 14 36.849 35.709 4.957Sb 15 31.780 50.204 4.715Te 6 34.931 45.243 4.735I 7 50.215 18.707 5.020Xe N/A N/A N/A N/ACs 9 116.846 1.965 3.423Ba 10 63.346 8.714 3.178Lu N/A N/A N/A N/AHf 12 22.594 107.763 3.455Ta 13 18.275 195.901 3.723W 14 16.142 305.193 4.334Re 15 14.951 364.312 4.428Os 16 14.263 398.882 4.820Ir 15 14.499 347.354 5.121Pt 16 15.598 250.473 5.440Au 11 17.922 140.426 6.049Hg 12 29.922 7.435 2.338Tl 13 31.383 26.719 5.708Pb 14 31.965 39.033 3.774Bi 15 36.828 42.720 4.636Po N/A N/A N/A N/ARn N/A N/A N/A N/A

93

Page 94: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S28.1. Overview of the most important features and settings of the GBRV14/CASTEPcalculations.

GBRV14/CASTEP

name and version of the code: CASTEP 9.0 (Hg revision 6666 Jun 05 2015) (92)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (GBRV 1.4 (33, 78))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S28.2basis set size cutoff energy = 816 eVk-mesh density see Table S28.2 for grid values and number of k-points

in the irreducible wedge of the 1st Brillouin zone (# k);this choice achieves spacing ∆k < 0.0754 A

−1

reciprocal-space integration method Gaussian smearing with a fictitious temperature corre-sponding to 0.2 eV

METHOD-SPECIFIC INFORMATION

size of FFT grid for augmentation 2 × FFT grid for soft density (Ec,ρ = 16Ec,φ)

ADDITIONAL COMMENTS

Basis set, “fine” FFT grid, k-point density and plane-wave cutoff were chosen uniformly across the periodic ta-ble to achieve high convergence. Less stringent critera, determined individually per element will still give highconvergence in almost all cases at a substantially reduced computational cost.

94

Page 95: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S28.2. GBRV14/CASTEP calculation settings and results per element. Valence, Monkhorst-Pack k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irre-ducible k-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of thebulk modulus B1.

Valence kpts #k V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 24×24×17 1 404 18.178 10.381 2.796He N/A N/A N/A N/A N/A N/ALi 1s2 2s1 31×31×4 352 20.225 14.201 3.362Be 1s2 2s2 42×42×23 5 544 7.942 123.928 3.322B 2s2 2p1 21×21×20 2 310 7.226 236.701 3.457C 2s2 2p2 39×39×10 735 11.634 207.932 3.563N 2s2 2p3 14×14×14 119 29.269 54.718 3.807O 2s2 2p4 21×20×20 2 100 18.784 50.761 3.975F 2s2 2p5 14×23×12 1 008 19.355 34.125 4.081Ne N/A N/A N/A N/A N/A N/ANa 2s2 2p6 3s1 26×26×3 533 37.185 7.713 3.705Mg 2s2 2p6 3s2 30×30×16 1 920 22.946 35.879 4.322Al 3s2 3p1 21×21×21 286 16.505 76.727 4.293Si 3s2 3p2 26×26×26 1 638 20.434 88.595 4.308P 3s2 3p3 25×8×18 468 21.722 67.178 4.331S 3s2 3p4 32×32×32 2 992 17.176 86.243 3.875Cl 3s2 3p5 11×19×10 300 38.768 19.014 4.376Ar N/A N/A N/A N/A N/A N/AK 3s2 3p6 4s1 16×16×16 120 73.905 3.546 3.604Ca 3s2 3p6 4s2 15×15×15 120 42.216 17.398 3.317Sc 3s2 3p6 3d1 4s2 29×29×16 680 24.679 53.977 3.364Ti 3s2 3p6 3d2 4s2 33×33×18 972 17.402 111.536 3.582V 3s2 3p6 3d3 4s2 28×28×28 560 13.459 181.463 3.831Cr 3s2 3p6 3d5 4s1 29×29×29 680 11.847 169.679 6.717Mn 3s2 3p6 3d5 4s2 23×23×23 936 11.657 116.061 1.641Fe 3s2 3p6 3d6 4s2 29×29×29 680 11.444 170.016 8.434Co 3s2 3p6 3d7 4s2 38×38×21 4 180 10.872 211.657 4.797Ni 3s2 3p6 3d8 4s2 24×24×24 364 10.903 197.636 4.903Cu 3s2 3p6 3d10 4s1 23×23×23 364 11.989 140.875 5.113Zn 3s2 3p6 3d10 4s2 36×36×17 3 078 15.210 74.572 5.579Ga 3p6 3d10 4s2 4p1 18×11×18 486 20.353 48.441 5.365Ge 3d10 4s2 4p2 25×25×25 455 23.875 58.996 4.842As 4s2 4p3 25×25×8 468 22.705 68.555 4.248Se 4s2 4p4 21×21×17 728 29.735 47.287 4.471Br 4s2 4p5 10×20×10 250 39.602 22.376 4.851Kr N/A N/A N/A N/A N/A N/ARb 4s2 4p6 5s1 15×15×15 120 91.201 2.761 3.782Sr 4s2 4p6 5s2 14×14×14 84 55.638 11.702 2.940Y 4s2 4p6 4d1 5s2 26×26×15 1 456 32.918 40.494 3.068Zr 4s2 4p6 4d2 5s2 30×30×16 1 920 23.390 93.647 3.333Nb 4s2 4p6 4d4 5s1 25×25×25 455 18.124 169.582 3.738

95

Page 96: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Mo 4s2 4p6 4d5 5s1 26×26×26 455 15.772 259.156 4.231Tc 4s2 4p6 4d6 5s1 35×35×19 1 200 14.430 298.648 4.526Ru 4s2 4p6 4d7 5s1 35×35×20 1 200 13.751 312.098 4.861Rh 4p6 4d8 5s1 22×22×22 286 14.086 256.398 5.213Pd 4p6 4d10 21×21×21 286 15.388 168.165 5.589Ag 4s2 4p6 4d10 5s1 20×20×20 220 17.875 91.036 5.828Cd 4d10 5s2 32×32×15 2 176 22.976 43.300 5.358In 4d10 5s2 5p1 25×25×17 819 27.512 35.110 5.148Sn 4d10 5s2 5p2 22×22×22 1 012 36.785 35.789 4.879Sb 4d10 5s2 5p3 22×22×8 1 012 31.774 50.420 4.359Te 5s2 5p4 21×21×14 595 34.829 45.724 4.982I 5s2 5p5 10×18×9 225 50.191 15.027 12.869Xe N/A N/A N/A N/A N/A N/ACs 5s2 5p6 6s1 14×14×14 84 116.809 1.946 3.516Ba 5s2 5p6 6s2 17×17×17 165 63.466 8.717 2.900Lu N/A N/A N/A N/A N/A N/AHf 5s2 5p6 5d2 6s2 30×30×17 2 160 22.601 107.641 3.423Ta 5s2 5p6 5d3 6s2 25×25×25 455 18.280 194.863 3.771W 5s2 5p6 5d4 6s2 26×26×26 455 16.145 304.810 4.227Re 5s2 5p6 5d5 6s2 35×35×19 1 200 14.957 365.128 4.451Os 5s2 5p6 5d6 6s2 35×35×19 1 200 14.269 398.233 4.836Ir 5p6 5d7 6s2 22×22×22 286 14.508 346.326 5.044Pt 5p6 5d9 6s1 21×21×21 286 15.620 248.687 5.495Au 5d10 6s1 20×20×20 220 17.921 140.684 6.024Hg 5d10 6s2 20×20×24 660 29.583 8.068 8.578Tl 5d10 6s2 6p1 27×27×15 600 31.422 26.489 5.258Pb 5d10 6s2 6p2 17×17×17 165 31.922 39.532 4.755Bi 5d10 6s2 6p3 21×21×7 303 36.811 42.720 4.890Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

96

Page 97: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S29.1. Overview of the most important features and settings of the GBRV14/QE cal-culations.

GBRV14/QE

name and version of the code: QUANTUM ESPRESSO 5.1 (84)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (GBRV 1.4 (78))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S29.2 (Zval)basis set size wave function cutoff = 100 Ryk-mesh density see Table S29.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Gaussian smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

wave function cutoff 100 Rydensity cutoff 400 Ry

ADDITIONAL COMMENTS

none

97

Page 98: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S29.2. GBRV14/QE calculation settings and results per element. Valence Zval, k-pointmesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreducible k-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 6 020 18.177 10.368 2.832He N/A N/A N/A N/A N/A N/ALi 3 38×38×38 27 436 20.224 13.84 3.346Be 4 52×52×28 9 828 7.941 123.371 3.327B 3 26×26×24 12 324 7.225 236.568 3.453C 4 48×48×12 10 512 11.633 208.087 3.563N 5 16×16×16 688 29.263 54.732 3.840O 6 26×24×24 7 488 18.780 50.921 4.100F 7 16×28×14 3 136 19.357 34.093 4.107Ne N/A N/A N/A N/A N/A N/ANa 9 32×32×32 16 384 37.106 7.737 3.674Mg 10 36×36×20 9 900 22.930 36.062 4.018Al 3 24×24×24 364 16.489 77.513 4.990Si 4 32×32×32 8 448 20.433 88.607 4.311P 5 30×8×22 1 320 21.724 67.181 4.332S 6 38×38×38 27 436 17.189 84.045 4.071Cl 7 12×24×12 864 38.770 19.005 4.381Ar N/A N/A N/A N/A N/A N/AK 9 20×20×20 220 73.686 3.588 3.776Ca 10 18×18×18 165 42.221 17.638 3.375Sc 11 34×34×20 8 840 24.607 54.578 3.384Ti 12 40×40×22 4 620 17.386 112.115 3.602V 13 34×34×34 969 13.438 182.370 3.899Cr 14 36×36×36 2 280 11.862 172.279 7.128Mn 15 28×28×28 5 488 11.681 122.189 −0.026Fe 16 36×36×36 2 280 11.436 175.772 7.489Co 17 46×46×24 13 248 10.862 213.021 5.032Ni 18 28×28×28 1 120 10.889 198.741 4.695Cu 19 28×28×28 560 11.991 141.011 5.032Zn 20 44×44×20 14 740 15.213 74.869 5.314Ga 19 22×12×22 1 452 20.337 48.984 5.466Ge 14 30×30×30 6 975 23.875 59.266 4.878As 5 30×30×10 6 825 22.700 68.757 4.327Se 6 26×26×20 3 510 29.737 47.300 4.489Br 7 12×24×12 864 39.605 22.381 4.877Kr N/A N/A N/A N/A N/A N/ARb 9 18×18×18 165 91.037 2.792 3.739Sr 10 16×16×16 120 54.502 11.235 5.218Y 11 32×32×18 2 448 32.849 41.359 3.157Zr 12 36×36×20 9 900 23.383 93.885 3.269Nb 13 30×30×30 680 18.106 170.280 3.693Mo 14 32×32×32 816 15.767 260.081 4.328Tc N/A N/A N/A N/A N/A N/ARu 16 42×42×24 5 544 13.743 313.054 4.877Rh 15 26×26×26 455 14.073 258.078 5.212

98

Page 99: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 16 26×26×26 455 15.365 169.929 5.513Ag 19 24×24×24 364 17.869 91.355 6.057Cd 12 38×38×18 9 918 22.917 44.215 7.064In 13 30×30×20 1 200 27.518 35.898 5.040Sn 14 26×26×26 4 563 36.765 35.918 4.934Sb 15 26×26×8 4 108 31.776 50.444 4.548Te 6 26×26×16 8 216 34.930 45.254 4.739I 7 12×22×10 660 50.205 18.711 5.073Xe N/A N/A N/A N/A N/A N/ACs 9 16×16×16 120 116.906 1.965 3.608Ba 10 20×20×20 220 63.381 8.793 2.131Lu N/A N/A N/A N/A N/A N/AHf 12 36×36×20 3 420 22.596 107.949 3.329Ta 13 30×30×30 680 18.273 195.688 3.569W 14 32×32×32 816 16.146 304.758 4.203Re 15 42×42×22 5 082 14.951 365.321 4.435Os 16 42×42×24 5 544 14.264 398.853 4.817Ir 15 26×26×26 455 14.500 347.418 5.131Pt 16 26×26×26 455 15.602 250.194 5.475Au 11 24×24×24 364 17.924 140.123 5.999Hg 12 24×24×28 1 092 29.717 7.677 10.066Tl 13 32×32×18 7 056 31.406 26.756 5.451Pb 14 20×20×20 220 31.869 40.031 5.574Bi 15 26×26×8 4 108 36.820 42.741 4.649Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

99

Page 100: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S30.1. Overview of the most important features and settings of the OTFG7/CASTEPcalculations.

OTFG7/CASTEP

name and version of the code: CASTEP 8.0 (92)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (“On-The-Fly” Vanderbilt-type version C7 (33))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S30.2basis set size cutoff energy = 700 eVk-mesh density see Table S30.2 for grid values and number of k-points

in the irreducible wedge of the 1st Brillouin zone (# k);this choice achieves spacing ∆k < 0.0125 A

−1

reciprocal-space integration method Gaussian smearing with a fictitious temperature corre-sponding to 0.2 eV

METHOD-SPECIFIC INFORMATION

pseudopotential library CASTEP “on-the-fly” method. Default in 7.0, availableas “C7” library in later releases

pseudopotential core radii see Table S30.2 (rc)local channel see Table S30.2 (lloc)non-local core radii 2.0 a0 for Mg, Ca, Ni; 2.61 a0 for Li; 1.6 a0 for N; 1.3 a0

for O; 2.15 a0 for Cu;2.3 a0 for Ag; rc otherwisenumber of projectors mostly 2 per valence l channel, plus 1 per semi-core stateprojector generation KE-Optimized RRKJ - see Table S30.2 for qcaugmentation function pseudization between 0.5 rc and rc dependent on element

radiuspseudization radius for NLCC core same as for augmentation functions

chargesize of FFT grid for augmentation 1.5 × FFT grid for soft density (Ec,ρ = 9Ec,φ)

ADDITIONAL COMMENTS

none

100

Page 101: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S30.2. OTFG7/CASTEP calculation settings and results per element. Valence, pseu-dopotential core radius rc, local channel lloc, projector wave vector cutoff qc, Monkhorst-Packk-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Valence rc lloc qc kpts # k V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 0.80 1 6.0 15×15×10 135 17.504 10.375 2.752He 1s2 0.80 1 7.0 20×20×11 660 17.445 0.938 6.977Li 1s22s1 1.90 1 4.5 19×19×19 670 20.367 13.618 3.329Be 1s22s22p0.05 1.40 2 - 26×26×14 1 274 8.030 125.648 2.586B 2s22p1 1.41 2 - 13×13×12 546 7.213 237.164 3.461C 2s22p2 1.40 2 6.0 24×24×6 468 11.603 208.967 3.557N 2s22p3 1.40 2 - 9×9×9 45 32.998 51.696 3.507O 2s22p4 1.00 2 7.0 13×12×12 468 N/A N/A N/AF 2s22p5 1.40 2 6.5 9×14×8 252 19.290 34.267 4.079Ne 2s22p6 1.60 2 6.0 11×11×11 56 23.844 1.387 7.155Na 2s22p63s1 1.30 2 7.0 16×16×16 408 37.217 7.684 3.709Mg 2p63s2 1.60 2 4.5 19×19×10 200 22.906 35.835 2.117Al 3s23p1 2.00 2 3.0 13×13×13 84 16.382 78.155 4.630Si 3s23p2 1.80 2 4.0 16×16×16 408 20.364 88.843 4.292P 3s23p3 1.81 2 - 16×5×11 144 21.218 68.994 4.412S 3s23p4 1.69 2 - 20×20×20 770 17.041 83.594 4.038Cl 3s23p5 1.71 2 - 7×12×6 72 37.955 19.424 4.417Ar 3s23p6 1.71 2 - 9×9×9 35 51.694 0.788 6.892K 3s23p64s1 2.50 2 3.0 10×10×10 35 73.385 3.570 3.743Ca 3s23p64s2 1.60 3 - 10×10×10 35 42.225 17.403 2.912Sc 3s23p63d14s2 1.80 3 6.5 18×18×10 450 24.683 53.963 3.352Ti 3s23p63d24s2 1.79 3 6.0 20×20×11 660 17.402 111.554 3.588V 3s23p63d34s2 1.99 3 6.0 17×17×17 165 13.457 181.455 3.765Cr 3s23p63d54s1 1.80 3 6.0 18×18×18 165 N/A N/A N/AMn 3d54s0.754p0.25 2.30 3 4.5 14×14×14 84 N/A N/A N/AFe 3d64s1.75 2.00 1 - 18×18×18 165 11.768 184.590 3.002Co 3d74s1.954p0.05 2.49 3 4.0 24×24×13 1 092 11.118 203.370 4.023Ni 3d84s2 2.19 3 - 15×15×15 120 10.946 197.586 4.838Cu 3d104s0.54p0.001 2.21 3 - 14×14×14 84 11.965 136.322 4.572Zn 3d104s2 2.00 3 6.0 22×22×10 660 15.160 79.874 8.400Ga 3d104s24p1 2.00 3 6.0 11×7×11 144 20.359 49.424 3.079Ge 3d104s24p2 2.00 3 6.0 16×16×16 408 23.906 58.661 4.897As 4s24p3 1.60 2 - 16×16×5 344 22.348 69.674 4.247Se 4s24p4 1.61 2 - 13×13×10 175 29.581 47.635 4.617Br 4s24p5 2.00 2 4.0 7×12×6 72 39.478 22.448 4.857Kr 4s24p6 1.90 2 - 8×8×8 20 65.637 0.270 −21.298Rb 4s24p65s2 2.60 2 3.0 9×9×9 35 91.018 2.769 3.777Sr 4s24p65s2 2.00 3 - 9×9×9 35 55.013 11.787 3.191Y 4s24p64d15s2 2.00 3 - 16×16×9 360 32.897 40.532 3.058Zr 4s24p64d25s2 2.10 3 - 18×18×10 450 23.367 93.694 3.325

101

Page 102: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Nb 4s24p64d45s1 2.19 3 - 16×16×16 120 18.090 169.545 3.951Mo 4s24p64d55s1 2.00 3 - 16×16×16 120 15.740 261.878 4.530Tc 4s24p64d65s1 2.01 3 - 21×21×12 288 14.408 299.347 4.530Ru 4s24p64d75s1 2.00 3 6.0 22×22×12 792 13.739 313.077 4.849Rh 4s24p64d85s1 2.00 3 6.0 14×14×14 84 14.017 256.924 5.200Pd 4s24p64d105s0.05 2.01 3 5.5 13×13×13 84 15.266 169.574 5.547Ag 4d105s1 2.21 1 5.0 13×13×13 84 17.922 94.580 5.891Cd 4d105s2 2.20 1 5.0 20×20×9 550 22.674 48.311 7.818In 4d105s25p1 2.30 3 - 16×16×10 180 27.505 35.257 5.195Sn 4d105s25p2 2.29 3 - 14×14×14 280 36.804 35.655 4.293Sb 5s25p3 2.00 2 - 14×14×5 266 31.417 51.086 6.778Te 5s25p4 2.20 2 - 13×13×9 161 34.972 45.035 4.788I 5s25p5 2.01 2 - 6×11×5 54 50.410 18.667 5.083Xe 5s25p6 2.00 2 - 8×8×8 20 86.383 0.533 4.293Cs 5s25p66s1 2.8 2 3.0 8×8×8 20 117.019 2.107 −0.824Ba 5s25p66s2 2.00 2 5.5 10×10×10 35 63.175 8.790 3.456Lu 5s25p65d16s2 2.11 3 - 17×17×10 165 29.449 46.845 3.396Hf 5s25p65d26s2 2.10 3 - 19×19×10 200 22.523 108.258 3.448Ta 5s25p65d36s2 2.10 3 - 16×16×16 120 18.244 194.873 3.864W 5s25p65d46s2 2.11 3 - 16×16×16 120 16.082 306.876 4.555Re 5s25p65d56s2 2.10 3 - 21×21×12 288 14.904 367.009 4.413Os 5s25p65d66s2 2.00 3 5.0 21×21×12 288 14.232 399.733 5.295Ir 5s25p65d76s2 1.99 3 5.5 13×13×13 84 14.454 351.611 4.959Pt 5s25p65d96s1 2.00 3 5.5 13×13×13 84 15.602 248.953 5.466Au 5s25p65d106s1 2.01 3 5.5 12×12×12 56 17.911 140.087 5.208Hg 5d106s2 2.19 1 - 13×13×15 224 28.143 6.768 −4.068Tl 6s26p1 3.10 3 - 16×16×9 360 31.561 26.088 4.657Pb 6s26p2 2.20 3 - 10×10×10 35 N/A N/A N/ABi 6s26p3 2.10 2 4.0 13×13×5 91 36.512 43.699 4.715Po 6s26p4 2.00 2 - 15×15×15 120 37.513 47.606 −1.063Rn 6s26p6 2.00 2 - 7×7×7 20 92.388 0.563 6.869

102

Page 103: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S31.1. Overview of the most important features and settings of the OTFG9/CASTEPcalculations.

OTFG9/CASTEP

name and version of the code: CASTEP 9.0 (92)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (“On-The-Fly” Vanderbilt-type version C9 (33))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S31.2basis set size cutoff energy = 816 eVk-mesh density see Table S31.2 for grid values and number of k-points

in the irreducible wedge of the 1st Brillouin zone (# k);this choice achieves spacing ∆k < 0.0754 A

−1.

reciprocal-space integration method Gaussian smearing with a fictitious temperature corre-sponding to 0.2 eV

METHOD-SPECIFIC INFORMATION

pseudopotential library CASTEP “on-the-fly” method. Proposed settings for“C9” library release (Mercurial changeset 6666)

pseudopotential core radii see Table S31.2 (rc)local channel see Table S31.2 (lloc)non-local core radii 2.0 a0 for Mn, Fe, Co, Ni, Cu; rc otherwisenumber of projectors 2 per valence l channel, plus 1 per semi-core state.projector generation KE-Optimized RRKJ - see Table S31.2 for qcaugmentation function pseudization 1.0 a0 (V, Fe, Co, Ni, Cu, Zn); 0.7 a0 (Cr, Mn);

radius 0.7 rc otherwisepseudization radius for NLCC core same as for augmentation functions

chargesize of FFT grid for augmentation 2 × FFT grid for soft density (Ec,ρ = 16Ec,φ)

ADDITIONAL COMMENTS

Basis set, “fine” FFT grid, k-point density and plane-wave cutoff were chosen uniformly across the periodic tableto achieve high convergence. Less stringent critera, determined individually per element will still give high conver-gence in almost all cases at a substantially reduced computational cost.The C9 set of potentials is identical to C8 for the elements in the Delta test suite, except for Cr and Mn, for whichthe augmentation pseudization radius rinner was reduced from 1.0 a0 to 0.7 a0.

103

Page 104: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S31.2. OTFG9/CASTEP calculation settings and results per element. Valence, pseu-dopotential core radius rc, local channel lloc, projector wave vector cutoff qc, Monkhorst-Packk-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Valence rc lloc qc kpts # k V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 0.60 1 8 24×24×17 1 404 17.410 10.295 2.710He 1s2 1.00 1 7 33×33×18 972 17.601 0.917 6.736Li 1s22s1 1.00 1 7 31×31×4 352 20.247 13.771 3.338Be 1s22s2 1.00 2 7 42×42×23 5 544 7.919 123.382 3.295B 2s22p1 1.20 2 8 21×21×20 2 310 7.225 237.104 3.450C 2s22p2 1.40 2 7 39×39×10 735 11.629 208.972 3.569N 2s22p3 1.10 2 7 14×14×14 119 28.941 54.101 3.726O 2s22p4 1.10 2 7 21×20×20 2 100 18.664 51.111 3.869F 2s22p5 1.20 2 7 14×23×12 1 008 19.235 34.233 4.072Ne 2s22p6 1.40 2 6 18×18×18 165 23.825 1.456 7.597Na 2s22p63s1 1.30 2 7 26×26×3 533 37.203 7.708 3.690Mg 2s22p63s2 1.80 3 − 30×30×16 1 920 22.899 35.985 4.205Al 3s23p1 2.00 3 − 21×21×21 286 16.483 76.821 4.587Si 3s23p2 1.80 3 − 26×26×26 1 638 20.441 88.577 4.294P 3s23p3 1.81 3 − 25×8×18 468 21.428 68.124 4.330S 3s23p4 1.80 3 − 32×32×32 2 992 17.176 86.259 3.878Cl 3s23p5 1.81 3 − 11×19×10 300 38.712 19.125 4.384Ar 3s23p6 1.60 2 − 14×14×14 84 51.690 0.794 7.168K 3s23p64s1 1.50 2 6 16×16×16 120 73.863 3.548 3.609Ca 3s23p64s2 2.00 3 − 15×15×15 120 42.189 17.407 3.313Sc 3s23p63d14s2 1.80 3 6.5 29×29×16 680 24.690 53.949 3.371Ti 3s23p63d24s2 1.79 3 5.5 33×33×18 972 17.391 111.646 3.586V 3s23p63d34s2 1.99 3 6 28×28×28 560 13.452 182.010 3.827Cr 3s23p63d54s1 2.01 3 6 29×29×29 680 11.750 177.430 6.648Mn 3d54s2 2.20 3 5.5 23×23×23 936 11.534 117.995 1.821Fe 3d64s2 2.21 3 5.5 29×29×29 680 11.334 193.935 5.145Co 3d74s2 2.20 3 5.5 38×38×21 4 180 10.853 214.714 4.823Ni 3d84s2 2.19 3 6 24×24×24 364 10.898 199.722 4.896Cu 3d104s1 2.21 3 6 23×23×23 364 11.938 138.398 5.060Zn 3d104s2 2.00 3 6 36×36×17 3 078 15.169 74.744 5.447Ga 3d104s24p1 2.00 3 6 18×11×18 486 20.312 48.901 5.393Ge 3d104s24p2 2.00 3 6 25×25×25 455 23.903 58.828 4.840As 3d104s24p3 2.00 3 6 25×25×8 468 22.611 68.143 4.343Se 3d104s24p4 1.99 3 6 21×21×17 728 29.800 47.063 4.454Br 4s24p5 2.00 2 6 10×20×10 250 39.468 22.447 4.848Kr 4s24p6 1.90 2 − 13×13×13 84 65.527 0.740 5.506Rb 4s24p65s1 2.09 2 − 15×15×15 120 91.200 2.750 4.513Sr 4s24p65s2 2.00 3 − 14×14×14 84 55.011 11.754 3.264Y 4s24p64d15s2 2.00 3 − 26×26×15 1 456 32.899 40.648 3.305Zr 4s24p64d25s2 2.10 3 − 30×30×16 1 920 23.368 93.656 3.302

104

Page 105: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Nb 4s24p64d45s1 1.60 3 6 25×25×25 455 18.143 169.384 3.776Mo 4s24p64d55s1 1.60 3 6 26×26×26 455 15.779 258.653 4.149Tc 4s24p64d65s1 1.60 3 6 35×35×19 1 200 14.428 298.749 4.547Ru 4s24p64d75s1 1.61 3 6 35×35×20 1 200 13.749 312.687 4.984Rh 4s24p64d85s1 1.60 3 7 22×22×22 286 14.036 255.390 5.010Pd 4s24p64d105s0 1.60 3 7 21×21×21 286 15.308 164.943 8.234Ag 4s24p64d105s1 1.59 3 7 20×20×20 220 17.821 91.245 5.774Cd 4d105s2 2.20 1 5 32×32×15 2 176 22.699 46.379 6.461In 4d105s25p1 2.30 3 − 25×25×17 819 27.509 35.248 4.927Sn 4d105s25p2 2.20 3 − 22×22×22 1 012 36.777 35.701 5.126Sb 4d105s25p3 2.19 3 − 22×22×8 1 012 31.704 50.423 4.338Te 5s25p4 2.20 2 − 21×21×14 595 34.970 45.193 5.042I 5s25p5 2.01 2 − 10×18×9 225 50.421 18.580 5.081Xe 5s25p6 2.19 2 − 12×12×12 56 85.748 0.519 9.059Cs 5s25p66s1 2.19 2 5 14×14×14 84 116.636 1.933 5.731Ba 5s25p66s2 2.00 2 5.5 17×17×17 165 63.211 8.781 2.931Lu 4f145s25p65d16s2 2.11 2 6 27×27×15 600 29.103 46.301 3.405Hf 4f145s25p65d26s2 2.10 3 6 30×30×17 2 160 22.495 107.483 3.551Ta 4f145s25p65d36s2 2.40 3 6 25×25×25 455 18.268 195.230 3.289W 4f145s25p65d46s2 2.41 3 6 26×26×26 455 16.123 303.940 4.334Re 4f145s25p65d56s2 2.40 3 6 35×35×19 1 200 14.949 365.817 4.409Os 4f145s25p65d66s2 2.41 3 6 35×35×19 1 200 14.277 401.335 4.826Ir 4f145s25p65d76s2 2.39 3 6 22×22×22 286 14.498 349.836 5.133Pt 4f145s25p65d96s1 2.40 3 6 21×21×21 286 15.637 248.932 5.468Au 4f145s25p65d106s1 2.39 3 6 20×20×20 220 17.932 143.007 6.517Hg 5s25p65d106s2 2.19 3 − 20×20×24 660 29.062 8.665 8.245Tl 5s25p65d106s26p1 2.20 3 − 27×27×15 600 31.365 26.502 5.141Pb 5s25p65d106s26p2 2.19 3 − 17×17×17 165 31.925 39.560 4.535Bi 5d106s26p3 2.30 3 − 21×21×7 303 36.785 42.645 4.909Po 5d106s26p4 2.31 3 − 25×25×25 455 37.491 45.752 4.291Rn 5d106s26p6 2.29 3 − 12×12×12 56 91.823 0.564 3.973

105

Page 106: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S32.1. Overview of the most important features and settings of the SSSP/QE calcu-lations.

SSSP/QE

name and version of the code: QUANTUM ESPRESSO 5.1 (84)type of basis set: plane wavesmethod: mixed projector-augmented wave, ultrasoft pseudopotentials and norm-conserving

pseudopotentials (SSSP accuracy (78, 85, 88, 93–95))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S32.2basis set size see Table S32.2 (wave function cutoff ewfc

cut )k-mesh density 20 × 20 × 20reciprocal-space integration method Marzari-Vanderbilt cold smearing (87) with a fictitious

temperature corresponding to 0.002 Ry(0.02 Ry when required to achieve convergence)

METHOD-SPECIFIC INFORMATION

wave function cutoff see Table S32.2 (ewfccut )

density cutoff see Table S32.2 (erhocut )

ADDITIONAL COMMENTS

Optimally efficient potentials have been selected for each element (see Table S32.2). The investigatedlibraries are: pslibrary.0.3.1 (US and PAW), pslibrary.1.0.0 (US and PAW), GBRV v1.2 and v1.4 (US),and SG15 (NC). The selection criteria for the SSSP efficiency are: smallest ∆, convergence of thephonons mode within 2 %, convergence of the standard heat of formation with respect to theisolated atom (within 3 meV), not too computationally costly. The pseudopotential for N (labeledas THEOS) has been obtained tuning the matching radius starting from the pseudopotential in pslib031US to improve the ∆.

106

Page 107: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S32.2. SSSP/QE calculation settings per element. Potential library from which the usedpotential is taken, wave function cutoff ewfc

cut , density cutoff erhocut , valence.

library ewfccut [Ry] erhocut [Ry] valence

H pslib031 US 58 276 1s1

He SG15 100 400 1s2

Li GBRV-1.4 50 250 1s22s0.552p0

Be SG15 100 400 1s22s2

B pslib031 PAW 86 340 2s22p1

C GBRV-1.2 50 250 2s22p2

N THEOS 100 400 2s22p3

O pslib031 PAW 94 374 2s22p4

F GBRV-1.4 50 250 2s22p5

Ne pslib100 PAW 110 530 2s22p6

Na GBRV-1.2 50 250 2s22p63s1

Mg GBRV-1.4 50 250 2s22p63s1.7

Al pslib100 PAW 60 290 3s23p1

Si pslib100 US 56 219 3s23p2

P pslib100 US 44 219 3s23p3

S GBRV-1.2 50 250 3s23p4

Cl pslib100 US 57 282 3s23p5

Ar pslib100 US 63 281 3s23p6

K pslib100 US 56 350 3s23p64s14p0

Ca GBRV-1.2 50 250 3s23p64s24p0

Sc GBRV-1.2 50 250 3s23p63d14s24p0

Ti GBRV-1.4 50 250 3s23p63d14s2

V GBRV-1.2 50 250 3s23p63d34s2

Cr pslib100 PAW 125 1150 3s23p63d44s2

Mn pslib100 PAW 120 1410 3s23p63d54s2

Fe pslib031 PAW 128 1564 3s23p63d64s24p0

Co GBRV-1.2 50 250 3s23p63d74s14p0

Ni GBRV-1.4 50 250 3s23p63d84s04p0

Cu GBRV-1.2 50 250 3s23p63d84s24p0

Zn GBRV-1.2 50 250 3s23p63d104s24p0

Ga pslib100 PAW 120 490 3d104s24p1

Ge pslib100 PAW 90 480 3d104s24p2

As pslib031 US 40 206 4s24p3

Se GBRV-1.2 50 250 4s24p4

Br GBRV-1.4 50 250 4s24p5

Kr pslib031 US 56 440 4s24p6

Rb SG15 100 400 4s24p65s15p0

Sr pslib100 US 50 331 4s24p65s25p0

Y GBRV-1.2 50 250 4s24p64d15s25p0

Zr GBRV-1.2 50 250 4s24p64d25s25p0

Nb pslib031 PAW 84 728 4s24p64d45s1

Mo SG15 100 400 4s24p64d45s2

Tc SG15 100 400 4s24p64d55s2

Ru SG15 100 400 4s24p64d65s2

Rh pslib100 PAW 110 730 4s24p64d75s2

Pd pslib100 PAW 120 1080 4s24p64d85s2

107

Page 108: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag GBRV-1.4 50 250 4s24p64d105s0.5

Cd pslib031 US 74 358 4d9.55s25p0.5

In pslib031 US 96 380 4d105s25p1

Sn GBRV-1.2 50 250 4d105s25p1

Sb GBRV-1.4 50 250 4d105s25p2

Te GBRV-1.2 50 250 5s25p4

I GBRV-1.2 50 250 5s25p5

Xe pslib100 US 56 269 4d105s25p6

Cs GBRV-1.2 50 250 5s25p65d06s16p0

Ba SG15 100 400 5s25p65d16s1

Lu N/A N/A N/A N/AHf pslib100 PAW 100 640 4d104f145s25p65d26s2

Ta pslib100 US 69 663 4f145s25p65d36s2

W GBRV-1.2 50 250 5s25p65d3.96s26p0

Re GBRV-1.2 50 250 5s25p65d4.56s26p0

Os pslib100 US 88 563 4f145s25p65d66s26p0

Ir GBRV-1.2 50 250 5p65d8.56s06p0

Pt pslib100 US 100 500 4f145s25p65d86s2

Au SG15 100 400 5s05p65d96s2

Hg GBRV-1.2 50 250 5d106s26p0

Tl pslib100 US 57 263 5d106s26p1

Pb pslib031 PAW 94 378 5d106s26p2

Bi pslib031 PAW 86 344 5d106s26p3

Po pslib100 US 63 569 5d106s26p4

Rn pslib100 US 63 269 5d106s26p6

108

Page 109: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S32.3. SSSP/QE calculation results per element. Equilibrium volume per atom V0, bulkmodulus B0, pressure derivative of the bulk modulus B1.

V0 [A3/atom] B0 [GPa] B1 [–]H 17.411 10.296 2.720He 17.709 0.881 6.427Li 20.231 13.846 3.338Be 7.934 123.635 3.292B 7.245 235.870 3.158C 11.633 207.935 3.551N 28.943 53.955 3.826O 19.227 52.194 3.986F 19.236 34.327 4.085Ne 24.253 1.431 13.082Na 37.083 7.697 3.895Mg 22.938 36.123 4.021Al 16.476 77.977 4.664Si 20.452 88.698 4.318P 21.474 68.262 4.351S 17.200 82.677 3.692Cl 38.872 19.085 4.286Ar 52.437 0.760 3.250K 73.726 3.594 3.795Ca 42.226 17.369 3.032Sc 24.607 54.521 3.398Ti 17.380 112.192 3.573V 13.443 182.712 4.061Cr 11.837 182.041 6.560Mn 11.443 115.696 2.712Fe 11.355 204.968 4.680Co 10.852 216.635 4.919Ni 10.893 198.736 4.873Cu 11.982 140.397 5.031Zn 15.219 74.684 5.409Ga 20.299 49.119 5.293Ge 23.905 59.055 4.823As 22.628 68.628 4.293Se 29.737 47.281 4.516Br 39.389 23.016 4.889Kr 65.885 0.649 7.490Rb 90.990 2.795 3.776Sr 54.501 11.400 4.544Y 32.856 41.199 3.007Zr 23.381 94.498 3.430Nb 18.149 170.207 3.713Mo 15.788 260.913 4.172Tc 14.438 298.975 4.474Ru 13.770 312.211 4.855Rh 14.051 257.621 5.205Pd 15.307 169.707 5.540

109

Page 110: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 17.867 91.228 5.918Cd 22.834 44.725 6.919In 27.502 35.824 4.850Sn 36.849 35.709 4.957Sb 31.765 50.368 4.537Te 34.931 45.243 4.735I 50.215 18.707 5.020Xe 86.674 0.551 6.869Cs 116.846 1.965 3.423Ba 63.188 8.727 2.913Lu N/A N/A N/AHf 22.521 107.118 4.290Ta 18.291 195.230 3.715W 16.142 305.193 4.334Re 14.951 364.312 4.428Os 14.270 397.156 4.805Ir 14.499 347.354 5.121Pt 15.638 248.621 5.494Au 17.982 139.246 5.994Hg 29.922 7.435 2.338Tl 31.386 26.834 5.610Pb 31.993 39.669 4.767Bi 36.885 42.820 4.643Po 37.590 45.667 4.856Rn 92.763 0.541 8.111

110

Page 111: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S33.1. Overview of the most important features and settings of the Vdb/CASTEP cal-culations.

Vdb/CASTEP

name and version of the code: CASTEP 8.0 (92)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (Legacy Vanderbilt-type Materials Studio set (33))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S33.2basis set size cutoff energy = 700 eVk-mesh density see Table S33.2 for grid values and number of k-points

in the irreducible wedge of the 1st Brillouin zone (# k);this choice achieves spacing ∆k < 0.125 A

−1

reciprocal-space integration method Gaussian smearing with a fictitious temperature corre-sponding to 0.2 eV

METHOD-SPECIFIC INFORMATION

size of FFT grid for augmentation 1.5 × FFT grid for soft density (Ec,ρ = 9Ec,φ)

ADDITIONAL COMMENTS

This is the set of pseudopotentials generated using the Vanderbilt USPP code and shipped with Accelrys MaterialsStudio in “.usp” file format. The “.uspcc” variants incorporating a non-linear core correction were used for Mn, Fe,Co, Ni, Y and Hf.

111

Page 112: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S33.2. Vdb/CASTEP calculation settings and results per element. Valence, Monkhorst-Pack k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number ofirreducible k-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative ofthe bulk modulus B1.

Valence kpts # k V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 15×15×10 135 17.563 10.447 2.825He N/A N/A N/A N/A N/A N/ALi 1s2 2s1 19×19×3 110 20.378 13.607 3.298Be 2s2 26×26×14 1 274 7.815 119.510 2.525B 2s2 2p1 13×13×12 546 7.191 236.678 3.444C 2s2 2p2 23×23×6 168 11.566 208.966 3.616N 2s2 2p3 8×8×8 24 33.276 52.266 3.468O 2s2 2p4 13×12×12 468 19.380 53.250 4.455F 2s2 2p5 9×14×8 252 19.476 35.208 4.223Ne N/A N/A N/A N/A N/A N/ANa 2s2 2p6 3s1 16×16×2 136 37.271 7.664 3.790Mg 2p6 3s2 18×18×10 450 23.264 36.071 2.214Al 3s2 3p1 13×13×13 84 16.593 76.526 4.570Si 3s2 3p2 16×16×16 408 20.360 89.087 4.307P 3s2 3p3 15×5×11 144 20.863 70.212 4.377S 3s2 3p4 20×20×20 770 17.077 83.151 4.114Cl 3s2 3p5 7×12×6 72 37.283 19.795 4.379Ar N/A N/A N/A N/A N/A N/AK 3s2 3p6 4s1 10×10×10 35 73.543 3.563 3.740Ca 3s2 3p6 4s2 9×9×9 35 42.230 17.102 3.063Sc 3s2 3p6 3d1 4s2 18×18×10 450 24.690 53.909 3.353Ti 3s2 3p6 3d2 4s2 20×20×11 660 17.412 111.565 3.567V 3s2 3p6 3d3 4s2 17×17×17 165 13.496 180.666 3.766Cr 3s2 3p6 3d5 4s1 18×18×18 165 12.460 115.824 6.232Mn 3d5 4s2 14×14×14 196 12.081 123.543 2.491Fe 3d6 4s2 18×18×18 165 11.137 212.468 6.366Co 3d7 4s2 23×23×13 392 11.126 213.989 5.335Ni 3d8 4s2 14×14×14 84 11.059 199.256 4.892Cu 3d10 4s1 14×14×14 84 11.960 136.416 4.664Zn 3d10 4s2 22×22×10 660 15.008 84.946 8.260Ga 3d10 4s2 4p1 11×7×11 144 20.422 49.593 3.104Ge 4s2 4p2 15×15×15 120 23.622 59.973 4.862As 4s2 4p3 15×15×5 119 22.052 69.324 4.079Se N/A N/A N/A N/A N/A N/ABr 4s2 4p5 6×12×6 54 39.382 22.469 5.070Kr N/A N/A N/A N/A N/A N/ARb 4s2 4p6 5s1 9×9×9 35 90.941 2.770 3.725Sr 4s2 4p6 5s2 9×9×9 35 55.032 11.716 3.210Y 4d1 5s2 16×16×9 360 33.510 45.091 3.535Zr 4s2 4p6 4d2 5s2 18×18×10 450 23.367 93.570 3.328Nb 4s2 4p6 4d4 5s1 15×15×15 120 18.105 169.515 3.937

112

Page 113: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Mo 4s2 4p6 4d5 5s1 16×16×16 120 15.723 261.577 4.493Tc 4s2 4p6 4d6 5s1 21×21×12 288 14.392 299.655 4.523Ru 4s2 4p6 4d7 5s1 21×21×12 288 13.718 313.866 4.864Rh 4d8 5s1 13×13×13 84 14.750 249.801 5.461Pd 4d10 13×13×13 84 15.164 180.989 5.761Ag 4d10 5s1 12×12×12 56 17.717 97.783 5.874Cd 4d10 5s2 19×19×9 200 23.199 42.139 7.700In 4d10 5s2 5p1 15×15×10 180 27.671 35.185 5.254Sn 5s2 5p2 13×13×13 84 36.862 35.402 4.373Sb 5s2 5p3 13×13×5 91 31.072 52.528 6.939Te 5s2 5p4 13×13×9 161 35.028 45.132 5.036I 5s2 5p5 6×11×5 54 50.510 18.649 5.215Xe N/A N/A N/A N/A N/A N/ACs 5s2 5p6 6s1 8×8×8 20 116.710 2.086 −0.828Ba 5s2 5p6 6s2 10×10×10 35 63.361 8.825 3.494Lu N/A N/A N/A N/A N/A N/AHf 5d2 6s2 18×18×10 450 22.896 118.607 3.805Ta 5d3 6s2 15×15×15 120 19.039 194.423 3.890W 5s2 5p6 5d4 6s2 16×16×16 120 16.084 306.980 4.566Re 5s2 5p6 5d5 6s2 21×21×11 288 14.938 369.593 4.409Os 5s2 5p6 5d6 6s2 21×21×12 288 14.227 399.671 5.288Ir 5d7 6s2 13×13×13 84 14.846 367.648 5.297Pt 5d9 6s1 13×13×13 84 15.994 255.877 5.698Au 5d10 6s1 12×12×12 56 18.355 142.702 5.306Hg 5d10 6s2 12×12×14 147 29.945 9.827 −0.779Tl 5d10 6s2 6p1 16×16×9 360 31.802 26.073 4.692Pb 5d10 6s2 6p2 10×10×10 35 32.316 34.485 4.452Bi 6s2 6p3 13×13×5 91 35.143 45.497 4.648Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

113

Page 114: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S34.1. Overview of the most important features and settings of the Vdb2/DACAPOcalculations.

Vdb2/DACAPO

name and version of the code: Dacapo 2.7.16 (96)type of basis set: plane wavesmethod: ultrasoft pseudopotentials (Vanderbilt-type v2 (33, 97))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S34.2 (Zval)basis set size plane-wave cutoff = 700 eVk-mesh density 8 k-points per A−1

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.06 eV

METHOD-SPECIFIC INFORMATION

plane-wave cutoff 700 eVdensity cutoff 1000 eV

ADDITIONAL COMMENTS

The ASE script (46) used to generate these data is available online (48).

114

Page 115: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S34.2. Vdb2/DACAPO calculation settings and results per element. Potential, valenceZval, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulusB1.

potential Zval [–] V0 [A3/atom] B0 [GPa] B1 [–]H ch e9g4.pseudo 1 17.683 10.617 2.728He N/A N/A N/A N/A N/ALi Li us cc.pseudo 1 22.156 12.196 3.532Be N/A N/A N/A N/A N/AB B us cc.pseudo 3 7.228 236.231 3.45C C us gga.pseudo 4 11.573 211.609 3.598N N us.pseudo 5 30.218 55.628 3.389O co gef e13 gga.pseudo 6 19.338 53.354 3.722F F pw91 us 7.3.4.pseudo 7 19.872 35.781 4.621Ne N/A N/A N/A N/A N/ANa Na tm lda cc.pseudo 1 35.524 8.072 3.724Mg mg us gga.pseudo 8 23.058 35.951 4.052Al Al us gga org.pseudo 3 16.455 77.26 5.027Si csi e8ag4.pseudo 4 20.403 88.872 4.307P P us.pseudo 5 21.427 67.695 4.196S S tm.pseudo 6 17.037 83.932 4.452Cl Cl us gga.pseudo 7 38.077 19.69 6.753Ar N/A N/A N/A N/A N/AK k us gga.pseudo 9 73.872 3.893 1.431Ca Ca us cc pw91.pseudo 10 42.217 17.175 1.979Sc Sc us cc pw91.pseudo 11 24.643 54.266 3.418Ti ti us gga.pseudo 12 17.404 111.643 3.831V V us pw91 13elec.pseudo 13 13.47 180.486 3.601Cr N/A N/A N/A N/A N/AMn Mn us gga.pseudo 7 10.748 277.287 4.329Fe Fe us gga d2.1.8.pseudo 8 11.626 162.557 8.238Co Co us gga.pseudo 9 10.973 214.957 5.157Ni Ni us gga.pseudo 10 10.954 203.148 4.772Cu Cu us gga.pseudo 11 12.306 133.614 5.029Zn N/A N/A N/A N/A N/AGa ga pw91 us 13elec.pseudo 13 20.345 49.928 3.377Ge ge pw91 us 14elec.pseudo 14 23.907 59.757 4.804As as pw91 us 15elec.pseudo 15 22.548 69.623 4.089Se N/A N/A N/A N/A N/ABr Br us.pseudo 17 39.468 22.404 4.667Kr N/A N/A N/A N/A N/ARb N/A N/A N/A N/A N/ASr Sr us cc pw91.pseudo 10 54.752 11.506 3.321Y Y us cc pw91.pseudo 11 32.899 40.972 3.065Zr N/A N/A N/A N/A N/ANb Nb us pw91 13elec.pseudo 13 18.093 170.578 3.971Mo Mo us.pseudo 6 16.182 267.884 4.531Tc N/A N/A N/A N/A N/ARu Ru us gga.pseudo 8 14.12 344.792 5.059Rh Rh us gga fl.pseudo 9 13.985 259.049 5.12Pd pd us gga.pseudo 10 15.82 170.298 5.644

115

Page 116: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag ag us.pseudo 11 17.744 92.462 5.863Cd Cd us gga.pseudo 12 22.766 44.499 6.813In N/A N/A N/A N/A N/ASn sn us f.pseudo 14 36.792 35.194 4.237Sb sb us gga.pseudo 15 31.192 54.089 4.649Te te tm.pseudo 16 38.558 41.165 4.833I I us.pseudo 17 49.319 19.099 5.063Xe N/A N/A N/A N/A N/ACs cs tm 7el.pseudo 7 123.835 1.793 3.432Ba Ba us cc pw91.pseudo 10 62.41 8.497 2.585Lu N/A N/A N/A N/A N/AHf N/A N/A N/A N/A N/ATa Ta us pw91 13elec.pseudo 13 18.21 194.071 3.724W W us pw91 6elec.pseudo 6 16.12 306.074 4.283Re re us gga 7elec.pseudo 7 14.689 371.713 4.44Os os us gga 7elec 7.3.4.pseudo 8 14.177 408.197 4.723Ir ir us gga flocal.pseudo 9 14.296 352.89 5.15Pt pt us gga.pseudo 10 15.971 243.678 5.562Au Au us gga.pseudo 11 18.227 138.628 5.811Hg N/A N/A N/A N/A N/ATl N/A N/A N/A N/A N/APb N/A N/A N/A N/A N/ABi Bi us gga.pseudo 15 36.777 43.893 4.081Po N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A

116

Page 117: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S35.1. Overview of the most important features and settings of the FHI98pp/ABINITcalculations.

FHI98pp/ABINIT

name and version of the code: ABINIT 7.6.4 (75–77)type of basis set: plane wavesmethod: norm-conserving pseudopotentials (Troullier-Martins FHI (98, 99))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S35.2 (Zval)basis set size cut-off energy = 120 Ryk-mesh density see Table S35.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

number of symmetry operations 1

ADDITIONAL COMMENTS

The ASE script (46) used to generate these data is available online (48).

117

Page 118: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S35.2. FHI98pp/ABINIT calculation settings and results per element. Valence Zval,k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 7 840 16.888 10.154 2.630He 2 40×40×22 17 600 17.811 0.815 6.207Li 1 38×38×38 27 436 19.714 13.526 3.208Be 2 52×52×28 37 856 7.633 122.833 3.201B 3 26×26×24 8 112 7.152 237.409 3.529C 4 48×48×12 13 824 11.510 208.889 3.539N 5 16×16×16 2 048 28.316 53.653 3.524O 6 26×24×24 7 488 18.428 50.928 3.899F 7 16×28×14 3 136 19.213 33.913 3.969Ne 8 22×22×22 5 324 24.296 1.784 14.844Na 1 32×32×32 16 384 36.888 7.555 3.607Mg 2 36×36×20 12 960 22.793 35.843 3.977Al 3 24×24×24 6 912 16.562 76.366 4.888Si 4 32×32×32 16 384 20.399 87.919 4.281P 5 30×8×22 2 640 21.378 68.272 4.308S 6 38×38×38 27 436 17.131 84.386 4.053Cl 7 12×24×12 1 728 38.591 19.147 4.341Ar 8 16×16×16 2 048 52.244 0.755 7.340K 1 20×20×20 4 000 66.652 3.974 3.690Ca 2 18×18×18 2 916 42.778 17.926 3.592Sc 3 34×34×20 11 560 25.165 54.566 3.382Ti 4 40×40×22 17 600 18.148 111.096 3.698V 5 34×34×34 19 652 14.511 171.538 3.896Cr N/A N/A N/A N/A N/A N/AMn N/A N/A N/A N/A N/A N/AFe 8 36×36×36 23 328 11.897 907.659 −9.882Co 9 46×46×24 25 392 11.595 204.094 4.438Ni 10 28×28×28 10 976 11.484 179.020 4.703Cu 11 28×28×28 10 976 12.343 136.898 5.123Zn 12 44×44×20 19 360 15.672 71.454 5.378Ga 3 22×12×22 2 904 20.152 50.274 5.216Ge 4 30×30×30 13 500 24.052 57.747 4.812As 5 30×30×10 4 500 23.038 66.918 4.240Se 6 26×26×20 6 760 30.092 46.474 4.443Br 7 12×24×12 1 728 39.729 22.251 4.847Kr 8 16×16×16 2 048 66.028 0.646 7.251Rb 1 18×18×18 2 916 84.308 2.996 3.746Sr 2 16×16×16 2 048 52.327 13.253 3.112Y 3 32×32×18 9 216 32.679 42.006 3.141Zr 4 36×36×20 12 960 23.803 97.703 3.418Nb 5 30×30×30 13 500 18.501 175.198 3.635Mo 6 32×32×32 16 384 15.930 266.027 4.283Tc 7 42×42×22 19 404 14.572 313.700 4.555Ru 8 42×42×24 21 168 13.931 322.583 4.929Rh 9 26×26×26 8 788 14.188 267.769 5.262

118

Page 119: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 10 26×26×26 8 788 15.674 170.009 5.670Ag 11 24×24×24 6 912 18.651 85.846 6.131Cd 12 38×38×18 12 996 23.717 40.160 7.136In 3 30×30×20 9 000 26.429 38.473 4.877Sn 4 26×26×26 8 788 36.610 35.423 4.756Sb 5 26×26×8 2 704 31.496 51.162 4.523Te 6 26×26×16 5 408 34.201 45.961 4.680I 7 12×22×10 1 320 50.024 18.769 5.036Xe 8 14×14×14 1 372 86.655 0.543 7.173Cs 1 16×16×16 2 048 105.499 2.263 3.682Ba 2 20×20×20 4 000 64.349 9.041 3.359Lu 17 32×32×18 9 216 29.341 50.173 3.951Hf 4 36×36×20 12 960 22.869 109.023 3.378Ta 5 30×30×30 13 500 18.834 192.102 3.772W 6 32×32×32 16 384 22.218 129.992 3.247Re 7 42×42×22 19 404 15.305 366.796 4.462Os 8 42×42×24 21 168 14.677 393.544 4.809Ir 9 26×26×26 8 788 14.783 352.058 5.179Pt 10 26×26×26 8 788 15.938 250.732 5.563Au 11 24×24×24 6 912 18.298 138.991 6.103Hg 12 24×24×28 8 064 31.522 −1.298 4.667Tl 3 32×32×18 9 216 25.489 37.761 5.538Pb 14 20×20×20 4 000 32.002 39.462 4.752Bi 5 26×26×8 2 704 35.533 43.969 4.439Po 6 30×30×30 13 500 36.472 47.179 5.014Rn 8 14×14×14 1 372 91.436 0.587 16.798

119

Page 120: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S36.1. Overview of the most important features and settings of the HGH/ABINITcalculations.

HGH/ABINIT

name and version of the code: ABINIT 7.10.2 (75–77)type of basis set: plane wavesmethod: norm-conserving pseudopotentials (HGHk-sc (100–103))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon) (54)assignment of core / valence states see Table S36.2 (Zval)basis set size cut-off energy = 250 Ryk-mesh density see Table S36.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Fermi-Dirac smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

none

ADDITIONAL COMMENTS

The ASE script (46) used to generate these data is available online (48).

120

Page 121: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S36.2. HGH/ABINIT calculation settings and results per element. Valence Zval, k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreduciblek-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulkmodulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 7 840 17.422 10.262 2.683He 2 40×40×22 8 800 17.781 0.865 6.201Li 3 38×38×38 27 436 20.210 13.848 3.345Be 4 52×52×28 18 928 7.893 122.959 3.332B 3 26×26×24 8 112 7.223 234.668 3.435C 4 48×48×12 6 912 11.633 207.213 3.551N 5 16×16×16 176 28.794 53.568 3.666O 6 26×24×24 3 744 18.681 50.004 3.518F 7 16×28×14 3 136 19.292 33.769 3.730Ne 8 22×22×22 286 24.799 1.730 9.142Na 9 32×32×32 16 384 37.586 7.489 6.691Mg 10 36×36×20 6 480 23.201 38.235 −12.582Al 3 24×24×24 364 16.460 77.517 4.861Si 4 32×32×32 16 384 20.355 88.278 4.278P 5 30×8×22 1 320 21.260 68.722 4.313S 6 38×38×38 27 436 17.035 84.313 4.049Cl 7 12×24×12 864 38.257 19.302 4.372Ar 8 16×16×16 120 52.181 0.755 7.308K 9 20×20×20 220 73.602 3.594 3.773Ca 10 18×18×18 165 42.276 17.618 3.379Sc 11 34×34×20 5 780 24.630 54.548 3.392Ti 12 40×40×22 8 800 17.414 111.829 3.603V 13 34×34×34 969 13.473 182.469 3.911Cr 14 36×36×36 1 140 12.175 136.321 7.032Mn 15 28×28×28 2 744 12.006 119.492 5.921Fe 16 36×36×36 1 140 11.464 177.303 7.785Co 17 46×46×24 12 696 10.915 210.008 5.081Ni 18 28×28×28 560 10.925 193.949 4.730Cu 19 28×28×28 560 11.955 144.750 5.652Zn 20 44×44×20 9 680 15.234 74.393 4.628Ga 13 22×12×22 1 452 20.439 46.913 7.184Ge 4 30×30×30 13 500 24.071 57.597 4.789As 5 30×30×10 4 500 22.565 68.686 4.278Se 6 26×26×20 6 760 29.726 47.199 4.445Br 7 12×24×12 432 39.336 22.570 4.842Kr 8 16×16×16 120 65.867 0.649 7.221Rb 9 18×18×18 165 91.058 2.794 3.799Sr 10 16×16×16 120 54.452 11.304 5.145Y 11 32×32×18 4 608 32.884 41.228 3.132Zr 12 36×36×20 6 480 23.353 93.903 3.270Nb 13 30×30×30 680 18.141 170.147 3.696Mo 14 32×32×32 816 15.819 259.942 4.350Tc 15 42×42×22 9 702 14.477 299.499 4.529Ru 16 42×42×24 10 584 13.802 312.577 4.875Rh 17 26×26×26 455 14.090 257.333 5.209

121

Page 122: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 18 26×26×26 455 15.369 169.094 5.544Ag 19 24×24×24 364 18.022 89.845 6.078Cd 12 38×38×18 6 498 22.869 44.751 6.972In 13 30×30×20 1 200 27.664 35.871 5.068Sn 4 26×26×26 8 788 37.094 34.150 4.716Sb 5 26×26×8 2 704 31.977 50.220 4.513Te 6 26×26×16 5 408 35.162 44.717 4.702I 7 12×22×10 330 50.546 18.567 5.055Xe 8 14×14×14 84 86.827 0.542 7.182Cs 9 16×16×16 120 116.830 1.962 3.608Ba 10 20×20×20 220 63.430 8.747 2.063Lu N/A N/A N/A N/A N/A N/AHf 12 36×36×20 6 480 22.470 107.014 3.374Ta 13 30×30×30 680 18.151 193.434 3.533W 14 32×32×32 816 15.999 303.367 4.101Re 15 42×42×22 9 702 14.818 367.741 4.401Os 16 42×42×24 10 584 14.137 403.796 4.799Ir 17 26×26×26 455 14.342 354.960 5.096Pt 18 26×26×26 455 15.603 253.682 5.477Au 19 24×24×24 364 17.888 143.464 6.011Hg 12 24×24×28 1 092 29.405 8.379 9.825Tl 13 32×32×18 4 608 31.484 27.024 5.472Pb 14 20×20×20 220 32.047 39.979 5.605Bi 15 26×26×8 2 704 36.970 42.722 4.668Po 6 30×30×30 680 37.627 45.541 5.012Rn 8 14×14×14 84 93.350 0.539 7.197

122

Page 123: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S37.1. Overview of the most important features and settings of the HGH-NLCC/BigDFTcalculations.

HGH-NLCC/BigDFT

name and version of the code: BigDFT 1.7.6 (104, 105)type of basis set: Daubechies waveletsmethod: norm-conserving pseudopotentials (HGHk, HGHk-sc and NLCC (101–103, 106, 107))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme HGHk PSP generated with relativistic correctionsassignment of core / valence states see Table S37.2 (valence)basis set size full high-resolution grid, hgrid indicated in Table S37.2k-mesh density see Table S37.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 5 · 10−5 Ry

METHOD-SPECIFIC INFORMATION

pseudopotential families HGHk pseudopotentials generated by Krack (101–103)and hard-coded in BigDFT

HGHk-sc pseudopotentials generated by Krack (101–103)with semi-core electrons and hard-coded in BigDFT

NLCC pseudopotentials generated by Willand (106) andlater by S. Saha with non-linear core correctionsand available in the BigDFT wiki (107)

ADDITIONAL COMMENTS

In version 1.7.6, BigDFT cannot treat non orthorhombic systems. The six elements for whichthis is the case, are mentioned in Table S37.2.

123

Page 124: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S37.2. HGH-NLCC/BigDFT calculation settings per element. Potential type, real-space grid spacing hgrid, number of k-points in the full 1st Brillouin zone of the primitive cell# k, valence.

potential hgrid [bohr] # k [–] valenceH NLCC-new 0.3156× 0.3279× 0.3151 1000 1He NLCC-new 0.3193× 0.3072× 0.3225 1728 2Li RhombohedralBe NLCC-new(QE) 0.3086× 0.3054× 0.2813 1728 4B TriclinicC NLCC-new 0.3332× 0.2886× 0.3341 1000 4N NLCC-new 0.3249× 0.3249× 0.3249 1000 5O MonoclinicF MonoclinicNe NLCC-new 0.3013× 0.3013× 0.3013 1728 8Na RhombohedralMg NLCC-new 0.3267× 0.3353× 0.3258 1728 2Al NLCC-new 0.3181× 0.3181× 0.3181 1728 3Si NLCC-new 0.323× 0.323× 0.323 1000 4P NLCC-new 0.3122× 0.3342× 0.3087 1000 5S RhombohedralCl NLCC-new 0.4083× 0.411× 0.4265 1000 7Ar HGHk 0.3124× 0.3124× 0.3124 1728 8K HGHk 0.333× 0.333× 0.333 3375 9Ca NLCC-new 0.3263× 0.3263× 0.3263 1728 10Sc NLCC-new 0.302× 0.3138× 0.3252 1728 11Ti HGHk 0.3204× 0.3083× 0.314 1728 12V HGHk 0.3148× 0.3148× 0.3148 3375 13Cr N/A N/A N/A N/AMn N/A N/A N/A N/AFe HGHk 0.3347× 0.3347× 0.3347 3375 16Co HGHk 0.2919× 0.2949× 0.3174 1728 17Ni N/A N/A N/A N/ACu HGHk 0.2864× 0.2864× 0.2864 1728 11Zn HGHk 0.3111× 0.3144× 0.3152 1728 12Ga HGHk 0.4315× 0.407× 0.3622 1000 3Ge HGHk 0.3024× 0.3024× 0.3024 1000 4As HGHk 0.3008× 0.3126× 0.3186 729 5Se HGHk 0.3054× 0.3085× 0.3181 1331 6Br HGHk 0.4319× 0.3994× 0.4268 1000 7Kr HGHk 0.3037× 0.3037× 0.3037 1728 8Rb HGHk 0.335× 0.335× 0.335 3375 9Sr NLCC-new 0.316× 0.316× 0.316 1728 10Y N/A N/A N/A N/AZr NLCC-new 0.331× 0.3058× 0.3269 1728 12Nb HGHk 0.3139× 0.3139× 0.3139 3375 13Mo HGHk 0.3327× 0.3327× 0.3327 3375 14Tc HGHk 0.3229× 0.3262× 0.2982 1728 15Ru HGHk-sc 0.3187× 0.322× 0.2902 1728 16Rh HGHk-sc 0.3025× 0.3025× 0.3025 1728 17Pd HGHk-sc 0.3113× 0.3113× 0.3113 1728 18

124

Page 125: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag HGHk 0.3279× 0.3279× 0.3279 1728 11Cd HGHk 0.3314× 0.3189× 0.3029 1728 12In HGHk-sc 0.3117× 0.3117× 0.3189 3375 13Sn HGHk 0.3144× 0.3144× 0.3144 1000 4Sb N/A N/A N/A N/ATe HGHk 0.3042× 0.3074× 0.313 1331 6I HGHk 0.3242× 0.3074× 0.3207 1000 7Xe HGHk 0.3333× 0.3333× 0.3333 1728 8Cs N/A N/A N/A N/ABa HGHk 0.3167× 0.3167× 0.3167 3375 10Lu N/A N/A N/A N/AHf HGHk 0.3276× 0.3362× 0.319 1728 12Ta N/A N/A N/A N/AW N/A N/A N/A N/ARe N/A N/A N/A N/AOs N/A N/A N/A N/AIr N/A N/A N/A N/APt HGHk-sc 0.3131× 0.3131× 0.3131 1728 18Au HGHk-sc 0.3287× 0.3287× 0.3287 1728 9Hg HGHk 0.3231× 0.3231× 0.3353 3375 2Tl HGHk-sc 0.3266× 0.2829× 0.3332 1728 13Pb HGHk 0.3177× 0.3177× 0.3177 1728 4Bi HGHk 0.3097× 0.3129× 0.3289 729 5Po HGHk 0.3164× 0.3164× 0.3164 6859 6Rn HGHk 0.3237× 0.3237× 0.3237 1728 8

125

Page 126: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S37.3. HGH-NLCC/BigDFT calculation results per element. Equilibrium volume peratom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

V0 [A3/atom] B0 [GPa] B1 [–]H 17.419 10.320 2.707He 17.787 0.856 6.449Li N/A N/A N/ABe 7.898 123.156 3.321B N/A N/A N/AC 11.638 209.724 3.587N 28.884 53.817 3.692O N/A N/A N/AF N/A N/A N/ANe 24.243 1.280 7.149Na N/A N/A N/AMg 22.922 36.253 3.951Al 16.481 75.000 4.678Si 20.456 87.441 4.257P 21.478 68.243 4.320S N/A N/A N/ACl 38.904 18.924 4.378Ar 52.251 0.784 6.644K 73.533 3.603 3.764Ca 42.196 17.200 3.000Sc 24.617 54.023 3.329Ti 17.286 117.112 3.440V 13.354 192.394 3.681Cr N/A N/A N/AMn N/A N/A N/AFe 11.403 169.200 6.695Co 10.804 228.322 4.347Ni N/A N/A N/ACu 11.943 151.945 4.698Zn 14.933 88.604 4.838Ga 20.375 47.024 4.877Ge 24.078 57.391 4.687As 22.561 68.485 4.178Se 29.728 47.127 4.402Br 39.346 22.501 4.773Kr 65.777 0.658 7.259Rb 90.569 2.883 3.718Sr 54.525 11.533 3.880Y N/A N/A N/AZr 23.386 92.952 3.322Nb 18.146 169.256 3.697Mo 15.818 258.970 4.179Tc 14.477 298.905 4.454Ru 13.806 311.588 4.755Rh 14.072 256.467 5.548Pd 15.372 168.551 5.525

126

Page 127: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 17.961 90.563 5.725Cd 22.864 44.755 6.380In 27.605 35.490 5.210Sn 37.097 34.262 4.617Sb N/A N/A N/ATe 35.166 44.640 4.643I 50.553 18.548 4.997Xe 86.782 0.546 7.258Cs N/A N/A N/ABa 63.291 8.667 3.125Lu N/A N/A N/AHf 22.449 107.444 3.384Ta N/A N/A N/AW N/A N/A N/ARe N/A N/A N/AOs N/A N/A N/AIr N/A N/A N/APt 15.605 253.369 5.395Au 17.879 143.855 5.959Hg 29.310 8.761 11.165Tl 31.473 26.984 5.408Pb 31.614 39.478 4.793Bi 36.805 42.795 4.578Po 37.618 45.741 4.855Rn 93.303 0.542 7.344

127

Page 128: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S38.1. Overview of the most important features and settings of the MBK2013/OpenMXcalculations.

MBK2013/OpenMX

name and version of the code: OpenMX 3.7 (108–111)type of basis set: optimized numerical pseudo-atomic orbitalsmethod: norm-conserving pseudopotentials (Morrison-Bylander-Kleinman 2013 (112, 113))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S38.2basis set size see Table S38.2k-mesh density see Table S38.2 (number of k-points in the full 1st

Brillouin zone of the primitive cell, # k)reciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.026 eV

METHOD-SPECIFIC INFORMATION

real-space mesh for integrations 400 Rydbergreal-space mesh for the Poisson 400 Rydberg

solver by FFTprojector expansion for OFF

the neutral atom potentialsone-dimensional radial mesh 900

in k-space (1DFFT.NumGridK)one-dimensional radial mesh 900

in r-space (1DFFT.NumGridR)cutoff energy for the one-dimensional 3 600 Rydberg

radial mesh in k-space(1DFFT.EnergyCutoff)

ADDITIONAL COMMENTS

In the pseudopotential generation, unbound states were calculated by Hamann’s scheme (113).

128

Page 129: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S38.2. MBK2013/OpenMX calculation settings per element. Basis set (BS), valenceand unbound states included in the pseudopotential generation and the occupation, which is givenby superscript, and cutoff radii in a.u., which is given in parentheses (States), and the number ofk-points in the full 1st Brillouin zone of the primitive cell (# k).

BS States # kH H7.0-s3p2d1 1s1(0.80)2p0(0.8) 1 331He He8.0-s3p3d2f1 1s2(0.8)2s0(1.0)2p0(0.9)3d0(0.9) 1 152Li Li8.0-s3p3d2 1s2(0.6)2s0(1.7)2p0(0.6) 392Be Be7.0-s3p2d1 2s2(1.45)2p0(1.3)3p0(1.9)3d0(1.6) 1 089B B7.0-s3p3d2 2s2(1.1)2p1(0.9)3s0(2.10)3d0(0.9) 343C C7.0-s3p3d2 2s2(1.42)2p2(1.62)3d0(1.3) 726N N7.0-s3p3d2f1 2s2(1.0)2p3(1.0)3d0(1.0)3s0(1.4) 343O O7.0-s3p3d2f1 2s2(0.7)2p4(1.2)3s0(1.1)3p0(1.2)3d0(0.9) 1 331F F7.0-s3p3d2f1 2s2(1.7)2p5(1.1)3s0(2.2)3p0(2.2)3d0(1.2) 539Ne Ne9.0-s3p3d2f1 2s2(1.0)2p6(1.3)3s0(2.0)3p0(2.4)3d0(1.6) 1 728Na Na9.0-s3p3d2f2 2s2(1.0)2p6(1.3)3s1(2.2)3p0(2.2)3d0(1.2)4s0(2.5) 392Mg Mg7.0-s4p3d3f1 2p6(1.1)3s2(2.2)3p0(2.0)3d0(1.0)4s0(2.6) 726Al Al7.0-s4p4d2f1 3s2(2.2)3p1(2.1)3d0(1.4)4p0(1.92) 1 331Si Si7.0-s3p3d2f1 3s2(1.5)3p2(1.7)3d0(1.8)4s0(2.2)4p0(2.4)5d0(2.4) 1 331P P8.0-s4p3d3f2 3s2(1.4)3p3(1.5)3d0(1.5)4s0(2.4)4p0(2.7) 369S S7.0-s4p3d3f2 3s2(1.4)3p4(1.5)3d0(1.4)4s0(2.2)4p0(2.4) 1 331Cl Cl8.0-s4p3d3f1 3s2(1.3)3p5(1.3)3d0(1.3)4s0(1.9)4p0(1.9)4f0(1.9) 385Ar Ar11.0-s3p3d2f1 3s2(1.2)3p6(1.25)3d0(1.45) 1 728K K10.0-s4p3d3f1 3s2(1.2)3p6(1.7)3d0(1.6)4s1(2.9)4p0(2.9) 1 331Ca Ca9.0-s4p3d3f1 3s2(1.2)3p6(1.7)3d0(1.2)4s2(2.8)4p0(2.6)4f0(1.2) 1 728Sc Sc7.0-s4p3d3f1 3s2(1.2)3p6(1.7)3d1(1.6)4s2(2.5)4p0(2.4)4d0(2.9)4f0(1.2) 1 296Ti Ti7.0-s3p3d3f1 3s2(1.3)3p6(1.3)3d2(1.3)4s2(2.5)4p0(2.4)4d0(1.5)4f0(1.0) 1 296V V6.0-s3p3d3f1 3s2(1.1)3p6(1.7)3d3(1.45)4s2(2.3)4p0(2.4)4d0(2.9)4f0(1.2) 1 728Cr Cr6.0-s3p3d3f1 3s2(1.1)3p6(1.7)3d4(1.45)4s2(2.35)4p0(2.4)4d0(2.9)4f0(1.2) 1 331Mn Mn6.0-s3p3d3f1 3s2(0.8)3p6(0.7)3d5(0.8)4s2(1.6)4p0(1.8)4f0(1.2) 1 331Fe Fe6.0H-s3p3d3f1 3s2(0.8)3p6(0.8)3d6.5(0.88)4s1.5(1.9)4p0(1.9)4f0(1.7) 1 331Co Co6.0S-s3p4d3f2 3p6(1.4)3d8(1.6)4s1(2.2)4p0(2.2)4d0(2.4)4f0(2.4)5s0(2.7) 1 352Ni Ni6.0S-s3p3d2f1 3p6(1.2)3d8(1.6)4s2(2.3)4p0(2.3)4d0(2.2)4f0(1.7)5s0(2.9) 1 728Cu Cu6.0H-s3p3d3f1 3s2(0.6)3p6(0.7)3d9(1.05)4s2(2.0)4p0(1.7)4d0(2.1)4f0(1.2) 1 728Zn Zn6.0H-s4p3d2f1 3s2(1.3)3p6(1.4)3d10(1.4)4s2(1.7)4p0(2.2)4d0(2.0)4f0(1.2) 1 152Ga Ga8.0-s3p3d3f1 3d10(1.5)4s2(1.7)4p1(1.8)4d0(2.2)4f0(1.5) 847Ge Ge7.0-s4p4d3f2 4s2(1.6)4p2(1.8)4d0(2.4)4f0(1.5)5p0(2.8)5d0(2.7) 1 000As As9.0-s4p4d3f2 3d10(1.6)4s2(1.4)4p3(1.5)4d0(1.7)5p0(2.3) 864Se Se9.0-s4p3d3f2 4s2(1.4)4p4(1.7)4d0(1.9)4f0(1.7)5s0(1.7) 1 584Br Br8.0-s3p3d3f1 4s2(1.5)4p5(1.5)4d0(1.9)4f0(1.9)5s0(2.1) 330Kr Kr10.0-s3p3d2f1 4s2(1.2)4p6(1.4)4d0(1.7)4f0(1.5)5p0(2.3) 1 728Rb Rb11.0-s4p3d3f2 4s2(1.4)4p6(1.4)4d0(1.5)4f0(1.7)5s1(2.7)5p0(3.1)6s0(3.1) 1 728Sr Sr10.0-s3p3d3f2 4s2(1.4)4p6(1.4)4d0(1.5)4f0(1.7)5s2(2.6)5p0(3.1) 1 728Y Y8.0-s4p3d3f2 4s2(1.5)4p6(1.5)4d1(1.5)4f0(1.7)5s2(2.3)5p0(3.1)6s0(3.1) 1 152Zr Zr7.0-s3p3d3f1 4s2(1.2)4p6(1.3)4d2(1.4)4f0(1.3)5s2(2.5)5p0(2.5)5d0(2.7) 1 152Nb Nb7.0-s3p3d3f1 4s2(1.3)4p6(1.3)4d3(1.3)4f0(1.4)5s2(2.6)5p0(2.6)5d0(2.2) 1 728Mo Mo7.0-s3p3d2f1 4s2(1.1)4p6(1.2)4d5(1.6)4f0(1.5)5s1(2.3)5p0(2.8) 1 728Tc Tc7.0-s3p3d3f1 4s2(1.2)4p6(1.2)4d6(1.6)5s1(2.3)5p0(2.8) 1 152Ru Ru7.0-s3p3d2f1 4p6(1.1)4d7(1.6)4f0(1.5)5s1(2.3)5p0(2.6)6s0(3.0) 1 152Rh Rh7.0-s3p3d2f1 4p6(1.1)4d8(1.6)4f0(1.4)5s1(2.5)5p0(2.6)6s0(3.0) 1 728

129

Page 130: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd Pd7.0-s3p3d2f1 4p6(1.1)4d9(1.6)4f0(1.4)5s1(2.5)5p0(2.8)6s0(3.0) 1 728Ag Ag7.0-s3p3d2f2 4p6(1.0)4d10(1.6)4f0(1.4)5s1(2.3)5p0(2.4)6s0(3.0) 1 728Cd Cd7.0-s3p2d3f1 4d10(1.0)5s2(1.9)5p0(2.5)6s0(3.0) 1 008In In7.0-s3p3d3f1 4d10(1.1)5s2(2.0)5p1(2.4)6s0(3.0)6p0(3.0) 1 152Sn Sn7.0-s2p3d3f2 4d10(1.4)4f0(1.2)5s2(2.0)5p2(2.0)6s0(2.7)6p0(2.6) 1 000Sb Sb7.0-s3p3d3f2 4d10(1.4)4f0(1.2)5s2(2.0)5p3(2.0)5d0(2.2)6s0(2.5)6p0(2.5) 600Te Te7.0-s4p3d3f2 4d10(1.5)4f0(2.0)5s2(2.0)5p4(2.0)5d0(2.4)6s0(2.4)6p0(2.5) 1 089I I9.0-s3p3d3f2 4f0(2.2)5s2(2.0)5p5(1.8)5d0(2.2)6s0(2.4) 330Xe Xe11.0-s3p3d2f1 4f0(2.0)5s2(1.8)5p6(1.8)5d0(2.2)6s0(2.1) 1 728Cs Cs12.0-s3p3d3f2 4f0(2.0)5s2(1.6)5p6(2.0)5d0(2.5)6s1(3.4) 1 728Ba Ba10.0-s3p3d3f2 4f0(2.01)5s2(1.7)5p6(1.9)5d0(2.5)5f0(2.9)6s2(3.2) 1 728Lu Lu8.0-s4p4d3f2g1 5s2(1.3)5p6(1.35)5d1(1.5)5f0(2.4)6s2(2.3)6p0(2.7) 1 152Hf Hf7.0-s3p3d3f1 5s2(1.3)5p6(1.35)5d2(1.5)6s2(2.3)6p0(2.7) 1 152Ta Ta7.0-s3p3d3f2 5s2(1.2)5p6(1.2)5d3(1.53)6s2(2.2)6p0(2.8) 1 331W W7.0-s3p3d3f1 5p6(1.3)5d4(2.0)6s2(2.6)6p0(2.8) 1 331Re Re7.0-s3p3d3f1 5s2(1.2)5p6(1.3)5d5(1.6)6s2(2.7)6p0(2.8) 1 331Os Os7.0-s3p3d2f1 5p6(1.1)5d6(1.7)6s2(2.4)6p0(2.8)7s0(3.0) 1 331Ir Ir7.0-s3p3d2f1 5p6(1.1)5d7(1.7)5f0(2.0)6s2(2.6)6p0(2.7)7s0(3.1) 1 331Pt Pt7.0-s4p3d2f2 5p6(1.1)5d9(1.7)6s1(2.0)6p0(2.8)7s0(2.9) 1 331Au Au7.0-s4p3d2f2 5p6(1.2)5d10(1.7)5f0(2.0)6s1(2.1)6p0(3.2)7s0(3.1) 1 331Hg Hg8.0-s3p3d2f1 5p6(1.2)5d10(1.6)5f0(2.1)6s2(2.2)6p0(3.1)7s0(2.9) 1 200Tl Tl8.0-s4p4d3f2 5p6(1.2)5d10(1.6)5f0(2.1)6s2(2.2)6p1(2.6)7s0(2.5) 1 152Pb Pb8.0-s4p4d3f2 5d10(1.3)5f0(1.7)6s2(2.1)6p2(2.3)7s0(2.5)7p0(3.2) 1 728Bi Bi8.0-s4p4d3f2 5d10(1.1)5f0(1.9)6s2(2.0)6p3(2.2)7s0(2.3)7p0(2.8) 720Po Po8.0-s3p3d3f2 5d10(1.3)5f0(1.9)6s2(1.8)6p4(2.4) 1 728Rn Rn11.0-s3p3d2f1 5f0(1.9)6s2(1.7)6p6(2.0)6d0(2.6)7s0(2.2) 1 728

130

Page 131: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S38.3. MBK2013/OpenMX calculation results per element. Equilibrium volume peratom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

V0 [A3/atom] B0 [GPa] B1 [–]H 17.334 10.251 2.227He 16.437 1.215 6.762Li 19.943 14.719 3.900Be 7.852 126.156 3.273B 7.234 236.297 3.405C 11.656 210.013 3.585N 29.499 54.725 3.559O 18.947 50.146 3.860F 19.323 32.960 3.648Ne 24.118 1.287 6.759Na 37.232 8.238 2.672Mg 23.104 36.052 3.981Al 16.356 76.493 4.150Si 20.524 89.302 4.380P 21.441 68.790 4.206S 17.231 86.014 4.063Cl 39.211 18.857 4.349Ar 48.559 2.464 11.119K 73.486 3.550 4.456Ca 42.190 17.130 3.331Sc 24.633 54.814 3.279Ti 17.329 115.575 3.969V 13.454 193.477 3.947Cr 11.915 167.075 7.939Mn 11.733 126.605 −1.022Fe 11.420 186.257 8.095Co 10.929 214.191 4.807Ni 10.960 201.770 4.822Cu 12.058 138.499 4.779Zn 15.293 74.375 5.440Ga 20.506 47.242 4.917Ge 24.080 56.656 6.167As 22.818 68.087 4.896Se 29.412 47.320 4.575Br 39.675 22.296 4.613Kr 65.732 0.801 9.878Rb 90.508 2.674 4.958Sr 54.791 11.440 2.212Y 32.801 42.920 3.225Zr 23.420 95.861 3.253Nb 18.146 179.901 4.798Mo 15.820 263.805 4.363Tc 14.530 302.326 4.004Ru 13.857 315.034 4.938Rh 14.141 262.221 4.686Pd 15.435 168.458 5.274

131

Page 132: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 17.983 91.874 6.581Cd 22.547 53.581 7.952In 27.574 36.728 2.350Sn 36.831 36.910 4.603Sb 32.007 49.043 4.604Te 35.179 44.421 4.506I 50.890 18.253 4.910Xe 88.907 0.497 7.823Cs 118.844 1.923 4.786Ba 63.672 9.099 3.373Lu 29.070 49.294 4.041Hf 22.400 109.783 3.855Ta 18.238 199.819 4.233W 16.150 305.293 4.670Re 14.942 369.686 4.579Os 14.368 398.124 4.787Ir 14.578 356.806 4.829Pt 15.742 256.315 5.190Au 18.045 147.161 6.982Hg 29.365 10.588 25.163Tl 31.472 26.618 6.254Pb 32.018 39.992 6.211Bi 37.053 42.867 4.673Po 37.566 44.965 5.680Rn 91.382 0.556 7.446

132

Page 133: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S39.1. Overview of the most important features and settings of theONCVPSP(PD0.1)/ABINIT calculations.

ONCVPSP(PD0.1)/ABINIT

name and version of the code: ABINIT 7.11.8 (75–77)type of basis set: plane wavesmethod: norm-conserving pseudopotentials (ONCVPSP 3.2.1 Pseudo-Dojo v0.1 (94, 114, 115))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativisticassignment of core / valence states see Table S39.2basis set size see Table S39.2 (Ecut)k-mesh density 6750 / N k-points in the first Brillouin zone

of a N-atom cellreciprocal-space integration method Fermi-Dirac smearing with a fictitious

temperature corresponding to 0.0036 Ha

METHOD-SPECIFIC INFORMATION

none

ADDITIONAL COMMENTS

RCmin and RCmax are the minimum and maximum core radii used to pseudize theall-electron wave-functions

The Ecut provided in Table S39.2 are the values at which the ∆ value is converged well within0.1 meV/atom. For many practical applications, a much smaller cutoff energy is alreadysufficient (usually 20 Ha less than the value of Ecut reported in Table S39.2).

The pseudopotentials are known formally as ONCVPSP-PBE-PDv0.1.

133

Page 134: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S39.2. ONCVPSP(PD0.1)/ABINIT calculation settings and results per element.Minimum and maximum core radii RCmin and RCmax, plane-wave cutoff Ecut, valence, equi-librium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1.

RCmin [b] RCmax [b] Ecut [Ha] valence V0 [A3/atom] B0 [GPa] B1 [–]H 0.70 1.00 65 1s1 17.358 10.272 2.667He 1.00 1.25 75 1s2 17.663 0.888 6.418Li 1.00 1.20 68 1s22s1 20.266 13.769 3.336Be 1.05 1.20 73 1s22s2 7.943 123.595 3.331B 1.20 1.20 60 2s22p1 7.221 235.844 3.449C 1.20 1.25 63 2s22p2 11.626 207.914 3.594N 1.20 1.35 60 2s22p3 28.907 53.609 3.985O 1.25 1.35 64 2s22p4 18.471 50.671 3.823F 1.15 1.30 70 2s22p5 19.225 33.909 1.176Ne 1.30 1.50 60 2s22p6 24.325 1.084 1.835Na 1.20 1.55 48 2s22p63s1 37.200 7.659 3.688Mg 1.15 1.55 60 2s22p63s2 22.982 35.891 4.030Al 1.70 1.75 40 3s23p1 16.455 77.065 4.578Si 1.60 1.71 44 3s23p2 20.401 88.196 4.287P 1.45 1.55 43 3s23p3 21.458 67.941 4.313S 1.45 1.50 41 3s23p4 17.187 83.225 4.189Cl 1.35 1.55 45 3s23p5 38.714 18.936 4.518Ar 1.55 1.55 49 3s23p6 52.278 0.758 9.158K 1.35 1.60 54 3s23p64s1 73.935 3.510 3.797Ca 1.45 1.85 52 3s23p64s2 42.179 17.450 3.346Sc 1.35 1.65 59 3s23p63d14s2 24.723 53.284 3.688Ti 1.30 1.65 60 3s23p63d24s2 17.428 111.105 3.556V 1.30 1.65 60 3s23p63d34s2 13.483 184.486 3.671Cr 1.10 1.40 80 3s23p63d54s1 11.802 171.884 6.586Mn 1.10 1.35 83 3s23p63d54s2 11.392 119.895 3.254Fe 1.10 1.20 85 3s23p63d64s2 11.389 182.963 6.329Co 1.20 1.55 70 3s23p63d74s2 10.880 211.182 4.756Ni 1.20 1.55 75 3s23p63d84s2 10.915 193.669 5.034Cu 1.20 1.60 72 3s23p63d104s1 11.979 141.886 4.706Zn 1.35 1.85 58 3s23p63d104s2 15.176 74.223 5.537Ga 1.65 1.90 58 3d104s24p1 20.341 49.148 4.897Ge 1.80 1.90 57 3d104s24p2 23.935 58.812 4.857As 1.60 1.80 60 3d104s24p3 22.597 68.127 4.183Se 1.50 1.90 59 3d104s24p4 29.759 46.886 4.553Br 1.50 1.90 56 3d104s24p5 39.446 22.234 5.053Kr 1.50 1.80 44 4s24p6 65.929 0.648 7.087Rb 1.70 1.85 41 4s24p65s1 91.353 2.717 3.667Sr 1.30 1.60 52 4s24p65s2 55.055 11.783 3.106Y 1.50 1.60 54 4s24p64d15s2 32.960 40.398 2.995Zr 1.50 1.55 51 4s24p64d25s2 23.423 93.577 3.304Nb 1.35 1.45 61 4s24p64d45s1 18.175 168.661 3.662Mo 1.35 1.45 58 4s24p64d55s1 15.812 258.833 4.224Tc 1.30 1.35 64 4s24p64d55s2 14.462 298.037 4.576Ru 1.30 1.35 60 4s24p64d75s1 13.789 311.286 4.868Rh 1.30 1.35 60 4s24p64d85s1 14.076 255.055 5.223Pd 1.40 1.55 59 4s24p64d10 15.343 168.170 5.512

134

Page 135: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Ag 1.40 1.60 59 4s24p64d105s1 17.817 90.242 6.029Cd 1.70 2.10 59 4d105s2 22.824 43.918 6.385In 1.85 2.35 53 4d105s25p1 27.458 35.033 5.180Sn 1.85 2.60 54 4d105s25p2 36.874 35.729 4.902Sb 2.15 2.60 32 5s25p3 31.680 50.573 4.530Te 2.20 2.60 33 5s25p4 35.019 44.697 4.701I 2.00 2.25 53 5s25p5 50.400 18.507 5.082Xe 1.70 2.00 62 4d105s25p6 87.034 0.526 5.360Cs 1.85 2.25 58 5s25p66s1 116.766 1.935 3.562Ba 1.90 2.15 40 5s25p66s2 63.663 8.693 2.828Lu N/A N/A N/A N/A N/A N/A N/AHf 1.40 1.60 84 5s25p64f145d26s2 22.549 106.760 3.430Ta 1.95 2.55 39 5p65d36s2 18.302 191.011 3.700W 2.20 2.60 39 5p65d46s2 16.135 300.330 4.154Re 2.15 2.55 40 5p65d56s2 14.950 363.302 4.482Os 2.15 2.55 40 5p65d66s2 14.290 397.370 4.834Ir 1.85 2.50 45 5p65d76s2 14.482 347.507 5.269Pt 1.85 2.50 47 5p65d96s1 15.609 245.191 5.347Au 1.90 2.60 47 5p65d106s1 17.995 138.191 5.621Hg 2.10 2.60 45 5d106s2 29.308 9.510 10.049Tl 2.00 2.60 49 5d106s26p1 31.427 26.450 5.413Pb 2.10 2.60 46 5d106s26p2 32.016 39.930 4.835Bi 2.10 2.50 51 5d106s26p3 36.929 42.498 4.642Po 1.90 2.20 50 5d106s26p4 37.617 45.170 4.849Rn 2.10 2.85 35 6s26p6 93.164 0.544 6.039

135

Page 136: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S40.1. Overview of the most important features and settings of theONCVPSP(SG15)1/CASTEP calculations.

ONCVPSP(SG15)1/CASTEP

name and version of the code: CASTEP 9.0 (Hg revision 6666 Jun 05 2015) (92)type of basis set: plane wavesmethod: norm-conserving pseudopotentials (Schlipf-Gygi ONCVPSP 2015-01-24 (94, 95))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S40.2basis set size cutoff energy = 952 eVk-mesh density see Table S40.2 for grid values and number of k-points

in the irreducible wedge of the 1st Brillouin zone (# k);this choice achieves spacing ∆k < 0.0754 A

−1

reciprocal-space integration method Gaussian smearing with a fictitious temperature corre-sponding to 0.2 eV

METHOD-SPECIFIC INFORMATION

size of FFT grid for augmentation N/A

ADDITIONAL COMMENTS

Basis set, “fine” FFT grid, k-point density and plane-wave cutoff were chosen uniformly across the periodic ta-ble to achieve high convergence. Less stringent criteria, determined individually per element will still give highconvergence in almost all cases at substantially reduced computational cost.

136

Page 137: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S40.2. ONCVPSP(SG15)1/CASTEP calculation settings and results per element. Va-lence, Monkhorst-Pack k-point mesh in the full 1st Brillouin zone of the conventional cell kpts andnumber of irreducible k-points # k, equilibrium volume per atom V0, bulk modulus B0, pressurederivative of the bulk modulus B1.

Valence kpts # k V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 24×24×17 1 404 17.357 10.297 2.691He 1s2 33×33×18 972 17.711 0.882 6.404Li 1s2 2s1 31×31×4 352 20.264 13.798 3.366Be 1s2 2s2 42×42×23 5 544 7.933 124.158 3.309B 2s2 2p1 21×21×20 2 310 7.180 235.389 3.405C 2s2 2p2 39×39×10 735 11.587 208.587 3.549N 2s2 2p3 14×14×14 119 28.777 53.174 3.663O 2s2 2p4 21×20×20 2 100 18.607 50.062 3.649F 2s2 2p5 14×23×12 1 008 19.281 33.791 4.081Ne 2s2 2p6 18×18×18 165 24.271 1.344 7.261Na 2s2 2p6 3s1 26×26×3 533 37.174 7.739 3.684Mg 2s2 2p6 3s2 30×30×16 1 920 22.973 36.398 4.344Al 2s2 2p6 3s2 3p1 21×21×21 286 16.542 77.143 4.264Si 3s2 3p2 26×26×26 1 638 20.522 87.493 4.266P 3s2 3p3 25×8×18 468 21.474 67.776 4.313S 3s2 3p4 32×32×32 2 992 17.231 87.583 3.958Cl 3s2 3p5 11×19×10 300 39.399 18.682 4.369Ar 3s2 3p6 14×14×14 84 52.304 0.759 7.704K 3s2 3p6 4s1 16×16×16 120 73.844 3.581 3.133Ca 3s2 3p6 4s2 15×15×15 120 42.150 17.405 3.318Sc 3s2 3p6 3d1 4s2 29×29×16 680 24.716 53.956 3.349Ti 3s2 3p6 3d2 4s2 33×33×18 972 17.422 111.583 3.504V 3s2 3p6 3d3 4s2 28×28×28 560 13.489 181.719 3.864Cr 3s2 3p6 3d5 4s1 29×29×29 680 12.430 116.331 6.841Mn 3s2 3p6 3d5 4s2 23×23×23 936 11.912 124.007 3.996Fe 3s2 3p6 3d6 4s2 29×29×29 680 11.463 171.168 8.576Co 3s2 3p6 3d7 4s2 38×38×21 4 180 10.932 209.487 4.731Ni 3s2 3p6 3d8 4s2 24×24×24 364 10.960 194.124 4.866Cu 3s2 3p6 3d10 4s1 23×23×23 364 11.971 135.520 5.366Zn 3s2 3p6 3d10 4s2 36×36×17 3 078 15.177 75.431 5.622Ga 3d10 4s2 4p1 18×11×18 486 20.341 49.091 5.378Ge 3d10 4s2 4p2 25×25×25 455 23.992 58.657 4.849As 4s2 4p3 25×25×8 468 22.687 68.424 4.223Se 4s2 4p4 21×21×17 728 30.015 47.026 4.461Br 4s2 4p5 10×20×10 250 39.671 22.387 4.837Kr 4s2 4p6 13×13×13 84 65.975 0.645 7.299Rb 4s2 4p6 5s1 15×15×15 120 91.165 2.764 3.769Sr 4s2 4p6 5s2 14×14×14 84 54.942 11.778 3.213Y 4s2 4p6 4d1 5s2 26×26×15 1 456 32.919 40.516 3.072Zr 4s2 4p6 4d2 5s2 30×30×16 1 920 23.400 93.780 3.342Nb 4s2 4p6 4d4 5s1 25×25×25 455 18.166 169.438 3.743

137

Page 138: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Mo 4s2 4p6 4d5 5s1 26×26×26 455 15.784 259.481 4.239Tc 4s2 4p6 4d6 5s1 35×35×19 1 200 14.443 297.773 4.491Ru 4s2 4p6 4d7 5s1 35×35×20 1 200 13.776 311.240 4.841Rh 4s2 4p6 4d8 5s1 22×22×22 286 14.065 255.184 5.188Pd 4s2 4p6 4d10 21×21×21 286 15.342 167.685 5.585Ag 4s2 4p6 4d10 5s1 20×20×20 220 17.833 90.812 5.848Cd 4s2 4p6 4d10 5s2 32×32×15 2 176 22.988 43.302 6.493In 4d10 5s2 5p1 25×25×17 819 27.519 35.044 4.806Sn 4d10 5s2 5p2 22×22×22 1 012 36.898 35.565 5.070Sb 4d10 5s2 5p3 22×22×8 1 012 31.762 50.252 4.330Te 4d10 5s2 5p4 21×21×14 595 35.023 44.640 5.076I 4d10 5s2 5p5 10×18×9 225 50.383 18.584 4.609Xe 4d10 5s2 5p6 12×12×12 56 87.780 0.812 −15.919Cs 5s2 5p6 6s1 14×14×14 84 116.758 1.947 3.518Ba 5s2 5p6 6s2 17×17×17 165 63.288 8.671 2.876Lu N/A N/A N/A N/A N/A N/AHf 4f14 5s2 5p6 5d2 6s2 30×30×17 2 160 22.604 108.327 3.432Ta 4f14 5s2 5p6 5d3 6s2 25×25×25 455 18.337 193.936 3.741W 4f14 5s2 5p6 5d4 6s2 26×26×26 455 16.151 301.023 4.180Re 5s2 5p6 5d5 6s2 35×35×19 1 200 14.945 364.752 4.418Os 5s2 5p6 5d6 6s2 35×35×19 1 200 14.258 398.558 4.827Ir 5s2 5p6 5d7 6s2 22×22×22 286 14.480 348.100 5.111Pt 5s2 5p6 5d9 6s1 21×21×21 286 15.708 244.268 5.476Au 5s2 5p6 5d10 6s1 20×20×20 220 17.983 139.001 6.011Hg 5s2 5p6 5d10 6s2 20×20×24 660 29.462 8.036 8.600Tl 5d10 6s2 6p1 27×27×15 600 31.389 26.608 5.252Pb 5d10 6s2 6p2 17×17×17 165 32.002 39.699 4.883Bi 5d10 6s2 6p3 21×21×7 303 36.913 42.720 4.910Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

138

Page 139: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S41.1. Overview of the most important features and settings of theONCVPSP(SG15)1/QE calculations.

ONCVPSP(SG15)1/QE

name and version of the code: QUANTUM ESPRESSO 5.1 (84)type of basis set: plane wavesmethod: norm-conserving pseudopotentials (Schlipf-Gygi ONCVPSP 2015-01-24 (94, 95))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S41.2 (Zval)basis set size wave function cutoff = 100 Ryk-mesh density see Table S41.2 (k-point mesh in the full 1st Brillouin

zone of the conventional cell kpts, and numberof irreducible k-points # k)

reciprocal-space integration method Gaussian smearing with a fictitioustemperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

wave function cutoff 100 Rydensity cutoff 400 Ry

ADDITIONAL COMMENTS

none

139

Page 140: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S41.2. ONCVPSP(SG15)1/QE calculation settings and results per element. ValenceZval, k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number ofirreducible k-points # k, equilibrium volume per atom V0, bulk modulus B0, pressure derivativeof the bulk modulus B1.

Zval [–] kpts [–] # k [–] V0 [A3/atom] B0 [GPa] B1 [–]H 1 28×28×20 6 020 17.356 10.288 2.666He 2 40×40×22 4 620 17.708 0.882 6.528Li 3 38×38×38 27 436 20.244 13.846 3.345Be 4 52×52×28 9 828 7.931 123.706 3.308B 3 26×26×24 12 324 7.18 235.366 3.428C 4 48×48×12 10 512 11.586 207.537 3.728N 5 16×16×16 688 28.773 53.217 3.662O 6 26×24×24 7 488 18.594 50.245 3.779F 7 16×28×14 3 136 19.284 33.755 4.001Ne 8 22×22×22 286 24.259 1.352 7.255Na 9 32×32×32 16 384 37.113 7.762 3.697Mg 10 36×36×20 9 900 22.961 36.548 4.05Al 11 24×24×24 364 16.528 77.801 4.976Si 4 32×32×32 8 448 20.522 87.495 4.268P 5 30×8×22 1 320 21.473 67.79 4.31S 6 38×38×38 27 436 17.241 85.344 4.124Cl 7 12×24×12 864 39.386 18.701 4.375Ar 8 16×16×16 120 52.321 0.757 7.526K 9 20×20×20 220 73.655 3.604 3.982Ca 10 18×18×18 165 42.173 17.627 3.356Sc 11 34×34×20 8 840 24.642 54.566 3.371Ti 12 40×40×22 4 620 17.407 112.06 3.548V 13 34×34×34 969 13.468 182.297 3.947Cr 14 36×36×36 2 280 12.441 115.19 7.007Mn 15 28×28×28 5 488 11.899 127.159 4.815Fe 16 36×36×36 2 280 11.454 179.159 7.087Co 17 46×46×24 13 248 10.923 211.276 4.755Ni 18 28×28×28 1 120 10.943 195.413 5.085Cu 19 28×28×28 560 11.986 138.944 5.102Zn 20 44×44×20 14 740 15.172 75.771 5.369Ga 13 22×12×22 1 452 20.344 48.728 4.88Ge 14 30×30×30 6 975 23.981 58.974 4.894As 5 30×30×10 6 825 22.688 68.597 4.285Se 6 26×26×20 3 510 30.014 47.021 4.462Br 7 12×24×12 864 39.67 22.377 4.835Kr 8 16×16×16 120 65.983 0.647 7.29Rb 9 18×18×18 165 91.02 2.794 3.749Sr 10 16×16×16 120 54.406 11.237 5.299Y 11 32×32×18 2 448 32.858 41.387 3.167Zr 12 36×36×20 9 900 23.398 94.027 3.282Nb 13 30×30×30 680 18.148 170.015 3.637Mo 14 32×32×32 816 15.781 260.241 4.318Tc N/A N/A N/A N/A N/A N/ARu 16 42×42×24 5 544 13.77 312.145 4.85Rh 17 26×26×26 455 14.05 256.947 5.173

140

Page 141: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Pd 18 26×26×26 455 15.311 169.625 5.548Ag 19 24×24×24 364 17.825 91.083 6.047Cd 20 38×38×18 9 918 22.95 43.617 6.942In 13 30×30×20 1 200 27.515 35.993 4.969Sn 14 26×26×26 4 563 36.878 35.784 4.921Sb 15 26×26×8 4 108 31.762 50.339 4.542Te 16 26×26×16 8 216 35.036 44.723 4.629I 17 12×22×10 660 50.373 18.602 5.156Xe 18 14×14×14 84 86.788 0.543 7.248Cs 9 16×16×16 120 116.906 1.965 3.598Ba 10 20×20×20 220 63.228 8.716 2.004Lu N/A N/A N/A N/A N/A N/AHf 26 36×36×20 3 420 22.596 108.619 3.44Ta 27 30×30×30 680 18.325 195.013 3.621W 28 32×32×32 816 16.15 301.071 4.122Re 15 42×42×22 5 082 14.94 365.239 4.432Os 16 42×42×24 5 544 14.255 398.979 4.812Ir 17 26×26×26 455 14.472 349.218 5.119Pt 18 26×26×26 455 15.687 246.036 5.475Au 19 24×24×24 364 17.982 138.715 6.007Hg 20 24×24×28 1 092 29.55 7.772 9.92Tl 13 32×32×18 7 056 31.361 26.88 5.448Pb 14 20×20×20 220 31.943 40.077 5.575Bi 15 26×26×8 4 108 36.917 42.82 4.69Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

141

Page 142: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S42.1. Overview of the most important features and settings of theONCVPSP(SG15)2/CASTEP calculations.

ONCVPSP(SG15)2/CASTEP

name and version of the code: CASTEP 9.0 (Hg revision 6666 Jun 05 2015) (92)type of basis set: plane wavesmethod: norm-conserving pseudopotentials (Schlipf-Gygi ONCVPSP 2015-05-20 (94, 95))

GENERAL INFORMATION

exchange-correlation functional Perdew-Burke-Ernzerhof (PBE) (43)relativistic scheme core and valence scalar relativistic

(Koelling-Harmon) (54)assignment of core / valence states see Table S42.2basis set size cutoff energy = 952 eVk-mesh density see Table S42.2 for grid values and number of k-points

in the irreducible wedge of the 1st Brillouin zone (# k);this choice achieves spacing ∆k < 0.0754 A

−1

reciprocal-space integration method Gaussian smearing with a fictitious temperature corre-sponding to 0.2 eV

METHOD-SPECIFIC INFORMATION

size of FFT grid for augmentation N/A

ADDITIONAL COMMENTS

Basis set, “fine” FFT grid, k-point density and plane-wave cutoff were chosen uniformly across the periodic ta-ble to achieve high convergence. Less stringent criteria, determined individually per element will still give highconvergence in almost all cases at substantially reduced computational cost.

142

Page 143: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Table S42.2. ONCVPSP(SG15)2/CASTEP calculation settings and results per element. Va-lence, Monkhorst-Pack k-point mesh in the full 1st Brillouin zone of the conventional cell kpts andnumber of irreducible k-points # k, equilibrium volume per atom V0, bulk modulus B0, pressurederivative of the bulk modulus B1.

Valence kpts # k V0 [A3/atom] B0 [GPa] B1 [–]H 1s1 24×24×17 1 404 17.357 10.297 2.691He 1s2 33×33×18 972 17.711 0.882 6.404Li 1s2 2s1 31×31×4 352 20.264 13.798 3.366Be 1s2 2s2 42×42×23 5 544 7.933 124.158 3.309B 2s2 2p1 21×21×20 2 310 7.180 235.389 3.405C 2s2 2p2 39×39×10 735 11.587 208.587 3.549N 2s2 2p3 14×14×14 119 28.777 53.174 3.663O 2s2 2p4 21×20×20 2 100 18.607 50.062 3.649F 2s2 2p5 14×23×12 1 008 19.281 33.791 4.081Ne 2s2 2p6 18×18×18 165 24.271 1.344 7.261Na 2s2 2p6 3s1 26×26×3 533 37.174 7.739 3.684Mg 2s2 2p6 3s2 30×30×16 1 920 22.973 36.398 4.344Al 2s2 2p6 3s2 3p1 21×21×21 286 16.542 77.143 4.264Si 3s2 3p2 26×26×26 1 638 20.543 87.433 4.265P 3s2 3p3 25×8×18 468 21.476 67.780 4.314S 3s2 3p4 32×32×32 2 992 17.285 86.250 3.916Cl 3s2 3p5 11×19×10 300 39.340 18.699 4.364Ar 3s2 3p6 14×14×14 84 52.471 0.755 7.945K 3s2 3p6 4s1 16×16×16 120 73.844 3.581 3.133Ca 3s2 3p6 4s2 15×15×15 120 42.150 17.405 3.318Sc 3s2 3p6 3d1 4s2 29×29×16 680 24.716 53.956 3.349Ti 3s2 3p6 3d2 4s2 33×33×18 972 17.422 111.583 3.504V 3s2 3p6 3d3 4s2 28×28×28 560 13.489 181.719 3.864Cr 3s2 3p6 3d5 4s1 29×29×29 680 12.430 116.331 6.841Mn 3s2 3p6 3d5 4s2 23×23×23 936 11.912 124.007 3.996Fe 3s2 3p6 3d6 4s2 29×29×29 680 11.463 171.168 8.576Co 3s2 3p6 3d7 4s2 38×38×21 4 180 10.932 209.487 4.731Ni 3s2 3p6 3d8 4s2 24×24×24 364 10.960 194.124 4.866Cu 3s2 3p6 3d10 4s1 23×23×23 364 11.971 135.520 5.366Zn 3s2 3p6 3d10 4s2 36×36×17 3 078 15.177 75.431 5.622Ga 3d10 4s2 4p1 18×11×18 486 20.341 49.091 5.378Ge 3d10 4s2 4p2 25×25×25 455 23.992 58.657 4.849As 4s2 4p3 25×25×8 468 22.672 67.892 4.190Se 4s2 4p4 21×21×17 728 29.806 46.930 4.430Br 4s2 4p5 10×20×10 250 39.671 22.387 4.837Kr 4s2 4p6 13×13×13 84 65.975 0.645 7.299Rb 4s2 4p6 5s1 15×15×15 120 91.165 2.764 3.769Sr 4s2 4p6 5s2 14×14×14 84 54.942 11.778 3.213Y 4s2 4p6 4d1 5s2 26×26×15 1 456 32.919 40.516 3.072Zr 4s2 4p6 4d2 5s2 30×30×16 1 920 23.400 93.780 3.342Nb 4s2 4p6 4d4 5s1 25×25×25 455 18.166 169.438 3.743

143

Page 144: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

Mo 4s2 4p6 4d5 5s1 26×26×26 455 15.784 259.481 4.239Tc 4s2 4p6 4d6 5s1 35×35×19 1 200 14.443 297.773 4.491Ru 4s2 4p6 4d7 5s1 35×35×20 1 200 13.776 311.240 4.841Rh 4s2 4p6 4d8 5s1 22×22×22 286 14.065 255.184 5.188Pd 4s2 4p6 4d10 21×21×21 286 15.342 167.685 5.585Ag 4s2 4p6 4d10 5s1 20×20×20 220 17.833 90.812 5.848Cd 4s2 4p6 4d10 5s2 32×32×15 2 176 22.988 43.302 6.493In 4d10 5s2 5p1 25×25×17 819 27.530 35.256 5.064Sn 4d10 5s2 5p2 22×22×22 1 012 36.860 35.631 4.830Sb 4d10 5s2 5p3 22×22×8 1 012 31.773 50.304 4.337Te 4d10 5s2 5p4 21×21×14 595 35.062 44.597 5.030I 4d10 5s2 5p5 10×18×9 225 50.401 18.580 5.083Xe 4d10 5s2 5p6 12×12×12 56 87.910 0.813 −14.224Cs 5s2 5p6 6s1 14×14×14 84 116.774 1.946 3.518Ba 5s2 5p6 6s2 17×17×17 165 63.288 8.671 2.876Lu N/A N/A N/A N/A N/A N/AHf 4f14 5s2 5p6 5d2 6s2 30×30×17 2 160 22.604 108.327 3.432Ta 4f14 5s2 5p6 5d3 6s2 25×25×25 455 18.337 193.936 3.741W 4f14 5s2 5p6 5d4 6s2 26×26×26 455 16.151 301.023 4.180Re 5s2 5p6 5d5 6s2 35×35×19 1 200 14.945 364.752 4.418Os 5s2 5p6 5d6 6s2 35×35×19 1 200 14.258 398.558 4.827Ir 5s2 5p6 5d7 6s2 22×22×22 286 14.480 348.100 5.111Pt 5s2 5p6 5d9 6s1 21×21×21 286 15.708 244.268 5.476Au 5s2 5p6 5d10 6s1 20×20×20 220 17.983 139.001 6.011Hg 5s2 5p6 5d10 6s2 20×20×24 660 29.462 8.036 8.600Tl 5d10 6s2 6p1 27×27×15 600 31.389 26.608 5.252Pb 5d10 6s2 6p2 17×17×17 165 32.002 39.699 4.883Bi 5d10 6s2 6p3 21×21×7 303 36.913 42.720 4.910Po N/A N/A N/A N/A N/A N/ARn N/A N/A N/A N/A N/A N/A

144

Page 145: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

REFERENCES AND NOTES 1. Open Science Collaboration, Estimating the reproducibility of psychological science. Science

349, aac4716 (2015). Medline doi:10.1126/science.aac4716

2. A checklist for photovoltaic research. Nat. Mater. 14, 1073 (2015).

3. W. F. van Gunsteren, The seven sins in academic behavior in the natural sciences. Angew. Chem. Int. Ed. 52, 118–122 (2013). Medline doi:10.1002/anie.201204076

4. C. Drummond, N. Japkowicz, W. Klement, S. Macskassy, "Replicability is not reproducibility: Nor is it good science," in Proceedings, Twenty-Sixth International Conference on Machine Learning, L. Bottou, M. Littman, Eds. (2009); www.csi.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf.

5. G. Miller, A scientist’s nightmare: Software problem leads to five retractions. Science 314, 1856–1857 (2006). Medline doi:10.1126/science.314.5807.1856

6. M. Vihinen, No more hidden solutions in bioinformatics. Nature 521, 261 (2015). Medline doi:10.1038/521261a

7. D. C. Ince, L. Hatton, J. Graham-Cumming, The case for open computer programs. Nature 482, 485–488 (2012). Medline doi:10.1038/nature10836

8. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). doi:10.1103/PhysRev.136.B864

9. W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). doi:10.1103/PhysRev.140.A1133

10. R. O. Jones, Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015). doi:10.1103/RevModPhys.87.897

11. S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, D. Morgan, AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012). doi:10.1016/j.commatsci.2012.02.005

12. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). doi:10.1063/1.4812323

13. C.-C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, A. Barbu, Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater. 4, 68–74 (2005). doi:10.1038/nmat1286

14. M. Friák, T. Hickel, B. Grabowski, L. Lymperakis, A. Udyansky, A. Dick, D. Ma, F. Roters, L.-F. Zhu, A. Schlieter, U. Kühn, Z. Ebrahimi, R. A. Lebensohn, D. Holec, J. Eckert, H. Emmerich, D. Raabe, J. Neugebauer, Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. Eur. Phys. J. Plus 126, 101 (2011). doi:10.1140/epjp/i2011-11101-2

15. S. Kurth, J. P. Perdew, P. Blaha, Molecular and solid-state tests of density functional approximations: LSD, GGAs, and Meta-GGAs. Int. J. Quantum Chem. 75, 889–909 (1999). doi:10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8

Page 146: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

16. V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, Tests of a ladder of density functionals for bulk solids and surfaces. Phys. Rev. B 69, 075102 (2004). doi:10.1103/PhysRevB.69.075102

17. P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79, 085104 (2009). doi:10.1103/PhysRevB.79.085104

18. G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen, S. Lebègue, J. Paier, O. A. Vydrov, J. G. Ángyán, Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009). doi:10.1103/PhysRevB.79.155107

19. P. Pernot, B. Civalleri, D. Presti, A. Savin, Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J. Phys. Chem. A 119, 5288–5304 (2015). Medline doi:10.1021/jp509980w

20. L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 106, 1063 (1997). doi:10.1063/1.473182

21. J. Paier, R. Hirschl, M. Marsman, G. Kresse, The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102 (2005). Medline doi:10.1063/1.1926272

22. Y. Zhao, D. G. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008). Medline doi:10.1021/ar700111a

23. L. Goerigk, S. Grimme, A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688 (2011). Medline doi:10.1039/c0cp02984j

24. A. Kiejna, G. Kresse, J. Rogal, A. De Sarkar, K. Reuter, M. Scheffler, Comparison of the full-potential and frozen-core approximation approaches to density-functional calculations of surfaces. Phys. Rev. B 73, 035404 (2006). doi:10.1103/PhysRevB.73.035404

25. B. Grabowski, T. Hickel, J. Neugebauer, Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends. Phys. Rev. B 76, 024309 (2007). doi:10.1103/PhysRevB.76.024309

26. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals. Crit. Rev. Solid State 39, 1–24 (2014). doi:10.1080/10408436.2013.772503

27. F. Jollet, M. Torrent, N. Holzwarth, Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 185, 1246–1254 (2014). doi:10.1016/j.cpc.2013.12.023

28. E. Küçükbenli, M. Monni, B. I. Adetunji, G. A. Adebayo, N. Marzari, S. de Gironcoli, A. Dal Corso, http://arxiv.org/abs/1404.3015 (2014).

29. S. Poncé, G. Antonius, P. Boulanger, E. Cannuccia, A. Marini, M. Côté, X. Gonze, Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron-phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo. Comput. Mater. Sci. 83, 341–348 (2014). doi:10.1016/j.commatsci.2013.11.031

Page 147: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

30. The studies of accuracy and precision for DFT calculations are often referred to as validation and verification (V&V), respectively.

31. D. R. Hamann, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979). doi:10.1103/PhysRevLett.43.1494

32. L. Kleinman, D. M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982). doi:10.1103/PhysRevLett.48.1425

33. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). Medline doi:10.1103/PhysRevB.41.7892

34. P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). Medline doi:10.1103/PhysRevB.50.17953

35. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). doi:10.1103/PhysRevB.59.1758

36. J. C. Slater, Wave functions in a periodic potential. Phys. Rev. 51, 846–851 (1937). doi:10.1103/PhysRev.51.846

37. O. K. Andersen, Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975). doi:10.1103/PhysRevB.12.3060

38. E. Sjöstedt, L. Nordström, D. J. Singh, An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000). doi:10.1016/S0038-1098(99)00577-3

39. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001). doi:10.1103/PhysRevB.64.195134

40. J. M. Wills et al., Full-Potential Electronic Structure Method, vol. 167 of Springer Series in Solid-State Sciences (Springer-Verlag, 2010).

41. K. Koepernik, H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999). doi:10.1103/PhysRevB.59.1743

42. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009). doi:10.1016/j.cpc.2009.06.022

43. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). Medline doi:10.1103/PhysRevLett.77.3865

44. G. Yuan, F. Gygi, ESTEST: A framework for the validation and verification of electronic structure codes. Comput. Sci. Discov. 3, 015004 (2010). doi:10.1088/1749-4699/3/1/015004

45. The NoMaD Repository, http://nomad-repository.eu.

46. S. R. Bahn, K. W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002). doi:10.1109/5992.998641

Page 148: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

47. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, AiiDA: Automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016). doi:10.1016/j.commatsci.2015.09.013

48. Scripts are available at https://cmr.fysik.dtu.dk/dcdft/dcdft.html.

49. W. B. Holzapfel, M. Hartwig, W. Sievers, Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above. J. Phys. Chem. Ref. Data 30, 515 (2001). doi:10.1063/1.1370170

50. C. Kittel, Introduction to Solid State Physics (Wiley, ed. 8, 2005).

51. E. Knittle, in Mineral Physics and Crystallography: A Handbook of Physical Constants, T. Ahrens, Ed. (American Geophysical Union, 1995), pp. 98–142.

52. W. A. Grosshans, W. B. Holzapfel, Atomic volumes of rare-earth metals under pressures to 40 GPa and above. Phys. Rev. B 45, 5171–5178 (1992). Medline doi:10.1103/PhysRevB.45.5171

53. K. G. Dyall, E. van Lenthe, Relativistic regular approximations revisited: An infinite-order relativistic approximation. J. Chem. Phys. 111, 1366 (1999). doi:10.1063/1.479395

54. D. D. Koelling, B. N. Harmon, A technique for relativistic spin-polarized calculations. J. Phys. C Solid State Phys. 10, 3107–3114 (1977). doi:10.1088/0022-3719/10/16/019

55. E. van Lenthe, E. Baerends, J. Snijders, Relativistic total energy using regular approximations. J. Chem. Phys. 101, 9783 (1994). doi:10.1063/1.467943

56. I.-H. Lee, R. M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Phys. Rev. B 56, 7197–7205 (1997). doi:10.1103/PhysRevB.56.7197

57. T. Miyake, T. Ogitsu, S. Tsuneyuki, Quantum distributions of muonium and hydrogen in crystalline silicon. Phys. Rev. Lett. 81, 1873–1876 (1998). doi:10.1103/PhysRevLett.81.1873

58. W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, M. P. Masquelier, First-principles study of boron diffusion in silicon. Phys. Rev. Lett. 83, 4345–4348 (1999). doi:10.1103/PhysRevLett.83.4345

59. L. Vitos, B. Johansson, J. Kollár, H. Skriver, Exchange energy in the local Airy gas approximation. Phys. Rev. B 62, 10046–10050 (2000). doi:10.1103/PhysRevB.62.10046

60. R. Miotto, G. P. Srivastava, A. C. Ferraz, Dissociative adsorption of PH3 on the Si(001) surface. Phys. Rev. B 63, 125321 (2001). doi:10.1103/PhysRevB.63.125321

61. L. E. Ramos, L. K. Teles, L. M. R. Scolfaro, J. L. P. Castineira, A. L. Rosa, J. R. Leite, Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds. Phys. Rev. B 63, 165210 (2001). doi:10.1103/PhysRevB.63.165210

62. L. V. C. Assali, W. V. M. Machado, J. F. Justo, Titanium impurities in silicon, diamond, and silicon carbide. Braz. J. Phys. 34, 602–604 (2004). doi:10.1590/S0103-97332004000400016

Page 149: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

63. J. Heyd, J. E. Peralta, G. E. Scuseria, R. L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005). Medline doi:10.1063/1.2085170

64. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Angyán, Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006). Medline doi:10.1063/1.2187006

65. F. Tran, R. Laskowski, P. Blaha, K. Schwarz, Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 75, 115131 (2007). doi:10.1103/PhysRevB.75.115131

66. Center for Molecular Modeling, “Comparing solid state DFT codes, basis sets and potentials” (2016); http://molmod.ugent.be/DeltaCodesDFT.

67. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947). doi:10.1103/PhysRev.71.809

68. J. K. Dewhurst et al., Elk; http://elk.sourceforge.net/.

69. A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, C. Draxl, exciting: A full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J. Phys. Condens. Matter 26, 363202 (2014). Medline doi:10.1088/0953-8984/26/36/363202

70. I. Y. Zhang, X. Ren, P. Rinke, V. Blum, M. Scheffler, Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar. New J. Phys. 15, 123033 (2013). doi:10.1088/1367-2630/15/12/123033

71. FLEUR (Jülich Forschungszentrum); www.flapw.de.

72. G. Lehmann, M. Taut, On the numerical calculation of the density of states and related properties. Phys. Status Solidi B 54, 469–477 (1972). doi:10.1002/pssb.2220540211

73. S. Froyen, Brillouin-zone integration by Fourier quadrature: Special points for superlattice and supercell calculations. Phys. Rev. B 39, 3168–3172 (1989). Medline doi:10.1103/PhysRevB.39.3168

74. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, K. Schwarz, Ed. (Technische Universität Wien, 2001).

75. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D. C. Allan, First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002). doi:10.1016/S0927-0256(02)00325-7

76. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, J. W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009). doi:10.1016/j.cpc.2009.07.007

Page 150: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

77. M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. Comput. Mater. Sci. 42, 337–351 (2008). doi:10.1016/j.commatsci.2007.07.020

78. K. F. Garrity, J. W. Bennett, K. M. Rabe, D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446 (2014).

79. J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005). doi:10.1103/PhysRevB.71.035109

80. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, K. W. Jacobsen, Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010). Medline

81. GPAW, https://wiki.fysik.dtu.dk/gpaw/setups/setups.html.

82. ATOMPAW, http://pwpaw.wfu.edu/.

83. “PAW atomic datasets” (ABINIT Group); www.abinit.org/downloads/PAW2/.

84. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). Medline doi:10.1088/0953-8984/21/39/395502

85. PSlibrary (QEforge); www.qe-forge.org/gf/project/pslibrary/frs/.

86. A. Dal Corso, Projector augmented wave method with spin-orbit coupling: Applications to simple solids and zincblende-type semiconductors. Phys. Rev. B 86, 085135 (2012). doi:10.1103/PhysRevB.86.085135

87. N. Marzari, D. Vanderbilt, A. De Vita, M. C. Payne, Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999). doi:10.1103/PhysRevLett.82.3296

88. A. Dal Corso, Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337–350 (2014). doi:10.1016/j.commatsci.2014.07.043

89. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). doi:10.1016/0927-0256(96)00008-0

90. J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008). Medline doi:10.1002/jcc.21057

Page 151: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

91. P. E. Blöchl, O. Jepsen, O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994). Medline doi:10.1103/PhysRevB.49.16223

92. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).

93. “Standard Solid State Pseudopotentials (SSSP)” (THEOS and MARVEL); http://materialscloud.org/sssp/.

94. D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013). doi:10.1103/PhysRevB.88.085117

95. M. Schlipf, F. Gygi, Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015). doi:10.1016/j.cpc.2015.05.011

96. Dacapo, https://wiki.fysik.dtu.dk/dacapo/.

97. “Dacapo Pseudopotential Library,” https://wiki.fysik.dtu.dk/dacapo/Pseudopotential_Library/.

98. “Pseudopotentials for the ABINIT code” (ABINIT Group); www.abinit.org/downloads/psp-links/psp-links/gga_fhi/.

99. M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67–98 (1999). doi:10.1016/S0010-4655(98)00201-X

100. “Goedecker-Teter-Hutter (GTH) Pseudopotentials,” http://cp2k.web.psi.ch/potentials/.

101. S. Goedecker, M. Teter, J. Hutter, Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996). Medline doi:10.1103/PhysRevB.54.1703

102. C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998). doi:10.1103/PhysRevB.58.3641

103. M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005). doi:10.1007/s00214-005-0655-y

104. L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, R. Schneider, Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129, 014109 (2008). Medline doi:10.1063/1.2949547

105. S. Mohr, L. E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch, S. Goedecker, Daubechies wavelets for linear scaling density functional theory. J. Chem. Phys. 140, 204110 (2014). Medline doi:10.1063/1.4871876

106. A. Willand, Y. O. Kvashnin, L. Genovese, Á. Vázquez-Mayagoitia, A. K. Deb, A. Sadeghi, T. Deutsch, S. Goedecker, Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations. J. Chem. Phys. 138, 104109 (2013). Medline doi:10.1063/1.4793260

Page 152: Supplementary Materials for - Sciencescience.sciencemag.org/highwire/filestream/676710/field_highwire... · Supplementary Materials for . Reproducibility in density functional theory

107. “New soft-accurate NLCC pseudopotentials” (2016); http://bigdft.org/Wiki/index.php?title=New_Soft-Accurate_NLCC_pseudopotentials.

108. T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003). doi:10.1103/PhysRevB.67.155108

109. T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004). doi:10.1103/PhysRevB.69.195113

110. T. Ozaki, H. Kino, Efficient projector expansion for the ab initio LCAO method. Phys. Rev. B 72, 045121 (2005). doi:10.1103/PhysRevB.72.045121

111. T. Ozaki et al., OpenMX; www.openmx-square.org/.

112. I. Morrison, D. M. Bylander, L. Kleinman, Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B 47, 6728–6731 (1993). Medline doi:10.1103/PhysRevB.47.6728

113. D. R. Hamann, Generalized norm-conserving pseudopotentials. Phys. Rev. B 40, 2980–2987 (1989). Medline doi:10.1103/PhysRevB.40.2980

114. Mat-Sim Research, www.mat-simresearch.com/.

115. Pseudo Dojo, www.pseudo-dojo.org/.