Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications...

76
Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik Pfaffenwaldring 38-40, Stuttgart www.DLR.de Chart 1 INTERNATIONAL SUMMER SCHOOL ON PEM FUEL CELLS 16 – 20 July 2012 Nevsehir, Turkey

Transcript of Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications...

Page 1: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Stationary and Mobile Applications with Fuel Cell TechnologyK. Andreas FriedrichInstitut für Technische ThermodynamikPfaffenwaldring 38-40, Stuttgart

www.DLR.de • Chart 1

INTERNATIONAL SUMMER SCHOOLON PEM FUEL CELLS16 – 20 July 2012Nevsehir, Turkey

Page 2: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

DLRGerman Aerospace Center

Research InstitutionSpace AgencyProject Management Agency

Research Areas AeronauticsSpaceTransportEnergySpace AgencyProject Management Agency

Page 3: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Locations and employees

7000 employees across 33 research institutes and facilities at

15 sites.

Offices in Brussels, Paris and Washington.

Koeln

Oberpfaffenhofen

Braunschweig

Goettingen

Berlin

Bonn

Neustrelitz

Weilheim

Bremen Trauen

Lampoldshausen

Hamburg

Stuttgart

Page 4: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Section Electrochemical Energy Technology

Electrochemical Energy Technology:Electrolysis (intermittent Alkaline, Polymer and Solid Oxide Electrolysis)Fuel Cells (PEFC, SOFC, DMFC)Battery technology (Lithium) since 2009

SystemsFundamentals

Page 5: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Content

- Introduction to mobile and stationary applications- Electromobility with hydrogen PEM fuel cells and batteries- Hybridization of power trains- Fuel cell technology for transport- Main system components- Stationary applications of PEM fuel cells- Residental application / demonstration programs- State of art in Japan, Gemany, USA- Backup power application

www.DLR.de • Chart 5 > Europeasn Space-Technology-Transfer-Forum“> July 9-10, 2012

Page 6: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Challenges for the 21st Century

- Environmental pollution and climate change- Alarming increase of energy consumption due

to world population growth- Increase of competition for usage of available

arable land- Geopolitical dependencies will increase- Efficient utilization of fossil and renewable

energies - Competitiveness of national industries- Securement of jobs and creation of new jobs

with innovative products

www.DLR.de • Chart 6 > Summer School PEM FUEL CELLS, 2012

Global driver for electromobilityand high efficiencies

Page 7: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Growth of Mobility

www.DLR.de • Chart 7

K-E

F/ P

liska

07

/ 98

as Distance Traveled per Day per Capita

Source: Nakicenovic, 1992, IIASA Laxenburg, Austria1800 1850 1900 1950 2000

100 000

10 000

1000

100

10

Meter

All modes

Waterways

Railways

TGVAir

Horses

TwoWheelers

Buses+ Cars

> Summer School PEM FUEL CELLS, 2012

Page 8: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Energy and Powertrain Alternatives

www.DLR.de • Chart 8

Energy Resources Energy Carriers Propulsion Systems

Hydrogen

Gaseous Fuels

Biomass

Natural Gas

Coal

Nuclear

ERnewables (Solar, Wind, Hydro)

Electricity

Elec

trifi

catio

n

OilLiquid Fuels

Electric Vehicle

Fuel Cell Electric

Gaseous ICE

Electric Vehicle

Bat

tery

Plug-In Hybrid ICE

Conventional ICE: Gasoline /

Diesel

ICE Hybrid

> Summer School PEM FUEL CELLS, 2012

Page 9: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Automobile Vehicle Concepts- Internal Combustion Engine Gasoline/Diesel

+ High range, high power, expertise, infrastructure- Nitrous oxides, carbon dioxide, efficiency improvements potentials

- Internal Combustion Engine Natural Gas+ Low emissions- Large tanks, inadequate infrastructure

- Hybrid power train+ low emissions, large range- Komplex system, high mass

- Electric power train with batteries+ Locally emission-free - geringe Rechweite, hohes Gewicht, Ladezeit

- Electric power train with fuel cells+ High efficiency, better range, low emissions- Complex technology, infrastructure

www.DLR.de • Chart 9 > Summer School PEM FUEL CELLS, 2012

Page 10: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Efficiencies

www.DLR.de • Chart 10

Typical car efficiency (Tank to Wheel):- Internal combustion engine: 20 – 25 %

- Fuel cell electrical drive: 40 – 50 %

- Battery electrical drive: 70 – 80 %

fuel heat movement electricity

fuel electricity

OH

H

chemical energy electricityelectricity

Secondary battery

> Summer School PEM FUEL CELLS, 2012

Page 11: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Historical development of electric cars

Early Years of Electric Cars: 1890 - 1930- First electric vehicle invented in 1828 - Many innovations followed - The interest in electric cars increased greatly in the

late 1890s and early 1900s- First real and practical electric car (with capacity for

passengers) designed by William Morrison- 1902 Phaeton built by the Woods Motor Vehicle

Company of Chicago

Figure: 1902 Wood's Electric Phaeton(Inventors, http://inventors.about.com/od/estartinventions/a/History-Of-Electric-Vehicles.htm, 7.5. 2011).

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 11

Page 12: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Historical development of electric cars

Decline of Electric Cars: 1930 – 1990- The electric car declined in popularity because of the following

reasons:- Better system of roads need for longer-range vehicles- Reduction in price of gasoline gasoline was affordable to

the average consumer - Invention of the electric starter disposed of the need for the

hand crank.- Initiation of mass production of internal combustion engine

vehicles by Henry Ford.

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 12

Page 13: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Electric Automobile Vehicles around 1900

Lohner-Porsche Electric VehicleWith in-wheel drive, 1900

Electric HotelBus

Baker Electric Vehicle, 1912

Columbia, 1901,Electric Vehicle Company

Source: Frankenberg, Geschichte des Automobils

Electric Car NAG(Neue Automobilgesellschaft mbH) 1903Quelle: Ledjeff, Energie für Elektroautos

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 13

Page 14: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Speed record around 1900

Source: Frankenberg, Geschichte des Automobils

Date Driver Car Place Record km/h

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 14

Page 15: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Automotive Roadmaps (GM as example)

www.DLR.de • Chart 15 > Summer School PEM FUEL CELLS, 2012

Page 16: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Discovery to first practical use …

- ICE: 1680 – 1889 (209 yrs)- Steam Engine: 1690 – 1769 (79 yrs)- Gas Turbine: 1791 – 1942 (150 yrs)- Fuel Cells: 1838 – 1965 (127 yrs)- Photovoltaics: 1839 – 1958 (119 yrs)

> Summer School PEM FUEL CELLS, 2012

Page 17: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Efficiency Comparison of Automotive Power Trains

www.DLR.de • Chart 17

Based on Well-to-Wheel studies of European and Japanese Sources: Concawe, EUCAR, JRC und JHFC

200

150

100

50

0

CO

2 E

mis

sion

s / g

CO

2eq k

m-1

250200150100500Energy Comsumption Well-to-Wheel / MJ (100 km)-1

GasolineDiesel

Hybrid (gasoline)Hybrid (Diesel)

Fuel Cell Powertrainwith 100% H2 from natural gas

Battery drivewith power from 100% EU grid

Fuel Cell Powertrainfrom 100% renewable H2

Battery Powertrainfrom 100% renewable power

Technology Change

Gasoline Japan (JHFC)

Diesel Japan (JHFC)

Hybride Gasoline Japan

Fuel Cell Japan (nowadaysand future)

Battery Japan (Power Mix)

> Summer School PEM FUEL CELLS, 2012

Page 18: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

2,4

178

586

13

282

562

60

472

583

0

100

200

300

400

500

600

Pow

er D

eman

d in

TW

h

2020 2030 2050

Power Demand and Power Generation in TWh

Energy demand electromobility (TWh)Power generation from renewable energy (TWh)Total power generation in D (TWh)

Potentials of Power Generation from Renewablesand Demand for Electromobility in Germany

www.DLR.de • Chart 18

ca. 1.5 Mio.

ca. 10.5 Mio.

ca. 40 Mio.

Source: “Leitstudien” for BMU regarding the potential of renewable energies

> Summer School PEM FUEL CELLS, 2012

Page 19: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Electromobility and Renewable Energy

www.DLR.de • Chart 19

5000 m2 for Biodiesel and combustion engine1000 m2 for hydrogen from biomass + fuel cell powertrain

20 m2 for PV power + battery power train

500 m2 for hydrogen from wind energy + fuel cell powertrain (area can be used for agriculture)

Areal demand for renewable fuel for the use of a passenger car with 12 000 km driving performance per year

65 m2 for PV power + fuel cell power train

Source: ZSW

> Summer School PEM FUEL CELLS, 2012

Page 20: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Configuration of Electrical Cars

www.DLR.de • Chart 20 > Summer School PEM FUEL CELLS, 2012

Page 21: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Hybridisation Possibilities

Micro Hybrid

Mild Hybrid

Full Hybrid

Plug-In Hybrid

Battery E Vehicle

Motor assistance

+ + + +

Recuperation of breaking energy

+ + + + +

Start-Stop + + + + +

Electrical range

few km Up to 60 km 100 – 200 km

Fuel savings 8% 12– 20 % 25 – 40% 60 – 100% 100%

Examples BMW 1.3 Mini GM Saturn Vue, Honda Civic, Mercedes S-KlasseBMW 7 Serie

Ford Escape,Toyota Prius

DAI Sprinter,VW Twin DriveGM Chevrolet Volt

Mitsubishi i-EV, BMW Mini-El, Peugeot i-On

www.DLR.de • Chart 21 > Summer School PEM FUEL CELLS, 2012

Page 22: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

www.DLR.de • Chart 22

Automobile with Fuel Cells / System example from GM

> Summer School PEM FUEL CELLS, 2012

Page 23: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Electromobility with Fuel Cells

www.DLR.de • Chart 23

1839 1990s 20001960s and 1970s today tomorrow

> Summer School PEM FUEL CELLS, 2012

Page 24: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Maturity of Technology – Daimler World Drive

www.DLR.de • Chart 24

B-Class F-CELL30,000 kilometers around the world14 countries on four continents

> Summer School PEM FUEL CELLS, 2012

Page 25: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

H2 Infrastructure for Refueling is requirement

www.DLR.de • Chart 25 > Europeasn Space-Technology-Transfer-Forum“> July 9-10, 2012

Page 26: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Chevrolet Equinox Fuel Cell from GM

www.DLR.de • Chart 26

- Electric traction:- 73 kw 3-Phase asynchronous motor. 94 kw max.- Nominal Torque 320 Nm.

- Fuel Cell System:- Stack: 440 cells, 93 kW.- NiMH battery 35 kW.- Operation life: 2.5 years, 80.000km.- Operation temperature: -25 to +45°C.

- Fuel storage:- 3 CGH2 vessels.- 70 MPa.- 4.2. kg Hydrogen.

- Performance:- Acceleration: 0-100 km/h in 12s.- Top speed 160 km/h.- Operation range 320 km.

- Curb weight: 2010 kg.

> Summer School PEM FUEL CELLS, 2012

Page 27: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Comparison of Efficiency and CO2-Emission

www.DLR.de • Chart 27

05

1015202530354045

0 50 100 150 200

[ Effi

cien

cy (%

) ]

Hydrogen-driven FC Zafira (HydroGen3) Diesel Zafira (X20DTL Engine)

1. Gear2. Gear

3. Gear

4. Gear5. Gear

Average efficiency (European Drive Cycle): Efficiencies: 36 % / 22 %CO2-Emissions (direct): 0 g/km / 177 g/km Source: Hermann/Winter 2003

> Summer School PEM FUEL CELLS, 2012

Page 28: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Stack Improvements over the last Decades

www.DLR.de • Chart 28

0

500

1.000

1.500

2.000

2.500

3.000

1965 1975 1985 1995 2005 2015

pow

er d

ensi

ty fu

el c

ell s

tack

[W/l]

Fuel Cell StacksBallard Fuel Cell ModulesBallard Technology-RoadmapHonda Fuel Cell StacksDOE-Monitoring

Mk 4

Mk 900

Mk 7

Mk 513Mk 5NASA Gemini

Mk 902

Ballard target

DOE target

DOE targetMk 1100

Honda

> Summer School PEM FUEL CELLS, 2012

Page 29: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Recent Announcement by Nissan Motors

Stack improvement to 85 kilowatts into a 34-liter package; 40.8 kg(2.5 kW per liter and 2.08 KW/kg)

www.DLR.de • Chart 29 > Summer School PEM FUEL CELLS, 2012

Page 30: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

GM Next Generation Fuel Cell system

www.DLR.de • Chart 30 > Summer School PEM FUEL CELLS, 2012

Page 31: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

System Components

Air circulation system

Anode recirculation system

Hydrogen Storage

Air supply

Anode exhaust

Cathodeexhaust

Interface toradiator forcooling

> Summer School PEM FUEL CELLS, 2012

Page 32: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

DC A-Class Fuel Cell System (~2002)

Bru2006-Testing-Expo-Fiat-NUVERA.pdfMoh2006-VDI-Berichte-1975-Technical-Status-DaimlerChrysler.pdf

Bal2007-Datenblatt-Ballard-Mark902.pdfStra2005-F-Cell-Ballard-Hy-80.pdf

Power (Stack): 85 kWPower Density (Stack): 1.1 kW/l – 0.9 kW/kgActive Area:Number of Cells:Compressor (Lambda): Screw, =2 from about 10% PmaxHumidifaction: yes - evaporatorH2 Recirculation (Lambda): yesCooling: Ethylene / GlycolSystem pressure: 2 bar (overpressure)Operation Temperature: 80°CBipolar Plate: GraphiteH2 Storage: 350 bar C-H2

Condenser

Humidification

Water tank

Coolant tank

Dry air

Dry H2

• Ballard Hy80 System 220 kg, 220 l, 68 kW

• Stack Mark 902• Rotary Screw Compressor +

Expander• Active humidification

> Summer School PEM FUEL CELLS, 2012

Page 33: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

DC F600 – Research Car (~2005/2006)

Moh2006-VDI-Berichte-1975-Technical-Status-DaimlerChrysler.pdf

Power: 78kW (personal communication)Power Density: 1.9kW/l – 1.0kW/kg (personal comm.)Active Area: ca. 312 cm²Number Cells: 440 (personal comm.)Compressor: Elect. Turbo Charger (personal comm.) Humidification: „Hollow-fibre“ gas to gas humidificationMotor drive: Direct current motorHybrid Battery: Lithium Ionen BatteryAir System: Electrical Turbo chargerBipolar plate: metallic 0.15mm (gold coating)H2 Storage: 700 bar C-H2 (4 kg H2)

• New Stack• Turbo compressor• Lower cathode

pressure• Gas-to-gas-

Humidification

> Summer School PEM FUEL CELLS, 2012

Page 34: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

B Class F-Cell Vehicle (Daimler)

• H2 Tank with 700 bar • Variable-speed asynchronous motor

~ 350 Nm• Hybrid configuration with Li ion battery• Electrical turbocharger• New humidifier with membranes• 400 km range• 170 km/h max. velocityt• NEDC: 2.9 l – Diesel-Equiv. / 100 km;

~ 105 MJ/100 km

www.DLR.de • Chart 34 > Summer School PEM FUEL CELLS, 2012

Page 35: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Source: Daimler

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 35

Page 36: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

www.DLR.de • Chart 36

Fuel Cell System XcellsisTMHY-80

Power electronics

Cooling pump

System module

Fuel Cell (80 kW)

Control electronics

> Summer School PEM FUEL CELLS, 2012

Page 37: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

F-cell Hauptkomponenten

Elektromotor

BZ-Stack

WasserstofftankLi Ionen Batterie

www.DLR.de • Chart 37

Page 38: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Tank-System for compressed Hydrogen gas

- CGH2: compressed gaseous hydrogen,- Pressure 35–70 MPa and room temperature.- Usually 2 or 3 vessels can be placed in a car. In busses up to 8 vessels can

be placed. - Cruising range is between 200km (350 bar) up to 500 km (700 bar).

www.DLR.de • Chart 38

Source: Helmolt/Eberle 2007, 837

> Summer School PEM FUEL CELLS, 2012

Page 39: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Compression of Air

Carlson – NREL: „Cost analysis for PEMFC“:- Turbo compressor expander (Honeywell)

- maximum rotation speed: 110.000 rpm- Idle speed: 36.000 rpm- Mass: 17.5 kg ( with controller)- Volume: 15 l (with controller, gee2005-Honeywell-TurboCompExp.pdf

Mohrdieck:- A-Klasse F-Cell: Screw compressor (Opcon)

- Rotation speed: 20.000 rpm- Mass:

- F600 HyGenius: Elektrischer Turbolader- Rotation speed : 120.000 rpm- Lower weight: to 1/3 in comparison to

screw compressorr

Problems with turbo chargers:- Stall line complex control syste,- High pressure ration complex dimensioning of blade and rotation speed- Demand of oil free operation

Car2005-NREL-Cost Analysis of PEM Fuel Cell.pdfMoh2006-VDI-Berichte-1975-Technical-Status-DaimlerChrysler.pdf

http://www.hytran.orggee2005-Honeywell-TurboCompExp.pdf

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 39

Page 40: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Humidifier

www.DLR.de • Chart 40

Hon2005-Honeywell-Air-thermal-water-management.pdfCar2005-NREL-Cost Analysis of PEM Fuel Cell.pdf

Moh2006-VDI-Berichte-1975-Technical-Status-DaimlerChrysler.pdfhttp://www.hysys.de/objectives.htm

• PermaPure• „Hollow Fibre Module“ (Daimler) „Enthalpy wheel“

> Summer School PEM FUEL CELLS, 2012

Page 41: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

H2 Recirculation

Car2005-NREL-Cost Analysis of PEM Fuel Cell.pdfMoh2006-VDI-Berichte-1975-Technical-Status-DaimlerChrysler.pdf

Bru2006-Testing-Expo-Fiat-NUVERA.pdf

Carlson – NREL: „Cost analysis for PEMFC“:- Ejectore (Croll-Reynolds):

RecirculationH2 from storage tank

Anodenabgas

Source:: Croll-Reynolds Web site

H2 Systems Inc. From Nuvera

- Recirculation pumps:

Reciculation need:- Dynamics- Hydrogen utilization

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 41

Page 42: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Cooling System – F- Cell - Daimler

Span2003-Dissertation-Energiesparmaßnahmen-Methanol-BZ-Fahrzeug.pdfCar2005-NREL-Cost Analysis of PEM Fuel Cell.pdf

High temperatureradiator(0.5 m2)

Low temperature radiatorCooling liquid condenser

• Tcoolant : ~80 °C• ~80 kW @ 25 °C• ~50 kW @ 40 °C• Pblower: ~2.5 kW

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 42

Page 43: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Cooling System– DaimlerCrysler – F- Cell

Vehicle at F-Cell Meeting Stuttgart, 2005

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 43

Page 44: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Fuel Cell Busses

www.DLR.de • Chart 44

DaimlerChryslers “Citaro-Bus” based on fuel cell technology.

27 Citaro buses were tested during 2003 to 2005 in 9 European cities.

Stack-Technology from Ballard: Two modules “MK902

Heavy Duty“ with 300 kW. Tank-System

9 CGH2-vessels with 350 bar can store 1845 litre.

operating range 200 to 250 kilometres.

maximum speed approx. 80 kilometres.

Source: Fuel Cell Bus Club 2004

Fuel Cell Bus “Citaro”

> Summer School PEM FUEL CELLS, 2012

Page 45: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Efficiency Advantage of CHP

www.DLR.de • Chart 45

100 68

24 Units

34 Units

6 Units (Losses)

60

40

36 Units (Losses)

= 85%

= 40%

10 Units (Losses)

Conventional Generation (58% Overall Efficiency)

Combined Heat & Power (85% Overall Efficiency)

> Summer School PEM FUEL CELLS, 2012

Page 46: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Fuel Cell Power Plant

Natural gasMethanolCoalOilbiogas

Renewable hydrogen

Hydrogen rich gas

Gleichstrom Wechselstrom

WaterHeat use

* heating* cooling

Fuel Reforming

(Gas processor)

Fuel Cell

(Process heat)

ConverterDC AC= ~

H2-rich Exhaust

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 46

Page 47: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Fuel Cell for stationary applications Increasingefficiency

Evaporation

Sulphurremoval

Conversion toH2 and CO2

Shift reactionH2 and CO2

CO selectiveoxidation

PAFCCO < 5%

PEMFCCO < 10 ppm)

MCFCThermally integrated

Reformer

SOFCThermally integrated

Reformer

Fuel cell types

800°Cto

1000°C

650°C

200°C

80°C

500°C to

800°C300°C

to500°CIncreasing

complexity offuel processing

Source: B.C.H. Steele, Nature ‘99

Liquid fuels

Natural gas

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 47

Page 48: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Reformierung STR / CPOx

CH4 2H2O+ CO24H2 + G>0

CH4 0.5O2+ CO2H2 + G<0

CH4 2O2+ CO22H2O + G<0

CPOx = Catalytic Partial Oxidation

STR = Steam Reforming

Com

bina

tion

of

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 48

Page 49: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Efficiencies in Comparison

1 GW100 kW 100 MW10 MW1 MW10 kW1 kW100 W10 W0

10

20

30

40

50

60

70El

ectr

ical

Effi

cien

cy %

Power Plant Power

SOFC / GUD

SOFC (ET)

SOFC

SOFC (HEXIS)

PAFCPEFC (CH4)

MCFCPEFC (H2)

MCFC (ET)

MCFC / GUD

PAFC (ET)

www.DLR.de • Chart 49 > Summer School PEM FUEL CELLS, 2012

Page 50: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Fuel Cell Technology for Residental Application

- Extension of Cogeneration possibilities below 10 KWel

- „Heating device“ with power generation- New technology with positive associations (low emissions, high

efficiecies)- Modular system with development potential for futher applications and

products

Advantage of fuel cell systems for residental application:- Low emissions- High power to heat ration- High efficiency at part load- Low noise level

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 50

Page 51: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Residental System

Hot waterstorage tank

Fuel cellsystem

Boiler

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 51

Page 52: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Requirements for Fuel Cell Systems in the stationaryapplication

Residential: small power units (1-10 kW)Dynamic response (advantage PEFC fast cold start)Higher power to heat rationTemperature level for heat utilizationLow parasitic energy comsumption (system simplification)durability > 40.000 hLow cost < 1000 €/kWLow level of maintainanceHigh availabilityHigh total efficiencyLow emissions

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 52

Page 53: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Heat to Power Ratio for different Technologies

> Summer School PEM FUEL CELLS, 2012www.DLR.de • Chart 53

Page 54: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Japanese Application and experience

www.DLR.de • Chart 54 54

0

10,000

20,000

30,000

40,000

50,000

60,000

1975

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

照明・家電・他

給湯

冷房

暖房

Ene

rgy

cons

umpt

ion

(MJl

/ fam

ily/ y

ear)

Ratio @ FY2002

38%

34%

26% 2%

Jukankyo Research Institute Inc.

Lighting, etc. Hot water

Heating

Large amount of energy for hot water

Cooling

> Summer School PEM FUEL CELLS, 2012

Page 55: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Residential CHP in Japan

www.DLR.de • Chart 55 > Europeasn Space-Technology-Transfer-Forum“> July 9-10, 2012 55

>Rated power: 1kW class

>Recovered heat used as hot water

Fuel (city gas etc.)

Electricity (grid connected)

Recovered heat

Hot water supplyGeneration unit

Hot water storage unit including backup burner

Page 56: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Residential CHPs in Japan

www.DLR.de • Chart 56

Gas Engine PEFC SOFC

EfficiencyE / H (%LHV)

22.5 / 63 37 / 50 45 / 30

Operation Start & stop Start & stop Continuous

Stage Commercial Limited market entry

Field trialMarket entry 2012

PEFC: Polymer Electrolyte Fuel Cell, SOFC: Solid Oxide Fuel Cell

> Summer School PEM FUEL CELLS, 2012

Page 57: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Market Development in Japan for Residential Fuel Cell Systems

www.DLR.de • Chart 57

0

2000

4000

6000

8000

10000

12000

14000

2005 2006 2007 2008 2009 2010 2011

Year

Uni

ts (d

eliv

ered

) *

field trial / market preparation

subsidized market

* Cummulated from Panasonic and Toshiba numbers

> Summer School PEM FUEL CELLS, 2012

Page 58: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Residential PEFC Cogeneration System from Tokyo Gas

- Fuel CellSystems fromPanasonic andToshiba

www.DLR.de • Chart 58 > Summer School PEM FUEL CELLS, 2012

Page 59: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Data from Tokyo Gas (Panasonic Fuel CellSystems)

www.DLR.de • Chart 59 > Summer School PEM FUEL CELLS, 2012

Page 60: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Data from Tokyo Gas (Panasonic Fuel CellSystems)

www.DLR.de • Chart 60 > Europeasn Space-Technology-Transfer-Forum“> July 9-10, 2012

Page 61: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

CHP in Residential Application in Germany

www.DLR.de • Chart 61

Co-generation ratio

Boiler

Power Plant

Share of electrical Energy

Tota

l Effi

cien

cy

Co-generation + Boiler

Co-generation + Power Plant

Boiler + Power Plant

> Summer School PEM FUEL CELLS, 2012

Page 62: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Field Testing in Germany within the Callux Project

www.DLR.de • Chart 62

Source: Callux

> Summer School PEM FUEL CELLS, 2012

Page 63: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Systems installed in the Field Test

www.DLR.de • Chart 63

SOFC Systems

Source: Callux

> Summer School PEM FUEL CELLS, 2012

Page 64: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

PEM Fuel Cell System

www.DLR.de • Chart 64 > Europeasn Space-Technology-Transfer-Forum“> July 9-10, 2012

Source: Callux

Page 65: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Business Case for Germany / Baxi Innotech

www.DLR.de • Chart 65

Source: Baxi Innotech

> Summer School PEM FUEL CELLS, 2012

Page 66: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

BAXI Innotech Roadmap

www.DLR.de • Chart 66

Source: Baxi Innotech

> Summer School PEM FUEL CELLS, 2012

Page 67: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

BAXI Innotech Roadmap

www.DLR.de • Chart 67

Source: Baxi Innotech

> Summer School PEM FUEL CELLS, 2012

Page 68: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Fuel Cell Technologies – Short Comparison

Low Temperature PEFCExcellent chemical and mechanical stability High proton conductivity :

10-2 - 10-1 S/cm Depending on temperature, degree of

membrane hydration…

Lifetime in FC operation > 60,000 hHigh cost Instability at high temperature - current

membrane technology appropriate for functioning at ≤80°C

High Temperature PEFC PBI is a basic polymer and forms

complexes with acids. Phosphoric acid"doped" membranes. Generally around 6 mol H3PO4/PBI unit (RT doping); ca. 16 (HT doping)

Acid is the electrolyte, polymer a "support" High conductivity at low relative humidity

150 – 200°C Low electroosmotic drag. acid elution possible when liquid water is

formed No cold start capability

www.DLR.de • Chart 68 > Summer School PEM FUEL CELLS, 2012

Page 69: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Fuel Cell Technologies – Membrane Comparison

www.DLR.de • Chart 69

Nafion® - DuPont - perfluorinatedpolymer with perfluorosulfonic acid side groups

Nafion: m ≥ 1; n = 2; x = 5 - 13.5; y = 1000Flemion: m = 0; n = 1 – 5(Asahi Glass)Aciplex: m = 0.3; n = 2 - 5; x = 1.5 – 14(Asahi Chemical)Dow: m = 0; n = 2; x = 3.6 – 10Solvay membrane

(CF2CF2)x(CF2CF)y

(O-CF2CF)m(CF3)O(CF2)nSO3H

N

N N

N

"Celazole" PBI

n

H

H

Polybenzimidazol – high temperature polymer

atmospheric pressure; 0.45 mg Pt/cm2

peak power density 500 mW/cm2CCM: Gore PRIMEA Anode: 0.1 mg Pt /cm² Cathode: 0.4 mg Pt /cm²p H2: 1.5 bara; p Air: 1.5 bara

Summer School PEM FUEL CELLS, 2012

Page 70: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

High Temperature PEFC for micro CHP in the US

www.DLR.de • Chart 70

Source: ClearEdge Power

> Summer School PEM FUEL CELLS, 2012

Page 71: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

High Temperature PEFC for micro CHP in the US

www.DLR.de • Chart 71 > Summer School PEM FUEL CELLS, 2012

Page 72: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

Backup Power Application for Fuel Cell Systems

www.DLR.de • Chart 72

Main Requirement SpecificationNumber of start / stop cycles per year Few cycles

(some for maintenance and auto tests)

Operating hours per year 1 to 100 h

Probability of non start up About 10-3/starts

MTBF Mean Time Between Failure About 10-4/h

MTTR Mean Time To Repair Some hours per action

MDT Mean Down Time Some tens of hours per action

Life time 15 years

> Summer School PEM FUEL CELLS, 2012

Page 73: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

System Design

www.DLR.de • Chart 73 > Summer School PEM FUEL CELLS, 2012

Page 74: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

PEM Fuel Cells: Backup Power Systems

www.DLR.de • Chart 74 > Europeasn Space-Technology-Transfer-Forum“> July 9-10, 2012

Hydrogenics delivers numerous Fuel Cell Power Modules for Backup Power Applications

For e-commerce systems in urban centres this is a promising power backup option

20 minutes

Batteries

1 tank of H2

12 kW

Page 75: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

ARRA Demonstration Program (USA) managed byNREL

www.DLR.de • Chart 75 > Summer School PEM FUEL CELLS, 2012

Page 76: Stationary and Mobile Applications with Fuel Cell Technology · Stationary and Mobile Applications with Fuel Cell Technology K. Andreas Friedrich Institut für Technische Thermodynamik

System Comparison: H2/O2 vs H2/Air PEMFC

- High reliability and availability- External conditions independent- Quick startup at ambient temperature- Clean, quiet and pollution-free

- Electrical performances and power density of H2/O2 systems higherthan H2/Air ones :

- Pure O2 minimizes concentration polarization- H2/O2 allows higher current densities than operation in air- H2/O2 system efficiency higher than H2/Air system- No compressor : O2 and H2 pressures depend on H2/O2 storage

pressures- No gas humidifier

www.DLR.de • Chart 76 > Summer School PEM FUEL CELLS, 2012