Strain-relaxation of SiGe Layers on Insulator

40
RTO RTCVD poly RTCVD nitride Clean Module Load lock ellipso- meter foup NTU GIEE NanoSiOE Po-Wen Chen 2004/06/12 1 Strain-relaxation of Strain-relaxation of SiGe Layers on Insul SiGe Layers on Insul ator ator 指指指指 指指指 指指 指指 指指指 指指指指指指指指指指指指

description

Strain-relaxation of SiGe Layers on Insulator. 指導教授:劉致為 博士 學生:陳博文 台灣大學電子工程學研究所. Outline. Introduction Direct Wafer Bonding Technology SiGe-on-Insulator formation by wafer bonding and layer transfer Buckled SiGe layers Summary. Introduction. - PowerPoint PPT Presentation

Transcript of Strain-relaxation of SiGe Layers on Insulator

Page 1: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/121

Strain-relaxation of SiGe Strain-relaxation of SiGe Layers on InsulatorLayers on Insulator

指導教授:劉致為 博士學生:陳博文

台灣大學電子工程學研究所

Page 2: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/122

OutlineOutline

IntroductionIntroduction

Direct Wafer Bonding TechnologyDirect Wafer Bonding Technology

SiGe-on-Insulator formation by wafer SiGe-on-Insulator formation by wafer

bonding and layer transferbonding and layer transfer

Buckled SiGe layers Buckled SiGe layers

SummarySummary

Page 3: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/123

IntroductionIntroduction

Ref : The International Technology Roadmap for Semiconductors (ITRS), 2001 edition

Page 4: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/124

MotivationMotivation

Combining the benefits of carrier mobility enhancement of strained Sistrained Si and the advantages of SOISOI.

SGOI (Strained Si on SiGe-On-Insulator)

= Strained SiStrained Si + SOISOI.

Page 5: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/125

OutlineOutline

• IntroductionIntroduction

• Direct Wafer Bonding TechnologyDirect Wafer Bonding Technology

• SiGe-on-Insulator formation by wafer SiGe-on-Insulator formation by wafer bonding and layer transferbonding and layer transfer

• Buckled SiGe layers Buckled SiGe layers

• SummarySummary

Page 6: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/126

Stengl’s model for silicon wafer Stengl’s model for silicon wafer bonding bonding

H

Si

O

H

O

H H

O

H

Si

O

HH

O

HH

O

H7A

Wafer A surface

Wafer B surface

Bonding interface

(a)

H

Si

O

3.5A

Wafer A surface

H

H

H

HO

O

H

H

O

H

H

O

Si

O

H

Wafer B surface

(B)

Si

1.6A

Wafer A surface

Si

O

Wafer B surface

H H

O

(C)

~200℃

>700℃

~

~

~

(a)Hydrogen bonding

between adsorbed

water molecules. T=RT

(b) Water molecules form

cyclic tetramer and

increase bond strength

T=200℃

(c) Water decomposition and

diffusion. Covalent bonds

forms. T≥700 ℃

~

Page 7: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/127

Direct Wafer BondingDirect Wafer Bonding

Device wafer

Handle wafer

Device wafer

Handle wafer

Device wafer

Handle wafer

Device wafer

Handle wafer

Megasonic acoustic cleaning

SC1 cleaningNH4OH:H2O2:H2ODI water rinseHydrophilic surface (OH-)

Pre-bondingAlignmentForm a single bonding wave

High temperature treatment8000C, O2, 30minStrength the chemical bonds

Page 8: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/128

Simple bonding check by breaking the wafers

Check by Breaking Wafer Check by Breaking Wafer MethodMethod

Page 9: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/129

TEM of Wafer BondingTEM of Wafer Bonding

Using Si with BPSG + bare Si wafer bonding

No defect at interface

Si Substrate

BPSG

Si wafer

Page 10: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1210

GOI Wafer FormationGOI Wafer Formation

The GOI are formed by bonding BPSG/Si and Ge at 600°C .

The measured Energy Dispersive Spectroscopy (EDS) from the interface layers.

Page 11: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1211

Infrared transmission systemInfrared transmission system

Monitor

IR lamp

IR viewing

Camera

Light with wavelengths longer than 1.10μm (Si) can pass through silicon

Page 12: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1212

Infrared image of a bonded Si/Si pairInfrared image of a bonded Si/Si pair

Bubbles with a diameter greater than 1 mm can be observed without IR microscopy.

Page 13: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1213

OutlineOutline

• IntroductionIntroduction

• Direct Wafer Bonding TechnologyDirect Wafer Bonding Technology

• SiGe-on-Insulator formation by wafer SiGe-on-Insulator formation by wafer bonding and layer transferbonding and layer transfer

• Buckled SiGe layers Buckled SiGe layers

• SummarySummary

Page 14: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1214

SGOI Process FlowSGOI Process Flow

BPSG

Si1-xGex

Host wafer

BPSG

Si1-xGex

Host wafer

BPSG

Handle wafer

Si1-xGex

BPSG

Handle wafer

Si1-xGex

BPSG

Handle wafer

Host waferH+ H+ H+ H+H+ H+ H+

1). Hydrogen implantation

2). Hydrophilic bonding at lowtemperature

3). Splitting annealing

4). Polishing

Ion implant. (hydrogen

dose=5E16)

Direct Wafer bonding.

H induced layer transfer.

Thin down.

Page 15: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1215

The schematic illustration of the The schematic illustration of the

hydrogen-induced exfoliation of siliconhydrogen-induced exfoliation of silicon

Si wafer(handle wafer)

BPSG

Si wafer(host wafer)

Rp

400℃ Si wafer(handle wafer)

BPSG

Si wafer(host wafer)

Rpcracks

Formation of point defect in the lower concentration of hydrogen implant.

Extensive disruption of the silicon lattice and 50~100A platelet formation.

Rearrangement of the defect structure above 400 0C.

H2 trap in the microvoids.

Development of these microvoids into cracks leading to complete layer transfer.

Page 16: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1216

Depth depends only on the implant energy with about 9nm / keV in silicon and silicon oxide.

0 20 40 60 80 100 120 1400

100

200

300

400

500

600

700

Imp

lan

t D

epth

(n

m)

Implant Energy (KeV)

Ion implantation DepthIon implantation Depth

0 20 40 60 80 100 120 140 160 180 200 2200

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

This work

SIMS data

Dep

th (

nm

)

Energy (KeV)

TRIM 2003 SiGe sample (TEM) Si SIMS data

Page 17: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1217

Wafer Bonding Without Smart-cutWafer Bonding Without Smart-cut

Si0.9Ge0.1

BPSG

Wafer A(Host Wafer )

Wafer B(Handle Wafer )

Bonding Interface

BPSG

Si1-xGex

Wafer A

BPSG

Wafer B

400 nm

Page 18: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1218

SGOI Wafer FormationSGOI Wafer Formation

Buried Oxide(BPSG)

Si0.9Ge0.1

Si

100nm

Si1-xGex

Si

BPSG

Handle Wafer

100nm Si0.9Ge0.1 layer and 500nm Si layer transfer upon BPSG.

Page 19: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1219

SGOI Wafer FormationSGOI Wafer Formation

Si1-xGex

Si

BPSG

Handle Wafer

rough

100 nm

500 nm

The surface is rough after smart cut process.

Page 20: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1220

Microroughness Measurement After SmartcutMicroroughness Measurement After Smartcut

Host wafer Handle wafer

Roughness(r.m.s.)=6.17nmRoughness(r.m.s.)=7.34nm

Page 21: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1221

0 20 40 60 80 100 120 140 1600

2

4

6

8

10

Roo

t-M

ean-

Sq.

(nm

)

Implant Energy (KeV)

Microroughness MeasurementMicroroughness Measurement

Interfaces microroughness (R.M.S.) increases

with implantation energy of hydrogen ions

Page 22: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1222

-1250 -1000 -750 -500 -250 0 250 5001

10

100

1000

10000

Inte

nsi

ty

ArcSec

Si0.9

Ge0.1

800oC(with O2) 30min

800oC(with O2) 30min

Thermal Budget Thermal Budget

No lattice damage at 800oC, O2, 30min (Bonding and Smartcut recipe)

BPSG

Si1-xGex

Host wafer

Page 23: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1223

Si layer thin down (KOH etching)

AnnealingSi1-xGex

BPSG

Handle Wafer

Composed of three peaks: r-Si, s-Si, and Si in SiGe.

Lorentz model is used.

Peak shift to lower wave number with high temperature anneal.

Page 24: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1224

Page 25: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1225

OutlineOutline

• IntroductionIntroduction

• Direct Wafer Bonding TechnologyDirect Wafer Bonding Technology

• SiGe-on-Insulator formation by wafer SiGe-on-Insulator formation by wafer bonding and layer transferbonding and layer transfer

• Buckled SiGe layersBuckled SiGe layers

• SummarySummary

Page 26: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1226

Diagram of relaxation mechanismsDiagram of relaxation mechanisms

Substrate

Insulator

Elastic strain layer

Substrate

Viscous layer

Relaxed layer

Substrate

Viscous layer

Relaxed layer

Page 27: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1227

10µm

Buckled SiGe Layers Buckled SiGe Layers

Two-dimensional perpendicular to each other

Buckled SiGe layers on SGOI compliant substrates

Oxidized for 300 sec at 960 with 1000 sccm oxygen flow℃

Substrate

BPSG

SiGe layer

Page 28: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1228

Buckling can also be seen by optical microscopy.

Page 29: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1229

Surface roughness (r.m.s.) increase with oxidized time.

Buckling seen by AFM for oxidation time > 30 sec.

Buckling seen by optical microscopy for oxidation time > 60 sec.

Buckling seen by AFM

Buckling seen by optical microscopy

Page 30: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1230

Micro-Raman

514.5 nm (Ar+ laser)

4.5 mW power

Detectable Raman peak shift (~0.5 cm-1) after 30 sec oxidation

Micro-Raman MeasurementMicro-Raman Measurement

Page 31: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1231

w/o SiGe layer

Buckled SiGe layers

edgy

Buckled SiGe layers directions near the patterned edgy are become along one-dimension, i.e., normal to the edge

Edgy EffectEdgy Effect1010

1020

1030

1040

1050

1010

1020

1030

1040

1050

-1

-0.5

0

0.5

1010

1020

1030

1040

1050

1000

1010

1020

1030

1040

10501000

1010

1020

1030

1040

1050

-0.5

0

0.5

1000

1010

1020

1030

1040

1050

Page 32: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1232

Buckling nucleus are randomly located at the initial oxidation

The undulation was well-developed for the time exceeding 30 sec

1 sec 5 sec

10 sec 30 sec

10um 10um

10um 10um

Page 33: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1233

Sinusoidal undulations are clearly observed by TEM

TEM Analysis of Buckled SiGe LayersTEM Analysis of Buckled SiGe Layers

Page 34: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1234

The Undulation Morphology vs. The Undulation Morphology vs. Ge FractionGe Fraction

1 10 100 1000 10000

0

10

20

30

40

50

60

70

80

90

100

110

Ro

ug

hn

ess(

R.M

.S.)

(n

m)

Oxidation Time (sec)

Si0.9

Ge0.1

Si0.8

Ge0.2

100 1000 10000

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Wav

elen

gth

(u

m)

Oxidation time (sec)

Si0.9

Ge0.1

Si0.8

Ge0.2

Surface roughness (r.m.s.) increase with oxidized time.

The wavelength of the buckled SiGe layer increase with oxidized time.

Page 35: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1235

0.0 0.1 0.2 0.3 0.4 0.50

100

200

300

SiGe thickness

Mes

a si

ze(

m)

Ge fraction

120nm 100nm 80nm 60nm 40nm 32nm

Theoretical limits of buckling phenomenonTheoretical limits of buckling phenomenon

Upper region (larger mesa) : w/i buckled SiGe layers

Lower region (smaller mesa) : w/o buckled SiGe layers

Si substrate

BPSG

StrainedSiGe

Si substrate

BPSG

SiGe

Si substrate

BPSG

SiGe

Page 36: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1236

Buckled SiGe layers formation on MESA after oxidation

as grown (Si0.8Ge0.2)

150×150 μm2

as grown (Si0.9Ge0.1)

200×200 μm2

oxidation

oxidation

SiGe

BPSG

~100nm

<10nm

SiGe

BPSG

~100nm

<10nm

Page 37: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1237

MESA size = 70×70 μm2 for Si0.8Ge0.2 elastic layer

NoNo buckled SiGe layers formation on MESA after oxidation

as grown (Si0.8Ge0.2)

70×70 μm2

oxidationSiGe

BPSG

~100nm

<10nm

Page 38: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1238

0 10 20 30 40 500

100

200

300

400

500

TSiGe

=100 nm

No Buckling

Buckling

200x200 (m2)

150x150 (m2)

125x125 (m2)

75x75 (m2)

25x25 (m2)

Mes

a si

ze (m

)

Ge fraction (%)

Experiment results are well consistent with theoretical buckled SiGe Layers limit

Page 39: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1239

OutlineOutline

• IntroductionIntroduction

• Direct Wafer Bonding TechnologyDirect Wafer Bonding Technology

• SiGe-on-Insulator formation by wafer SiGe-on-Insulator formation by wafer bonding and layer transferbonding and layer transfer

• Buckled SiGe layers Buckled SiGe layers

• SummarySummary

Page 40: Strain-relaxation of SiGe  Layers on Insulator

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE Po-Wen Chen 2004/06/1240

SummarySummary

Strong buckling for exceeding 30 sec oxidation.

Strain-relaxed compliant SGOI substrate has been fabricated by wafer bonding and hydrogen-induced layer transfer techniques.

Experiment results are well consistent with theoretical buckled SiGe layers limit.

Semiconductor films on insulator are successfully achieved by wet chemical activated bonding.