Stanford Room Temp Pilot May09

13
Room Temperature Biological Sample Storage Stanford University Pilot Prepared by Gregory D. Jensen, Management Consultant, Sustainable BioVentures May 2009 Land Community Transportation Students Waste Water Buildings Energy

description

room

Transcript of Stanford Room Temp Pilot May09

  • RoomTemperatureBiologicalSampleStorage

    StanfordUniversityPilot

    Preparedby

    GregoryD.Jensen,ManagementConsultant,SustainableBioVentures

    May2009

    LandCommunity Transportation Students WasteWater BuildingsEnergy

  • Page1

    50,000

    100,000

    150,000

    200,000

    250,000

    $(4)$(2)$$2$4$6$8$10$12$14$16$18

    Millions

    BTU

    Millions

    $

    EnergyCons.(Mill.BTU)Savings($)

    FigureA 10YearAccumulatedSavings

    ExecutiveSummary

    StanfordUniversitycouldcutusageofelectricitybyfortymillionkilowatthours(kWh),reduceitscarbonfootprintbyanestimatedeighteenthousandmetrictonsandsave$16milliondollarsinoperatingcostsoverthenexttenyearsbytransferringbiologicalsamplesfromfrozenstoragetoroomtemperaturestoragetechnology.(FigureA)

    Background:Over350laboratoriesandthousandsofresearchersacrossStanfordUniversityareadvancingbiologicalandbiomedicalresearchgeneratinglargecollectionsofbiologicalsamples.Thesesamplesarebothscientificallyandfinanciallyvaluabletotheresearcherandtheuniversity.Oftenirreplaceable,samplecollectionsatStanfordaregrowingatanescalatingrate.Hundredsofscientificfreezersacrosscampusareneededtosafelystorethecurrentsamplecollectionconsuminglargeamountsofenergy,preciousresearchdollars,andvaluablespace.

    Objective:ThepilotstudysetouttoallowadiversegroupofStanfordresearchlaboratoriestotransferbiologicalsamplesfromfreezerstoroomtemperaturestorage.Thestudyalsointendedtoevaluateandgenerateaforecastofenvironmental,financialandadditionalbenefitsofauniversitywideprogramtoimplementthetechnology.

    Methods:StanfordSustainabilityandEnergyManagement(SEM)recentlycommissionedandcompletedapilotprojecttoestimatepotentialbenefitsofroomtemperaturesamplestorageusinganewtechnology.StanfordsuppliedreagentsandmaterialstotwelvepilotlaboratoriesfromtheSchoolofMedicineandBiologyDepartment.Asophisticatedforecastmodelwasdevelopedusinginformationfromapilotgroupoflabs,fourteenadditionallaboratories,otherStanfordspecificdata,andindustrytrendstoestimatethepotentialcampuswidebenefits.

    KeyFindingsandConclusions:

    Anestimatedninetothirteenmillionsamples(representing2025%ofthetotalStanfordsamplecollection)couldbemovedfromfreezerstoroomtemperaturetechnology.

    Theinitialinvestmentintransferringthesesamplescouldberecoveredwithinthreetofiveyearsunderabroadimplementationprogram.

    TheprogramcouldgenerateanestimatedeleventotwentymilliondollarsincostreductionsaswellaspreventseventeentotwentythousandtonsofCO2fromenteringtheenvironment.

    Inadditiontodirectbenefits,transferredsampleswouldbeshieldedfromdegradationduetopowerdisruptions,andthousandsofsquarefeetoflabspacecouldbeliberatedforbetteruse.Benefitsrevealedinthisreportcouldberealizedimmediatelyandcontinuetogeneratesavingsformanyyears.

  • Page2

    $5$10

    $16$21

    $27$34

    $40

    $47

    $54

    $62

    $69

    100,000

    200,000

    300,000

    400,000

    500,000

    600,000

    $

    $20

    $40

    $60

    $80

    Energy

    Con

    sumed

    (M

    illions

    ofB

    TUs)

    Cost

    ofM

    aintaining

    Freezers

    ($M

    illions)

    Accumulatedenergyconsumption(Mill.BTU)

    Figure1 TenYearAccumulatedEnergyandCosttoMaintainFreezer

    RoomTemperatureSampleStoragePilotProjectReport

    StanfordUniversityisarecognizedleaderinsustainability,asacknowledgedbytheSustainableEndowmentsInstituteinits2008CollegeSustainabilityReportCardi.Eventhoughmuchhasbeenachieved,asignificantopportunitytoimprovesustainabilityatStanfordremainsuntappedwithinthefreezersofitsbiologicalandmedicallaboratories.Stanfordhousesnearly2000freezersinmorethan350laboratoriesacrossitscampus.Eachyearthesefreezersconsumeanestimated39,700MillionBTUs(MBTU)ofenergy,generate3,600tonsofcarbondioxide(CO2)andcost$5.6milliontooperate.

    Accordingtocapitalequipmentrecords,theUniversitypurchasesanaverageof40newultralowtemperaturefreezerseachyeartoaccommodategrowthofitsbiologicalsamplecollectionandreplaceagingequipment.iiWhilemaintainingthecurrentsamplecollectionseemsdaunting,industryexpertsanticipatethesamplegenerationratetodoubleinthenexttwoyears,drivenbyanincreasingnumberofsamplesgeneratedbyagrowingnumberofclinicaltrials,newtechnology,personalizedmedicineandstemcellresearch.

    CurrentChallenges

    EnergyUse:Stanfordsfreezercollectionisprojectedtoconsume564,000MBTUandgenerate51,000metrictonsofCO2atanaccumulatedcostof$69Millionduringthenexttenyears.Figure1illustratesthechallengefacingStanfordnowandoverthenexttenyearsduetoitsrelianceoncurrentmethodsofstoringandprotectingitsbiologicalsamples.

    SpaceUtilization:Inadditiontotheescalatingcostandenergydrain,eachfreezeroccupies30squarefeetofvaluablelabspace,whichisputtingpressureonplanningforfuturegrowth.Assumingthecurrent5%peryeargrowthrateforthefreezercollection,Stanfordwouldhavenearly3,000freezersintenyears,whichwouldoccupynearly96,000squarefeetoflabspaceoraboutonefifthofthetotalwetlabspace,notincludingsupportspaceiii.

    AprojectionofthegrowthofStanfordsfreezercollectionbelowinTable1isbasedonahistoricalgrowthrateof5%peryearforultralowfreezers.However,theexpectationsforhiringmedicalschoolfacultyandexpandingcurrentprogramscoulddrivethecurrentandfuturegrowthratesignificantlyhigher.Accordingtoprojections

    StanfordUniversityToday350*Laboratories2000*Freezers610,000SquareFeetWetLabSpace*EstimatebasedonStanforddata

    AnnualSampleStorageImpact40,000MillionBTUs3,600metricTonsofCO2$5,600,000operatingcost

  • Page3

    fromtheofficeofinstitutionalplanning,theSchoolofMedicineplanstohirenearlyonehundrednewresearchfacultyby2014a33%increase.ivInadditiontoanincreaseinfaculty,medicalschoolleadershipanticipatesanincreaseinsamplegenerationratefromresearchersconductinganincreasingnumberofpopulationstudies.

    Freezers 20082013Forecast

    2018Forecast

    UltraLowTempfreezers80C 735 938 1,197

    LowTempFreezers20C 1224* 1,562 1,994

    TotalFreezers 1,959 2,500 3,191

    FreezerFootprint(SQFeet) 58,770 75,007 95,730

    AdditionalFactorsnotIncludedAboveLikelytoexacerbatefreezergrowthfiguressignificantly

    33%growthexpectedinmedicalschoolfacultyby2014 Projectedincreaseinsamplegenerationratesduetonewtechnologyandpopulationstudies Newlabconstructionspacelimitations

    *Estimatednumberof20basedonpilotgroupdata

    Table1PredictedFreezerGrowthatStanford

    TheOpportunity

    GiventhegrowthexpectationsofStanfordsbiologicalsamplecollection,whichincreasinglydemandsmoreenergy,spaceandmoneytomaintain,asustainablealternativeisneededtoslowfreezerdemand.Nonfreezerdependantstoragetechnologiesarealternativestocurrentpracticesthatpromisetoreduceenergyconsumption,spacedemandsandescalatingcostsgeneratedbylaboratoriesstoringsamplesinfrozenenvironments.

    StanfordUniversityPilotStudyObjective

    TheobjectiveofthispilotstudywastoevaluatethepotentialofroomtemperaturestoragetosaveenergyandreducecarbonfootprintbyallowingStanfordsresearcherstosafelystorebiologicalsampleswithouttheneedoffreezers.

    WhileroomtemperaturetechnologyhasthepotentialtohelpreduceStanfordsdependencyonfrozenstorage,thishypothesisneededtobeproven.Tothisend,theDepartmentofStanfordSustainabilityandEnergyManagement(SEM)initiatedapilotstudyofanewtechnologyduringthefallof2008.

    RoomTemperatureSampleStorageTechnology

    Thenewtechnologyevaluatedinthisstudyenablessafestorageofbiologicalmaterialatroomtemperature.Thetechnologypreventsthedegradationofbiologicalmaterialsatroomtemperature,eliminatingtheneedforcoldstorageandcoldshipping.Biomolecules,suchasDNA,RNAandbacteriacanbestabilizedatambienttemperaturesprovidingacosteffectivealternativetostoringsamplesinfreezersandcoldshipping.

    ThetechnologyisbasedonextremophilebiologyoriginallyidentifiedbyDr.JohnCrowe,ProfessorEmeritusUCDavis.vUsingextremophilebiology,organismssuchastardigradesandbrineshrimpareabletoprotecttheir

  • Page4

    DNA,RNA,proteins,membranesandcellularsystemsforlongtermsurvivalinadriedstateoranhydrobiosis(lifewithoutwater)andlaterrevivebysimplerehydration.Thistechnologymimicsthenaturalmolecularmechanismsusedbytheseorganisms.Thetechnologyworksbyformingathermostablebarrierduringthedryingprocesstoprotectsamplesfromdegradationduringstorageatroomtemperature(Figure2and3).

    TheproductsevaluatedinthispilotprovidelongtermstorageofpurifiedDNAandRNAsamples.Thetechnologycaneasilyaccommodateavarietyofstoragecontainers,therebyfacilitatingefficientsampletransferfromexistingcollectionsorthecreationofnewones.

    PilotGroupLaboratorySelection

    ResearchersrespondedenthusiasticallytotheinvitationtoparticipateinthepilotstudyfromtheStanfordDeanofBiologyandSr.AssociateDeanofResearchintheStanfordSchoolofMedicine.Thepilotgroupwasestablishedwithintwoweeks,andmanyadditionalinterestedlaboratoriesappliedtoparticipate.

    TwelvelaboratorieswithavarietyofresearchfocusareaswereselectedfromStanfordsSchoolofMedicineandBiologyDepartment.Adiversesetoflaboratoriesinthepilotgroupprovidedinsightintotheapplicabilityoftheroomtemperaturetechnologywithinavarietyoflaboratorysettings.Inaddition,thegroup,whilenotarandomsample,doesprovideareasonableproxyformakingpredictionsaboutthebroaderpopulationoflaboratoriesatStanford.Labsbeyondthecorepilotgroupprovidedinformationaboutsamplecollectionsandlabequipmentincreasingtheamountofknowndatatoimproveforecastaccuracy.

    Figure2Structuralpredictionofbiostabilitymatrixinteractingwithnucleicacids

    Figure3 Electronmicrographofprotectivethermostablebarrier

  • Page5

    PilotParticipationGroup

    Thepilotgroupincludeslaboratoriesfromtendifferentdepartments,amicroarraycorecancerfacility,apediatricpsychiatryclinicallab,onetissuebankandoneplantbiologylaboratory.Alllaboratorieshavecommonsamplerequirementsofbiologicalresearchlaboratorieswithmolecularorcellularfocus(Table2).

    LaboratoryDescription MedicalSchool Biology

    Morethan100,000addressablesamples(Corefacilityandlargegenomiclab)

    1 1

    1,000to10,000addressablesamples 4 Lessthan1,000samples 6

    Totalsampletransferlaboratories 11 1

    Laboratoriesonwaitinglist(samplecollectiondataonly) 13 1

    Totallaboratories 26

    Participantsprovidedextensiveinformationabouttheirsamplecollections,includingsampleformatsandtypes,freezerstoragetemperature,samplegenerationrates,andthenumberoffreezersusedtocontaineachsamplecollection.Thedatafromthelabsprovideddetailaboutthesamplesstoredineachlabincludingthenumberofcandidatesamplesandprovidedbetterunderstandingofsamplemanagementpractices.

    DataAnalysisandMethodology

    Nearlyonemillioncandidatesampleswerediscoveredinthefreezersofparticipatinglabsinthepilotgroup.Basedontheirsamplecollection,eachpilotparticipantreceivedroomtemperaturestoragetechnologyreagents,storagecabinetsandsampletrackingsoftware..Thesematerialsfacilitatedthetransferofnearlyseventythousandsamplesoutoftheonemillionaddressablesamplesdiscoveredinthepilotgroup.Samplecollectionsoftwentysixlaboratorieswereassessed.

    Aninteractiveanalysistoolwascreatedusingaspreadsheetprogram,toprovideanaccuratemodelofthecostsoffrozenstorageperbiologicalsample.Themodelwasdesignedtoaccountforvarioussamplestorageformats,samplelocations,laborrequirements,maintenancerequirementsandnumerousotherparameters.AllassumptionswereverifiedbyreliableindustrysourcesandvalidatedthroughextensiveinterviewsofStanfordpersonnelinutilities,facilitymanagementgroup,purchasingandtheSchoolofMedicine.Assumptionswerefurthersupportedthroughactualdatagainedfromdetailedsurveyresponsesfromthepilotgroup.Energyandcostsavingsdatafromthepilotgroupwerecalculatedtoprovidethebasistoforecastthecampuswidesamplecollection.Finally,theprojectionsinthemodelallowedinputofvariousgrowthratestoenablegenerationofconservative,moderateandaggressivescenarios.

    Thepilotdataprovidedthebasisforusingthemodeltomakeaconservativeestimateofthetotalnumberofaddressablesamplesoncampus.Theprojectionishighlyinfluencedbythepredicteddistributionofsample

    Table2PilotParticipantGroup

    PilotGroup Results

    NumberofaddressableSamples 923,000(DNAandRNA)

    NumberofFreezers 34UltraLow(70C80C)

    59LowTemperature(20C)

    Table3 PilotSurveyData

  • Page6

    containerformatandwasguidedbythepilotgroupsamplecollection.Usingthepilotgroupdataanddistributionofsamplecontainerformat,apredictionofbetweenninetothirteenmillionaddressablesampleswasgenerated.Thecontainerformatofthesesamplesisclassifiedintofourcategoriesbasedonthefourmostcommoncontainervolumesfoundinresearch.ThedistributionassumptionsusedinthemodelarelistedinTable4.

    ContainerFormatTemperature

    HighDensity MediumHigh MediumLow LowDensity

    UltraLow(80) 4% 6% 57% 0%

    Low(20C) 4% 6% 23% 0%

    EnergyConsumptionPerSample LowHigh

    Table4CampuswideProjectionofContainerFormatDistribution

    Highdensitysamplecontainersoccupysmallervolumespersampleandthereforeconsumelessenergypersamplevolumethanlowdensitycontainerformats.Themodelwasdesignedtoallocateenergyconsumptionofasamplebyformat;thereforecarefulconsiderationhadtobegiventotheformatdistributionofthepilotgroup.Thedistributionpercentagesofthepilotgroupguidedareasonabledistributionforthepredictednumberofsamplesoncampus.EvidencethatthepercentagesinTable3areconservativewasprovidedbyapreviousfreezerstudyconductedintheSchoolofMedicinein2007,whichfoundthatnearly90%ofsamplesinultralowtemperaturefreezerswereinmediumlowcategory.viIfthepercentageofsamplesatlowerdensityiscloserto90%,thenthepotentialsavingsforStanfordcouldincreasedramaticallyduetotheenergyrequiredtostoreagreaternumberoflowerdensitysamples.

    Animportantbenefittononfrozenstorageisthefreedomtostoresamplesathigherdensitythaninthefrozenenvironment,whichcangenerateevengreatersavings.Withinthefrozenenvironment,samplesareoftenstoredinindividualtubes,whicharetypicallymuchmorecostlyandlessefficientthanstoringmultiplesamplesinahigherdensityplatetypeformat.Researchersfavorthislessefficientenergyformatbecausetheytrytolimitthenumberoffreezethawcyclesforeachsample.Whensamplesarestoredinahigherdensityformatsuchasaninetysixwellplateforexample,theotherninetyfivesamplesarethawedwhenaresearcherneedstouseonlyonesample.Therefore,mostresearchlaboratoriesfavorindividualtubesforfrozenstorage.However,samplesstoredinambienttemperaturecanbeindividuallyaccessedwithoutanyeffecttoneighboringsampleswithinasinglestorageplate.Movingindividualtubesamplesoutoffrozenstoragetoroomtemperatureinahigherdensityformatthereforeincreasestheamountofsavingsgained.

    Sinceprojectionsinthemodelrelyheavilyuponthecontainerformatsofsamplesinthepilotgroupandmanyofthesamplesinthepilotgrouptendedtostoreinhighdensitycontainers,thentheprojectedsavingsgainedbyacampuswideprogrammaybeunderstated.Therefore,aprogramthattakesadvantageofthefreedomthatroomtemperaturestorageprovidesresearcherstostoresamplesinhigherdensitycontainerformatscouldrealizeevengreatersavings.

  • Page7

    5

    10

    15

    20

    25

    30

    35

    40

    45

    $

    $1

    $2

    $3

    $4

    $5

    Millions

    kWh

    Millions

    $

    Electricity(kWh)

    Table5CampuswidePotential

    Figure4 AccumulatedElectricitySavings

    Cost,SavingsandResults

    Accordingtomodelcalculations,transferringtheaddressablesamplesinthepilotgroupalonewouldsaveStanfordanestimated108MillionBTUofenergy,reduceCO2emissionsbyeleventonsandsavenearly$17,000everyyearbyreducingcapitalequipmentandoperationalcostsforsixfreezers.

    Thepilotgroupalsoprovidedinsightintothepotentialmagnitudeofthesavingsinenergy,CO2emissionsandoperatingcoststhatcouldbebroughtaboutbymovingsamplesoutoffrozenstorageonacampuswidescale.Extensiveinterviewsofpilotparticipantsprovidedthedatafoundationtoestimatethenumberofcandidatesamplesstoredacrosscampus.Stanfordpersonnelprovidedcapitalequipmentcounts,costs,purchaseinformationandtrends,researchfacultynumbersandwetlabsquarefootagetovalidateourestimatesandmakeaccuratepredictionsaboutfuturegrowth.

    Basedonthecalculationswithintheforecastmodel,Stanfordresearchlaboratoriescurrentlycontainbetweennineandthirteenmillionsamplesthatcouldbetransferredtoroomtemperaturestorage.TransferringthiscollectioncouldsavemorethantwomillionkWhofelectricity,nearlyfourhundredthousandtonhrofchilledwaterneededtocoolspace,andreducethecarbonfootprintbyasmuchaselevenhundredmetrictonsofCO2annually(Table5).

    Thevaluebecomesevenmoreevidentovertenyears.Usingaconservativeannualsamplegrowthrateof10%,StanfordcouldreduceestimatedfortymillionkWhandnearlysevenmilliontonhrsofchilledwaterbyplacingcurrentandnewlygeneratedbiologicalsamplesintoroomtemperaturestorage(Figure4and5).

    StanfordCampuswidePotentialAddressableSamples913millionCO2 9001100MetricT/yearElectricity 2.02.4millionkWh/yearChilledWater 340400thousandThr/year(spacecooling)

    Totalenergy 1012thousandMBTU/yearCostsavings $1.21.4million/year

  • Page8

    50,000

    100,000

    150,000

    200,000

    250,000

    $(4)

    $(2)

    $

    $2

    $4

    $6

    $8

    $10

    $12

    $14

    $16

    $18

    Millions

    BTU

    Millions

    $ EnergyCons.(Mill.BTU)Savings($)

    1

    2

    3

    4

    5

    6

    7

    8

    $(0)

    $1

    $2

    $3

    $4

    Millions

    Thr

    Millions

    $

    ChilledWater(Thr)

    Savings($)

    ThispotentialenergyreductionwouldreducetheUniversityscarbonfootprintbyanestimatedfifteenthousandmetrictonsoverthesameperiod.Savingsofthismagnitudecouldhelpslowtheescalatingenergyandspacedemandchallengesofmaintainingthecurrentfreezerbasedsystem.

    Inadditiontothesignificantenvironmentalbenefits,shiftingsamplestoroomtemperaturedramaticallyreducescosts.Thesamplesthatcouldbetransferredtoroomtemperaturestoragetoday,alongwiththesamplesprojectedtobegeneratedbyresearchoverthenextdecade(assuminga10%peryearsamplegenerationrate),wouldcostoverthirtymilliondollarstomaintaininfreezers.Usingroomtemperaturesamplestorage,Stanfordcouldrealizeanetsavingsofmorethansixteenmilliondollarsoverthenextdecadeandrecoveritsinitialinvestmentwithinthreetofiveyears(Figures6).Greatersavingsandfreezerreductioncouldberealizedasnewproductsbecomeavailableforstoringblood,serum,andproteinsamples.

    Theprojectedsavingsfallintoseveralcategories(Figure7).Energysavingsfromelectricityandchilledwateraccountfornearly27%ofthetotal.Capitalequipmentandmaintenanceaccountfor40%oftheprojectedsavings,and28%ofthesavingsisgeneratedfromreclaimingthespaceoccupiedbyeachfreezer.Spacecostsareinternallyallocated,andcostpersquarefootisdeterminedbyaninternalchargeoutrate.Toavoidthepossibilityofoverstatingenergysavings,allelectricityandchilledwatercostsnormallyallocatedtowetlabspaceatStanfordarenotincludedinthespacecostpersquarefootusedinthesavingsprojection.Totalsavingsremainsignificantatnearlyonemilliondollarsannuallyandclosetoelevenmilliondollarsovertenyearseven

    Figure5 AccumulatedChilledWaterSavings

    Figure6 TotalAccumulatedEnergyandCostSavings

  • Page9

    Electricity19%

    ChilledWater8%

    Space28%

    CapitalEquip.&Maint.40%

    Other5%

    whenspacesavingsareexcludedaltogether.Further,theperiodrequiredtorecovertheinitialinvestmentintransferringsamplesonlylengthensbyoneyearwhenspaceisnotgivenamonetaryvalue.Whilespacechargesareaninternaltransfer,thevalueofspaceisanimportantconsideration,particularlywithcostofnewconstructionand,asstatedpreviously,thenumberoffacultyisexpectedtoincreasealongwiththepaceofsamplegeneration.

    AdditionalBenefitReducingSampleRisk

    BeyondthesignificantamountofspaceallocatedanddespitethehugeinvestmentStanfordmakeseveryyeartokeepbiologicalsamplesinafrozenenvironments,thesamplesthemselvesarecurrentlyatrisk.TheStanfordcollectionisvulnerabletocatastrophiceventssuchasearthquakes,firesandsevereweatheraswellasmoremundaneequipmentfailureandaccidents.Equipmentfailuresaresocommonthatinvestigatorsanddepartmentspurchaseexcessfreezercapacitytoaccommodateregulardisruptions.

    Samplelossisnotonlyasetbacktoscience,butalsoamonetarylosstotheuniversity.Evenbeforeanyresearchisperformedbyscientists,clinicalsamplesneedtobeacquiredandtheacquisitioncostcanbesignificant.Clinicalsampleacquisitioncostsrangefrom$1,000persampleandcanreachashighas$10,000forsampleswithspecializedselectioncriteria.viiOncesamplesareacquiredandresearchcommences,theirvalueincreasesovertimeasnewanalysistechnologiesaredevelopedanddiscoveriesaremadeinaparticulardiseasearea.viiiBeyondtheenergyandcostsavings,movingvaluablesamplestoroomtemperaturewillhelpreducetheriskofsamplelossduetocatastrophiceventsandotherthreats.Usingcostsfromclinicalresearcherexperienceandanestimateofthenumberofclinicalsamplesofvarioustypes,theapproximatevalueoftheStanfordsamplecollectionbasedonthesampleacquisitioncostscouldbenearlythreebilliondollars(Table5).

    Table5 EstimatedValueofStanfordSampleCollection

    Valuepersample %ofcollection collectionvalue

    $2,50010,000 1% $1.21Billion

    $5002,500 9% $0.56Billion

    $100500 40% $0.79Billion

    $0100 50% $0.26Billion

    Total 100% $2.82Billion

    Figure7 CostSavingsbyCategory

  • Page10

    Summary

    AnalysisoftheStanfordsamplecollectionthroughthepilotstudyrevealedthesubstantialamountofenergyandexpenserequiredtoprotectStanfordscurrentbiologicalsamplecollectionfromdegradationusing

    freezers.Onacampuswidescaletheuniversitywillspend$68millionoverthenextdecadetomaintainand

    addtoitsfreezercollectiontoprotectvaluablesamples,notincludingcoststobuildfreezerfarms.

    ImplementationofroomtemperaturestorageacrosstheStanfordcampuscouldnotonlyreduceenergyconsumptionandgreenhousegasemissions,butalsosavemoney,conservevaluablelabspaceandreduce

    disasterriskofthecurrentsamplecollection.

    Benefitscouldbegintoaccrueimmediatelyascomparedtoprojectswithlongconstructiontimelinesthatneedtooccurbeforeasinglekilowatthourissaved.

    Themagnitudeofcostsavingsisdependentontherateofadoption,aswellastheanticipatedsamplegenerationgrowthrate.

    Inaddition,integrationofroomtemperaturestoragetechnologiesintocurrentresearchworkflowscouldreduceexpenseandriskofcoldtransportation.Itcouldalsoprovideacosteffectivesolutionforoffsite

    backuptofurtherprotectvaluablesamplecollections.

    RecommendationsforImplementation

    Thebenefitsofroomtemperaturestoragearesignificant,andcapturingthemwillrequireacareful,wellthoughtoutstrategytoincreaseadoptionandremoveanyobstacles.Thepilotstudyandparticipatinglaboratoriesprovidedvaluableinsightsintothepotentialadoptionofabroadprogramaswellasobstaclesthatwouldneedtobeaddressedforsuccessfulimplementation.ManyofthemostimportantobservationsfromthepilottoguidethedesignanddevelopmentofanimplementationplanaredocumentedinTable6.

    Observations CriticalSuccessFactors

    Enthusiasticresponsefromresearchers Interestinsustainablestoragealternativesatalllevels

    Labsareslowtotransfersamples Laborsupportneededforsuccessfulimplementation

    Perceptionbyprincipalinvestigatorsthatenergyandcostsavingsbenefitthedepartment,notthelab

    Needtoproperlyincentivizelabstosupportsampletransfer

    Valueofsamplesishighandimportant Samplesareirreplaceablevalueisveryimportantandmuchhigherthanthecostofstorage

    LargenumbersofDNAandRNAhousedatultralowtemperature

    Manysamplesoncampuseligibleforroomtemperaturestorage

    Frozenenvironmentsarehardtoworkin;locatingsamplesdifficult,frequentthawsputsamplesatrisk

    Roomtemperaturestorageimprovesproductivityandflexibilityintheworkenvironment

    Table6Pilotobservationsandconclusions

  • Page11

    TranslatingthepilotstudytoasuccessfulprogramwillrequireastrongcommitmentfromleadershipwithintheSchoolofMedicineandBiologyDepartmentaswellasasupportfromtheSustainabilityandEnergyManagementGroup.

    NextSteps

    Conductdetailedsurveyoflaboratorysamplecollectionsoncampus CollaboratewiththeSchoolofMedicineandBiologyDepartmenttoalignincentivesaswellasestablish

    politicalsupportwithintheorganization

    Understandhowsampletransfercanbetranslatedintofreezerpurchasereductionorshutoff Createappropriateincentivesfordepartments,principalinvestigatorsandindividualresearchersto

    motivateadoption

    Developprogramwithlargerservicelaboratoriesorcorefacilitiestofacilitateandsupportconsistentsampletransferandmanagement

    Includeformalizedprocessfororganizationalchangetotakeadvantageofeasysampletransferandeducationopportunitiessuchasretiringprofessors,newhires,andpostdoctoralandPhDturnover

    Provideconsistentinformationaroundprogramincentivesandbenefits,publishsuccessandestablishfeedbackmechanisms

    IdentifyamanagerandstafftodevelopimplementationplanforlargescalesampletransferStudyScopeandLimitationsTheforecastinthisstudyprovidesanestimateofStanfordsbiologicalsamplecollectionbasedondataobtainedfromasubsetoftheentirepopulation.Whilethenumberofpilotlabsissufficienttoprovideanaccuratepredictionofthebenefitsandcostsofaroomtemperatureprogramtheydonotprovideastatisticalrandomsampleandaresubjecttoselectionbias.ThegroupisintendedtoprovideadiversesamplewhichcouldrepresenttheStanfordpopulationofresearchlaboratories.

    Manyoftheassumptionsinthispredictionarebasedonconservativeassumptionsandthereforemayunderestimatethesavingspotentialofaroomtemperatureprogram.Studyresultsarebasedoncurrentlyavailabletechnologyandshouldbeupdatedasnewtechnologyenablesagreaternumberofsampletypestobestoredatroomtemperature.

    Otherroomtemperaturestoragetechnologiesdoexist;however,thescopeofthispilotdidnotincludeevaluationoftheseproducts.Inordertoaccuratelyforecastthebenefitsofothertechnologies,additionalproductspecificinformationwouldbeneeded,includingtransferprotocolsandlabortime,productcosts,supportingequipmentcosts,storagesampleformatsandaddressablesampletypes.Duringthepilotstudymanybenefitswereuncoveredinadditiontothosegeneratedbymovingsamplesoutoffreezerswhichcouldbestudiedingreaterdepthtoquantifythesebenefitsingreatermeasure.

    InformationInquiriesForfurtherinformationregardingthisstudypleasecontactGregJensenatjensen_greg@[email protected].

  • Page12

    AcknowledgementsThisreportisthecompilationofinsightsandexpertiseofmanypeopleincludingthoselistedbelow.InadditiontotheseindividualsseveralorganizationscontributedtotheinformationinthisreportincludingStanfordUniversitySchoolofMedicine,StanfordMapsandRecords,StanfordProcurement,andStanfordSustainabilityandEnergyManagement.ProjectLeadGregJensen,ManagementConsultant,SustainableBioVenturesStanfordSustainabilityandEnergyManagementSusanKulakowski,DemandSideEnergyManager,SustainabilityandEnergyManagement(StanfordLead)MikeGoff,DirectorofUtilities,SustainabilityandenergyManagementJoeStagner,ExecutiveDirector,SustainabilityandEnergyManagementStanfordSchoolofMedicineDr.DariaMochlyRosen,SeniorAssociateDeanforResearchJuliaTussing,AssociateDeanforEducationalPrograms&ServicesCathyBooth,LaboratoryManagementTimGadus,Space&AssetsManagerDonRust,HealthandSafetySpecialistJohnColler,StanfordFunctionalGenomicsFacilitySpecialthankstoJaimePerena,DataAnalysisExpert,SustainableBioVenturesforhisexpertiseandadvicedevelopingtheforecastmodeltoanalyzeandcharacterizetheeconomic,energyandenvironmentalbenefitsofroomtemperaturestoragetechnology.iStanfordPressRelease,September24,2008,Stanfordscoreshighforsustainabilityinnationalstudy,http://newsservice.stanford.edu/pr/2008/prcard092408.htmliiCathyBooth,LaboratoryManagement,MolecularandCellularPhysiologyDepartmentStanfordUniversityiiiTimGadus,SpaceandFacilities,StanfordSchoolofMedicineivDavidObrien,OfficeofInstitutionalPlanning,StanfordSchoolofMedicinevCroweJH,etal.,(1999).Ann.Rev.Physiol.1998;60:73103viDonRust,HealthandSafetyManagement,StanfordSchoolofMedicineviiPersonalconversation,Dr.JoachimHallmayer,PediatricPsychiatry,StanfordSchoolofMedicine,December12,2008viiiPersonalconversation,Dr.DavidHirschberg,DirectorHumanImmuneMonitoringCenter,StanfordSchoolofMedicine,December16,2008