Student Handout 21 2014

22
External incompressible viscous H:B CHEE 3363 Spring 2014 Handout 21 Reading: Fox 9.1--9.3 1

Transcript of Student Handout 21 2014

Page 1: Student Handout 21 2014

External incompressible viscous

CHEE 3363Spring 2014Handout 21

�Reading: Fox 9.1--9.3

�1

Page 2: Student Handout 21 2014

Learning objectives for lecture

1. Use dimensional analysis to obtain the scaling form of the

submerged object.�

2. Apply the momentum integral equation to calculate the

�2

Page 3: Student Handout 21 2014

boundary layer

�3

Page 4: Student Handout 21 2014

�- Airfoils�- Automobiles�- Airplanes�

�- �- �- �- �

�- �

increasing pressure�

�4

Page 5: Student Handout 21 2014

Boundary layer introduction

Classical theoretical hydrodynamics based on Euler’s equation�

- �

-�

-important�

-�

�5

Page 6: Student Handout 21 2014

�- �

�- Displacement thickness, δ �

- Disturbance thickness, δ �

- Momentum thickness, θ

�6

Page 7: Student Handout 21 2014

y ≥ δ�7

Page 8: Student Handout 21 2014

δ, δ*, θ are all functions of x �8

Page 9: Student Handout 21 2014

θ/δδ∗/δ

�9

1Given �Determine

u/U = y/δ

Page 10: Student Handout 21 2014

2

Page 11: Student Handout 21 2014

Assumptions for analyzing boundary layers

�1.�

2.�

3.�

4.

�11

Page 12: Student Handout 21 2014

Scaling solution to boundary layerGivenpressure gradient.Determine

Boundary conditions �1. �2.

(assumes dimensionless velocity x; δ natural choice

�12

∂u

∂x+

∂v

∂y= 0

u

@u

@x

+ v

@u

@y

= ⌫

@

2u

@y

2

Page 13: Student Handout 21 2014

Approximate solution for boundary-layer 1Given

Determineδ as a

function of x.

�13

∂t

CV

ρdV +

CS

ρv · dA = 0

CS

ρv · dA = 0 mab + mbc + mcd = 0

mbc = 0

Page 14: Student Handout 21 2014

Approximate solution for boundary-layer 2x + dx

(mfs xthrough surface s

�14

mbc = −mab − mcd = −w

[∂

∂x

∫ δ

0

ρu dy

]dx

FSx+ FBx

=

∂t

CV

uρ dV +

CS

uρv · dA

FSx= mfab + mfbc + mfcd

mfab = −

∫ δ

0

uρuw dy

mfx+dx = mfx +

∂mf

∂x

]

x

dx

mfcd = −

∫ δ

0

uρuw dy +

∂x

[∫ δ

0

uρuw dy

]dx

mx+dx = ms +

∂m

∂x

]

x

dx

Page 15: Student Handout 21 2014

x is p (neglecting changes in y

Approximate solution for boundary-layer 3x is U

�15

mfbc = Umbc = −U∂

∂x

[∫ δ

0

ρuw dy

]dx

CS

uρv · dA = −

∫ b

0

uρuw dy+

∫ δ

0

uρuw dy+

∂x

[∫ δ

0

uρuw dy

]dx−U

∂x

[∫ δ

0

ρuw dy

]dx

Fab = pwδ

px+dx = p +

dp

dx

]

x

dx Fcd = −

(p +

dp

dx

]

x

dx

)w(δ + dδ)

p +

1

2

dp

dx

]

x

dx Fbc =

(p +

1

2

dp

dx

]

x

dx

)wdδ

Page 16: Student Handout 21 2014

Approximate solution for boundary-layer 4

x

�16

Fad = −

(τw +

1

2

dτw

)wdx

FSx= −

[dp

dxδ dx −

1

2

dp

dxdx dδ − τwdx −

1

2

dτw dx

]w

[dp

dxδ dx − τwdx

]w =

[∂

∂x

(∫ δ

0

uρu dy

)dx − U

∂x

(∫ δ

0

ρu dy

)dx

]w

Page 17: Student Handout 21 2014

Approximate solution for boundary-layer 5

�17

δ =

∫ δ

0

dy

Page 18: Student Handout 21 2014

Approximate solution for boundary-layer 6

�18

momentum integral� equation

parallel to surface

Substitute and divide by U2

Page 19: Student Handout 21 2014

�1.

�2. �3. Derive an expression for τw

Givenpressure gradient.Pressure p is constant, U(x U = constantAssume velocity distribution u/U is similar for all values of x, and is a function of y/δ

�19

Page 20: Student Handout 21 2014

Assume velocity distribution of form��

1. �

2. �

Change variables to η = y / δ

Page 21: Student Handout 21 2014

u vanishing at y a

�21

Page 22: Student Handout 21 2014

4

�22