Summary Sheets Complete Version F2013

download Summary Sheets Complete Version F2013

of 58

Transcript of Summary Sheets Complete Version F2013

  • 8/11/2019 Summary Sheets Complete Version F2013

    1/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 1

    1

    MECH-346 Heat Transfer: Summary Sheets Complete Version

    Fouriers law of heat conduction for isotropic materials:

    "q k T=

    Convection heat loss from an isothermal surface:

    Net radiation loss from a flat isothermal surface to surroundings atsurr

    T

    (or a large enclosure with isothermal walls atw surr

    T T= ): assumption is

    that surface is gray w.r.t. radiation from surroundings, sosurf surf

    =

    Three-dimensional unsteady heat conduction in an isotropic material:

    General (vector calculus) form of the governing equation:

    ( ). pT

    k T S ct

    + =

    Asur ace

    Tsur

    T

    hav

    , ( )conv loss surface av surf exposedtoconv

    q A h T T =

    ,( )conv surf th convq T T R

    ( ), 1th conv surface exposed t o conv avR A h

    surr wT or T

    , ,surf surf surf T A

    4 4

    .

    net surf surf surf surr radiation abs abssurface surrorsurface encl walls

    q A T T

    =

    8

    2 4

    Stefan-Boltzmann constant

    5.669x10 [ ]W

    m K

    =

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    2/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 2

    2

    Governing equation expressed in Cartesian coordinates:

    p

    T T T T k k k S c

    x x y y z z t

    + + + =

    Governing equation expressed in cylindrical coordinates:

    2

    1 1p

    T T T T rk k k S c

    r r r r z z t

    + + + =

    Governing equation expressed in spherical coordinates:

    2

    2 2 2 2

    1 1 1(sin )

    sin sinp

    T T T Tr k k k S c

    r r r r r t

    + + + =

    Steady-State One-Dimensional Heat Conduction [Isotropic Materials]

    1. Plane Wall

    T1

    T2

    L

    x

    Ac.s.

    Governing equation (1-D Cartesian):

    0d dT

    k Sdx dx

    + =

    For constantk= and 0S= , the solution is:

    2 1 2( ) ( ) 1 ( / )T T T T x L =

    . . 1 2 1 2. .

    , //

    , //. .

    ( ) ( )( )

    Restrictions: 1-D, steady-sta

    0, ., // wall

    c sx c s

    th wall

    th wallc s

    A k T T T TdTq k A

    dx L R

    L

    R S k const kA

    = =

    =

    = =

    1T 2T xq

    , //th wallR

  • 8/11/2019 Summary Sheets Complete Version F2013

    3/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 3

    3

    T1 T2

    qr

    Rth,long hollow cylinder

    Plane wall of thickness 2L: S.S., 1-D Cartesian, S= constant, k= constant

    2. Long Hollow Cylinder [L>> (r2 r1)]

    Resistance analogy: Long hollow cylinder ( 0r ), steady-state, 1-D radialheat conduction, k= constant, and 0S= are the restrictions here

    L

    x

    Ac.s.L

    S>0(const.)

    Tx=L

    = TRight

    General case: (i) atx= -L, T= TLeftand

    (ii) atx=L, T= TRight

    22

    12 2 2

    Right Left Right LeftT T T T S L x xT

    k L L

    + = + +

    Symmetric case: (i) atx= -L, T= TWand

    (ii) atx=L, T= TW

    22 2

    max 0

    1 ;2 2W x W

    S L x S LT T T T T

    k L k=

    = + = = +

    T1

    T2

    r2r1

    r

    r

    L

    Steady-state, 1-D radial heat conduction: Governing equation

    Tx=-L

    = TLeft

    1 0d dTrk Sr dr dr

    + =

    k = constant, S = 0, with B.C.s;(i) at 1 1,r r T T = = ; and (ii) at 2 2,r r T T= =

    Solution for this case is the following:

    2 1 2 2 1 2( ) /( ) ln( / ) / ln( / )T T T T r r r r =

    2 1,

    ln( / )

    2th longhollow cylinder

    r rR

    kL=

  • 8/11/2019 Summary Sheets Complete Version F2013

    4/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 4

    4

    T1 T2

    qr

    Rth,hollow sphere

    3. Long solid cylinder (L>> R): steady-state, 1-D radial heat conduction

    4. Hollow Sphere

    Resistance analogy: Hollow sphere ( 0r ), steady-state, 1-D radial heat

    conduction, k= constant, and 0S= are the restrictions here

    r2r1

    Tw

    R

    L

    Governing equation:

    10

    d dTrk S

    r dr dr

    + =

    k= constant, S= constant, with B.C.s;(i) at 0, is finiter T= ; and (ii) at , wr R T T = =

    Solution for this case is the following:22

    ( ) 14

    w

    S R rT T

    k R

    =

    ; and

    2

    max 04

    r wS RT T T

    k== = +

    Steady-state, 1-D radial heat conduction: Governing equation

    2

    2

    10

    d dTr k S

    r dr dr

    + =

    k= constant, S= 0, with B.C.s;(i) at 1 1,r r T T = = ; and (ii) at 2 2,r r T T= =

    Solution for this case is the following:

    2

    2 1 21 2

    ( ) 1 1 1 1

    ( )

    T T

    r r r r T T

    =

    ,

    1 2

    1 1 1

    4th hollowsphereR

    k r r

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    5/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 5

    5

    5. Solid sphere: steady-state, 1-D radial heat conduction

    Thermal Contact Resistance

    ( ) ( ),th contact contact interfaceI I I Iq T T R h A T T + +

    Thus, ( ), 1th contact contact interfaceR h A=

    Here, contacth is the thermal contact coefficient [ 2 oW

    m C]

    R

    Governing equation:

    2

    2

    10

    d dTr k S

    r dr dr

    + =

    k= constant, S= constant, with B.C.s;(i) at 0, is finiter T= ; and (ii) at , wr R T T = =

    Solution for this case is the following:22

    ( ) 16

    w

    S R rT T

    k R

    =

    ; and

    2

    max 06

    r wS RT T T

    k== = +

    Tw

    Interface

    Material Material I

    T IT +

    q

    Note: For unit

    contact area, thethermal contact

    resistance is

    denoted as:"

    , 1/th contact contaR h=

  • 8/11/2019 Summary Sheets Complete Version F2013

    6/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 6

    6

    Critical Radius of Insulation or Coating of Curved Surfaces

    (Conduction-Convection Systems)

    Long hollow cylindrical geometryIf { }1 1, , , , ,inslr L k T T h all constant, 2r variable; 0inslS = ; steady-state; and

    1-D radial, then when

    2insl

    critlong hollow cyl

    kr r

    h= = , maxq q=

    Hollow spherical geometry

    If { }1 1, , , , ,inslr L k T T h all constant, 2r variable; 0inslS = ; steady-state; and

    1-D radial, then when

    2

    2insl

    crithollowsphere

    kr r

    h= = , maxq q=

    Note:For both the cylindrical and spherical geometries, if

    { }1, , , , ,inslr L k h T q all constant, 2r variable; 0inslS = ; steady-state; and 1-D

    radial, then when 2 critr r= , 1 1( )minimumT T=

  • 8/11/2019 Summary Sheets Complete Version F2013

    7/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 7

    7

    Classical Fin Theory

    (fink = constant; finS =0; h= constant; T = constant; steady-state)

    For uniform fin cross-sectional area and perimeter, . .c sA = constant and

    . .c sPeri = constant, and the fin equation reduces to2

    1/ 22

    . . . .2( ) 0 ; ( ) /( )

    c s fin c s

    d Tm T T m h Peri k A

    dx

    = =

    B.C. (i): atx= 0, 0x baseT T= =

    For B.C. (ii), the following four cases and solutions are considered:

    Case A:at x L= ,

    }( / ) ( ) Convection heat loss from the tip surfacefin x L x Lk dT dx h T T = = =

    Case A solution:

    [ ]cosh ( ) sinh[ ( )]

    cosh( ) sinh( )

    fin

    base

    fin

    hm L x m L x

    m kT T

    T T hmL mL

    m k

    + =

    +

    Case A total rate of heat transfer from fin to fluid:

    ( ). . . .sinh( ) cosh( )

    ( )

    cosh( ) sinh( )

    fin

    total fin c s c s basefin fluid

    fin

    hmL mLm k

    q k A h Peri T T h

    mL mLm k

    +

    = +

    Case B:at x L= ,

    }( / ) 0 Adiabatic tip or symmetry surface atx LdT dx x L= = =

    Case B solution: [ ]cosh ( )

    cosh( )base

    m L xT T

    T T mL

    =

    Case B total rate of heat transfer from fin to fluid:

    ( ). . . . ( ) tanh( )total fin c s c s basefin fluid

    q k A h Peri T T mL

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    8/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 8

    8

    Case C:Long-fin, at x L= ,x L

    T T= =

    Case C solution: ( )expbase

    T Tmx

    T T

    =

    Case B total rate of heat transfer from fin to fluid:( ). . . . ( )total fin c s c s base

    fin fluid

    q k A h Peri T T

    =

    Case D:at x L= , } Specified fin tip temperaturex L LT T= =

    Case D solution:

    sinh( ) sinh[ ( )]

    sinh( )

    L

    base

    base

    T Tmx m L x

    T TT T

    T T mL

    + =

    Case D total rate of heat transfer into fin across base:

    ( ). . . .cosh( )

    ( )sinh( )

    L

    base

    total fin c s c s basebase in

    T TmL

    T Tq k A h Peri T T

    mL

    =

    Case D total rate of heat transfer from lateral surface of fin to fluid:

    . .lateral surface total out total fin c sfin fluid base in fin tip base in tipx L

    dTq q q q k Adx =

    = = +

    Fin Efficiency:,

    Entire fin at

    Same fin geometry and tip condition

    base

    actual fin fluid

    fin T

    fin fluid

    q

    q

    For Case B (insulated tip): ( ), tanhfin Case B mL mL =

    Compensated length:c

    L may be used to approximate the total rate of heat

    loss from the fin to the fluid in Case A using the results for Case B: in general,

    ( ). . . .c c s tip c s tipL L L L A Peri= + + ; for a straight fin of uniformrectangular cross-section with W >> t, / 2cL L t= + ; for a straight fin ofuniform circular cross-section, with diameter d, / 4cL L d= +

  • 8/11/2019 Summary Sheets Complete Version F2013

    9/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 9

    9

    Fin Thermal Resistance: , ,1 [ ]th fin fin surface total fin fluid R Area h ; note that this

    fin thermal resistance accounts for both conduction through the fin and

    convection at its surface

    Fin Effectiveness:,

    , ( )

    actual fin fluid

    fin

    base fin w

    q

    Area h T T

    Fin Design Charts and Related Procedures

    Basis: Solutions based on adiabatic fin tip assumption (akin to Case B

    solution for a fin of uniform rectangular cross-section)

    Thus, when using fin design charts, use Lc instead of L if the fin tip

    looses heat by convection (but if the actual fin tip is adiabatic, then use

    the actual fin length,L).

    3/ 2 1/ 2[ { /( )} , ]fin c fin m

    fnc L h k A geometric paramters = ;Amis the profile area

    If the fin efficiency,fin

    , is obtained from fin design charts, then the fin

    thermal resistance is ,,

    ,

    1/( )c

    th fin fin surface lateral totalfin fluid withL if needed

    R Area h=

    If

    fin is obtained from fin design charts, then use the following

    expressions:,

    ,,

    ( )( )

    c

    base

    actual total fin surface lateral basefin fluid total fin

    th finwith L if needed

    T Tq Area h T T

    R

    = =

    Design charts for uniform fins of triangular cross-section, uniform fins

    of rectangular cross-section, and circumferential (or annular) fins of

    rectangular cross-section are given on the following page: again, use the

    compensated fin length,Lc, if needed (that is, if the fin tip looses heat by

    convection); but if the actual fin tip is adiabatic, then use the actual fin

    length,L.

  • 8/11/2019 Summary Sheets Complete Version F2013

    10/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 10

    10

    Fin efficiency charts: Fin

    of uniform rectangular

    and triangular cross-

    sections

    rectangular fi2

    triangular fin

    rectangular

    triangular fi2

    c

    c

    m

    c

    tL

    L

    L

    tL

    A tL

    +

    =

    =

    Figures taken from Heat Transfer by J.P. Holman, 7th

    Edition, 1990 Fin efficiency

    chart:

    Circumferential or

    annular fins ofuniform

    rectangular cross-

    section

    2 1

    2 1

    2

    ( )

    c

    c c

    m c

    tL L

    r r L

    A t r r

    = +

    = +

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    11/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 11

    11

    Heat Conduction Shape Factor

    A heat conduction shape factor, S, can be defined in problems that allow the

    following approximations or restrictions: isotropic and homogeneous material;

    steady-state conditions prevail; k= constant; volumetric source term S = 0; and

    only two different uniform boundary temperatures.

    1 2

    1 2

    1 2

    ( )( )

    totalT T

    th cond

    T Tq k T T

    R

    = =S where 1/( )

    th condR k= S

  • 8/11/2019 Summary Sheets Complete Version F2013

    12/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 12

    12

    Unsteady Heat Conduction (Isotropic Materials)

    Governing equation: ( ) /

    pdiv k T S c T t + =

    Properties and source data ( , , ,p

    k c S ), B.C.s ,and I.C. are needed to

    complete the mathematical model: these are problem specific.

    Biot number (conduction-convection systems):

    c

    solid

    hLBi

    k ; where

    [Total volume of solid]

    [Surface area of solid exposed to convection]c

    L

    Lumped Parameter Analysis [LPA; valid if 0.1Bi ]

    Key idea

    Governing equation: ( ) ( / )solid surface solid p solid

    exposed to convection

    SV A h T T c V dT dt =

    where Sis the volumetric source term

    LPA solution for 0S= , [ , , , ]p

    c h T all constant,0t ini

    T T uniform= = = :

    ( )exp

    ( )

    surface exposedto convection

    ini ini p solid

    h AT T

    tT T c Vol

    = =

    Solid

    Fluid, T, h( , , , ) ( )T T x y z t T t =

    when

    0.1c

    solid

    h LBi

    k

    ; with

    ( )solidc

    surface solid exposed to convection

    VolumeL

    Area=

    ( )p solid surface exposedto convection

    c Vol h A

    =

    time constant of conduction-convection

    system

  • 8/11/2019 Summary Sheets Complete Version F2013

    13/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 13

    13

    When LPA solution for 0S= , [ , , , ]pc h T all constant, and

    0t iniT T uniform= = = applies; and the time constant of the conduction-convec

    system is ( )p solid surface solid exposedto convection

    c Vol h A =

    :

    1 2

    1 2

    1 2( ) ( ) exp exptotal loss solid p t t t t solid p init t t

    t tQ Vol c T T Vol c T T

    = =

    = =

    Transient heat conduction in semi-infinite solids

    Mathematical model:with the thermal diffusivity /( )p

    k c =

    Governing equation:p

    T Tk c

    x x t

    =

    or2

    2

    1T T

    x t

    =

    x

    k= const.; S= 0;

    = const.; cp= const.

    uniformi

    T T= = ,for 0t

    Isotropic materials

    Common B.C.s

    (imposed) on the

    surface: for 0t> a)Constant temperature,

    o iT T

    b)Constant heat flux,0q

    c)Convection boundary

    condition, ,h T

  • 8/11/2019 Summary Sheets Complete Version F2013

    14/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 14

    14

    I.C.: at t= 0, T= Ti= constant; 0 x

    B.C.s

    a)0, .

    0, .

    o

    i

    at x T T const for all t

    at x T T const

    = = = > = =

    b) 00, .

    0

    , .

    o

    x

    i

    Tat x q k const

    x for all t

    at x T T const

    =

    = = =

    > = =

    c)0

    0

    0, ( )

    0, .

    x

    x

    i

    Tat x h T T k

    x for all t

    at x T T const

    =

    =

    = =

    > = =

    Solutions:

    a)( , )

    erf2

    o

    i o

    T x t T x

    T T t

    =

    Notes:

    1) Error function: ( )2

    0

    2erf e d

    ; values in Table 8-1 (attached)

    2) Complementary error function: ( ) ( )erfc 1 erf

    b)22 / -

    ( , ) exp - erfc4 2

    o oi

    q t q xx xT x t T

    k t k t

    =

    c)2

    2

    ( , )erfc exp erfc

    2 2

    i

    i

    T x t T x hx h t x h t

    T T k k k t t

    = + +

    Penetration depth: ( )t

    When ( )x t= ,

    0( , ) 0.992i o

    T t Terf

    T T t

    = =

  • 8/11/2019 Summary Sheets Complete Version F2013

    15/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 15

    15

    Table 8.1: Values of error function

  • 8/11/2019 Summary Sheets Complete Version F2013

    16/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 16

    16

    One-dimensional unsteady heat conduction in solids with

    convection B.C. [S =0; k, , cp, h, T all constant; cLBi > 0.1;

    uniform initial temperature,i

    T; and /( )pk c = ]

    Case B:

    L>> ro

    ro

    h, T

    Long solid cylinder

    oM

    solid

    hrBi

    k= ; *

    2o

    tt

    r

    = ; *

    o

    rr

    r=

    Case A:

    T

    h

    T

    h

    LL

    t 0, T=Ti

    Symmetrically cooled/heated

    plane wall

    M

    solid

    hLBi

    k= ; *

    2

    tt

    L

    = ; *

    xx

    L=

    Case C:

    ro

    h, T

    Solid sphere

    oM

    solid

    hrBi

    k= ; *

    2o

    tt

    r

    = ; *

    o

    rr

    r=

    Notes:

    1.One-dimensional

    transient heat conduction

    in these three cases can

    be predicted analytically:

    solutions are in the form

    of infinite series;

    2.

    However, these series

    are rapidly convergent;

    3.For * 0.2t , one-termapproximation of infinite

    series is excellent:

    [Error 2%]

  • 8/11/2019 Summary Sheets Complete Version F2013

    17/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 17

    17

    For * 0.2t

    , use the following one-term approximation:

    Case A:Symmetrically cooled/heated plane wall (total thickness = 2L)

    * * * 2 * * * * 21 1 1

    ( , )( , ) exp[ ]cos( ) ; / ; /

    i

    T x t T x t A t x x x L t t L

    T T

    = = = =

    * * * 2 *1 1

    ( 0, )( 0, ) exp[ ]

    i

    T x t T x t A t

    T T

    = = = =

    *

    * * * 1

    , 101

    sin( )1 [ ( 0, )] ; 2 ; ( )

    t

    o total p iloss xo

    Qx t Q q dt Q Vol c T T

    Q

    =

    = = = =

    Case B:Long solid cylinder (radiuso

    r ; cylinder length >> 2or)

    * * * 2 * * * * 21 1 0 1

    ( , )( , ) exp[ ]J ( ) ; / ; /

    o o

    i

    T r t T r t A t r r r r t t r

    T T

    = = = =

    * * * 2 *1 1

    ( 0, )( 0, ) exp[ ]

    i

    T r t T r t A t

    T T

    = = = =

    *

    * * * 1 1

    , 101

    J ( )1 2[ ( 0, )] ; ; ( )

    t

    o total p iloss ro

    Qr t Q q dt Q Vol c T T

    Q

    =

    = = = =

    Case C:Solid sphere (radiusor)

    ** * * 2 * * * 21

    1 1 *

    1

    ( , ) sin( )( , ) exp[ ] ; / ; /

    o o

    i

    T r t T r r t A t r r r t t r

    T T r

    = = = =

    * * * 2 *1 1

    ( 0, )( 0, ) exp[ ]

    i

    T r t T r t A t

    T T

    = = = =

    *

    * * * 1 1 13 , 10

    1

    sin( ) cos( )1 3[ ( 0, )] ; ; (

    t

    o total p iloss ro

    Qr t Q q dt Q Vol c T T

    Q

    =

    = = = =

    Notes:

    For cases A, B, and C, values of 1 1,A as functions of MBi are givenin Table 9.1 (see page 18)

    Values of 0 1J ( ) and J ( ) as functions of are given in Table 9.2

    (see page 18). Note: o 1J ( ) / J ( )d d =

  • 8/11/2019 Summary Sheets Complete Version F2013

    18/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 18

    18

    Table 9.1 Table 9.2

    Values of 1and 1A for different values of Zeroth- and

    MBi and Cases A, B, and C first-order

    Bessel functionsof the first kind

    Notes:

    ( ) ; ( ) ; ( )o oM PlaneWall M Long Solid Cylinder M Solid Sphere

    solid solid solid

    hr hr hLBi Bi Bi

    k k k= = =

    ( / 2) ( /3)( ) ; ( ) ; ( )

    c c c

    o oL PlaneWall L Long Solid Cylinder L Solid Sphere

    solid solid solid

    h r h r hLBi Bi Bi

    k k k= = =

    Case A Case B Case C

  • 8/11/2019 Summary Sheets Complete Version F2013

    19/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 19

    19

    Product solution approach: temperature distribution for

    multidimensional unsteady heat conduction in solids with convection B.C.

    [S=0; k, , cp, h, T all constant; cLBi > 0.1; and iTuniform]

    Notation for one-dimensional unsteady solutions:

    Plane-wall: ( , )( , )i

    T x t T P x tT T

    =

    Long-cylinder:( , )

    ( , )i

    T r t T C r t

    T T

    =

    Semi-infinite solid:( , )( , )

    ( , ) 1 i

    i i

    T x t T T x t T x t

    T T T T

    = =

    S

    In general, for three-dimensional unsteady

    problems:3

    13 ISi iFull D solid Intersecting So

    T T T T

    T T T T

    =

    =

    P= S 1 2P P=

    1 2 3P P= S 1 2 3P P P=

    C= S P C=

  • 8/11/2019 Summary Sheets Complete Version F2013

    20/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version

    20

    20

    Total heat transfer for multidimensional unsteady heatconduction in solids with convection B.C. [S=0; k, , cp, h, T all

    constant; iTuniform; and cLBi > 0.1]

    Work of Langston

    For solids that can be constructed by the intersection of two objects (1

    and 2) for which the 1-D solutions (discussed earlier) apply:

    1 2 1

    1o o o ototal

    Q Q Q Q

    Q Q Q Q

    = +

    For solids that can be constructed by the intersection of three objects

    (1, 2, and 3) for which the 1-D solutions (discussed earlier) apply:

    1 2 1

    3 2 1

    1

    1 1

    o o o ototal

    o o o

    Q Q Q Q

    Q Q Q Q

    Q Q Q

    Q Q Q

    = +

    +

    If the temperature distribution and/or the total heat transferafter a given time into the heating/cooling process is desired, the

    solution is straightforward

    Obtain the appropriate one-dimensional solutions and combine

    them suitably, as discussed above

    If the time needed to obtain a desired temperature distribution or

    total heat transfer is required, then:

    Explore options offered by symmetry surfaces

    Keep your thinking cap on

  • 8/11/2019 Summary Sheets Complete Version F2013

    21/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version

    21

    21

    Uniform Newtonian Fluid Flow and Heat Transfer over aFlat Plate with a Sharp Leading Edge and Zero Angle of Attack

    Local or running Reynolds number, /

    xRe U x

    Transition region:

    5 61 x 10 1 x 10xRe

    In engineering analyses:

    5( / ) 5 x 10critx crit

    Re U x = = for flow over

    a flat plate at zero angle of attack

    At , ( / ) 0.99y u U = =

    At , [( ) /( )] 0.99T w wy T T T T = =

    Fully Turbulent Layer:turb >>

    Buffer Layer:turb

    Viscous sublayer:turb