Sheet 6: Operational Amplifiers Compensation, Analysis and ...

22
The German University in Cairo Electronics Dept., Faculty of IET Course: Microelectronics (ELCT 703) Dr. Eman Azab Semester: 7th Electronics Eng. Radwa Khairy Winter 2019 Sheet 6: Operational Amplifiers Compensation, Analysis and Design Problem 1: A two-stage, Miller-compensated CMOS op amp has a RHP zero at 20GB, a dominant pole due to the Miller compensation, a second pole at p2 and a mirror pole(due to current mirror parasitic capacitance) at -3GB. a) If GB is 1MHz, find the location of p2 corresponding to a 45ยฐ phase margin. b) Assume that in part (a) that |p2| = 2GB and a nulling resistor is used to cancel p2. What is the new phase margin assuming that GB = 1MHz? c) Using the conditions of (b), what is the phase margin if CL is increased by a factor of 4? Given: = ; ; ; = โˆ’ Solution: a) () = (1 โˆ’ ) (1 + ) (1 + ) (1 + ) โˆต = 180 + โ„Ž( ()) = 180 โˆ’ tan โˆ’1 ( ) โˆ’ tan โˆ’1 ( ) โˆ’ tan โˆ’1 ( ) โˆ’ tan โˆ’1 ( ) = 180 โˆ’ tan โˆ’1 ( ) โˆ’ tan โˆ’1 ( ) โˆ’ tan โˆ’1 ( ) โˆ’ tan โˆ’1 ( ) โˆด = 180 โˆ’ 2.862 โˆ’ 90 โˆ’ tan โˆ’1 ( ) โˆ’ 18.435 โˆต = 45

Transcript of Sheet 6: Operational Amplifiers Compensation, Analysis and ...

Page 1: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

The German University in Cairo

Electronics Dept., Faculty of IET

Course: Microelectronics (ELCT 703)

Dr. Eman Azab Semester: 7th Electronics

Eng. Radwa Khairy Winter 2019

Sheet 6: Operational Amplifiers Compensation, Analysis and Design

Problem 1: A two-stage, Miller-compensated CMOS op amp has a RHP zero at 20GB, a dominant pole

due to the Miller compensation, a second pole at p2 and a mirror pole(due to current mirror

parasitic capacitance) at -3GB.

a) If GB is 1MHz, find the location of p2 corresponding to a 45ยฐ phase margin.

b) Assume that in part (a) that |p2| = 2GB and a nulling resistor is used to cancel p2.

What is the new phase margin assuming that GB = 1MHz?

c) Using the conditions of (b), what is the phase margin if CL is increased by a factor of

4?

Given: ๐’˜๐’› = ๐Ÿ๐ŸŽ๐‘ฎ๐‘ฉ ; ๐’˜๐’‘๐Ÿ ; ๐’˜๐’‘๐Ÿ ; ๐’˜๐’‘๐’Ž = โˆ’๐Ÿ‘๐‘ฎ๐‘ฉ

Solution:

a)

๐ด๐‘ฃ(๐‘ ) =๐ด๐‘ฃ๐‘œ (1 โˆ’

๐‘ ๐’˜๐’›

)

(1 +๐‘ 

๐’˜๐’‘๐Ÿ) (1 +

๐‘ ๐’˜๐’‘๐Ÿ

) (1 +๐‘ 

๐’˜๐’‘๐’Ž)

โˆต ๐œ‘๐‘š = 180๐‘œ + ๐‘โ„Ž๐‘Ž๐‘ ๐‘’(๐ด๐‘ฃ(๐บ๐ต))

๐œ‘๐‘š = 180๐‘œ โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’›

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐’Ž

)

๐œ‘๐‘š = 180๐‘œ โˆ’ tanโˆ’1 (๐บ๐ต

๐Ÿ๐ŸŽ๐‘ฎ๐‘ฉ) โˆ’ tanโˆ’1(๐ด๐‘ฃ๐‘œ) โˆ’ tanโˆ’1 (

๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ tanโˆ’1 (๐บ๐ต

๐Ÿ‘๐‘ฎ๐‘ฉ)

โˆด ๐œ‘๐‘š = 180๐‘œ โˆ’ 2.862๐‘œ โˆ’ 90๐‘œ โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ 18.435๐‘œ

โˆต ๐œ‘๐‘š = 45๐‘œ

Page 2: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

2

โˆด tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) = 23.703๐‘œ

โˆด๐บ๐ต

๐’˜๐’‘๐Ÿ

= 0.439

โˆด ๐’˜๐’‘๐Ÿ = 2.278๐บ๐ต

โˆด ๐’˜๐’‘๐Ÿ =1 ร— 106 ร— 2 ร— ๐œ‹

0.439= 14.312 ๐‘€๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

b) Nulling resistor is used to cancel P2

โˆด ๐ด๐‘ฃ(๐‘ ) =๐ด๐‘ฃ๐‘œ

(1 +๐‘ 

๐’˜๐’‘๐Ÿ) (1 +

๐‘ ๐’˜๐’‘๐’Ž

)

๐œ‘๐‘š = 180๐‘œ โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐’Ž

)

๐œ‘๐‘š = 180๐‘œ โˆ’ tanโˆ’1(๐ด๐‘ฃ๐‘œ) โˆ’ tanโˆ’1 (๐บ๐ต

๐Ÿ‘๐‘ฎ๐‘ฉ)

๐œ‘๐‘š = 71.565๐‘œ

c) If we increased load capacitor by factor 4

โˆต ๐’˜๐’‘๐Ÿ =๐‘”๐‘š6

๐ถ๐ฟ

This means that ๐’˜๐’‘๐Ÿ will be decreased by factor 4

โˆด ๐’˜๐’‘๐Ÿ =2๐บ๐ต

4= 0.5๐บ๐ต

Page 3: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

3

The zero is located at P2 in part B

โˆด ๐‘ค๐‘ง = โˆ’2๐บ๐ต

โˆด ๐ด๐‘ฃ(๐‘ ) =๐ด๐‘ฃ๐‘œ (1 +

๐‘ ๐’˜๐’›

)

(1 +๐‘ 

๐’˜๐’‘๐Ÿ) (1 +

๐‘ ๐’˜๐’‘๐Ÿ

) (1 +๐‘ 

๐’˜๐’‘๐’Ž)

๐œ‘๐‘š = 180๐‘œ + tanโˆ’1 (๐บ๐ต

๐’˜๐’›

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐Ÿ

) โˆ’ tanโˆ’1 (๐บ๐ต

๐’˜๐’‘๐’Ž

)

๐œ‘๐‘š = 180๐‘œ + tanโˆ’1 (๐บ๐ต

๐Ÿ๐‘ฎ๐‘ฉ) โˆ’ tanโˆ’1(๐ด๐‘ฃ๐‘œ) โˆ’ tanโˆ’1 (

๐บ๐ต

๐ŸŽ. ๐Ÿ“๐‘ฎ๐‘ฉ) โˆ’ tanโˆ’1 (

๐บ๐ต

๐Ÿ‘๐‘ฎ๐‘ฉ)

๐œ‘๐‘š = 34.4๐‘œ

Page 4: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

4

Problem 2:

For the two-stage op amp of Fig.1, find W1/L1, W6/L6, and Cc if GB 1 MHz, p25 GB, z

3 GB and CL 40 pF. Use the parameter values of Table1 and consider only the two-pole

model of the op amp. The bias current in M5 is 40ฮผA and in M7 is 320ฮผA.

Given:

GB 1 MHz;p25 GB, z 3 GB and CL 40 pF. Use the parameter values of

Table1 and consider only the two-pole model of the op amp. The bias current in

M5 is 40ฮผA and in M7 is 320ฮผA,๐œ‡๐‘›๐ถ๐‘œ๐‘ฅ = 110๐œ‡๐ด/๐‘‰2, ๐œ‡๐‘๐ถ๐‘œ๐‘ฅ = 50๐œ‡๐ด/๐‘‰2

๐‘‰๐‘‡๐‘› = โˆ’๐‘‰๐‘‡๐‘ = 0.7๐‘‰, ๐œ†๐‘› = 0.04 ๐‘‰โˆ’1, ๐œ†๐‘ = 0.05 ๐‘‰โˆ’1

Page 5: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

5

Solution:

โˆต ๐’˜๐’‘๐Ÿ =๐‘”๐‘š6

๐ถ๐ฟ

โˆด ๐‘”๐‘š6 = 2 ร— ๐œ‹ ร— 5 ร— 106 ร— 40 ร— 10โˆ’12 = 1.257 ๐‘š๐ด/๐‘‰

โˆต ๐‘”๐‘š6 = โˆš2๐พ6๐ผ๐ท6

๐ผ๐ท6 = ๐ผ๐ท7 = 320 ๐œ‡๐ด

โˆต ๐พ6 =๐‘”๐‘š6

2

2๐ผ๐ท6= 2.469 ๐‘š๐ด/๐‘‰2

๐พ6 =๐œ‡๐‘๐ถ๐‘œ๐‘ฅ๐‘Š

๐ฟ

(๐‘Š

๐ฟ)

6=

๐พ6

๐œ‡๐‘๐ถ๐‘œ๐‘ฅ= 49.38 โ‰… 50

โˆต ๐‘ค๐‘ง =๐‘”๐‘š6

๐ถ๐ถ

โˆด ๐ถ๐ถ =๐‘”๐‘š6

๐‘ค๐‘ง=

1.257๐‘š

2 ร— ๐œ‹ ร— 3 ร— 1 ร— 106= 66.69 ๐‘ƒ๐น

โˆต ๐บ๐ต =๐‘”๐‘š1

๐ถ๐ถ

โˆด ๐‘”๐‘š1 = ๐บ๐ต ร— ๐ถ๐ถ = 2 ร— ๐œ‹ ร— 1 ร— 106 ร— 66.69 ร— 10โˆ’12 = 0.419 ๐‘š๐ด/๐‘‰

โˆต ๐‘”๐‘š1 = โˆš2๐พ1๐ผ๐ท1

๐ผ๐ท1 =๐ผ๐ท5

2= 20 ๐œ‡๐ด

โˆต ๐พ1 =๐‘”๐‘š1

2

2๐ผ๐ท1= 4.389 ๐‘š๐ด/๐‘‰2

๐พ1 =๐œ‡๐‘›๐ถ๐‘œ๐‘ฅ๐‘Š

๐ฟ

(๐‘Š

๐ฟ)

1=

๐พ1

๐œ‡๐‘›๐ถ๐‘œ๐‘ฅ= 39.9 โ‰… 40

Page 6: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

6

Problem 3:

For the CMOS op amp shown, find the following quantities. Use the MOS parameters of

Table1.

1.) Slew rate (V/sec.)

2.) Positive and negative output voltage limits (all transistors remain in saturation)

3.) Positive and negative input common voltage limits (all transistors remain in

saturation)

4.) Small signal voltage gain (V/V).

5.) Unity-gain bandwidth (MHz)

6.) Power dissipation (mW). (Include the 50_A current sink)

Solution:

1.

๐‘†๐‘… =๐ผ๐ท5

๐ถ๐‘=

50๐œ‡

5๐‘ƒ= 10 ๐‘‰/๐œ‡๐‘ ๐‘’๐‘

2. The maximum output voltage when M7 is still operating in saturation

mode

๐‘‰๐‘œ๐‘ข๐‘ก,๐‘š๐‘Ž๐‘ฅ = ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘†๐ท7,๐‘ ๐‘Ž๐‘ก = ๐‘‰๐ท๐ท โˆ’ โˆš2๐ผ๐ท7

๐พ7

Page 7: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

7

๐‘‰๐‘œ๐‘ข๐‘ก,๐‘š๐‘Ž๐‘ฅ = 2.5 โˆ’ โˆš2 ร— 250๐œ‡

50๐œ‡ ร— 50= 2.0527 ๐‘‰

The minimum output voltage when M6 is still operating in saturation mode

๐‘‰๐‘œ๐‘ข๐‘ก,๐‘š๐‘–๐‘› = ๐‘‰๐‘†๐‘† + ๐‘‰๐ท๐‘†6,๐‘ ๐‘Ž๐‘ก = ๐‘‰๐‘†๐‘† + โˆš2๐ผ๐ท6

๐พ6

๐‘‰๐‘œ๐‘ข๐‘ก,๐‘š๐‘–๐‘› = โˆ’2.5 + โˆš2 ร— 250๐œ‡

110๐œ‡ ร— 50= โˆ’2.198 ๐‘‰

3. The maximum input voltage when M5 is still operating in saturation mode

๐‘‰๐‘–๐‘›,๐‘š๐‘Ž๐‘ฅ = ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘†๐บ1,๐‘ ๐‘Ž๐‘ก โˆ’ ๐‘‰๐‘†๐ท5,๐‘ ๐‘Ž๐‘ก = ๐‘‰๐ท๐ท โˆ’ โˆš2๐ผ๐ท1

๐พ1โˆ’ |๐‘‰๐‘‡๐‘1| โˆ’ โˆš

2๐ผ๐ท5

๐พ5

๐‘‰๐‘–๐‘›,๐‘š๐‘Ž๐‘ฅ = 2.5 โˆ’ โˆš2 ร— 25๐œ‡

50๐œ‡ ร— 10โˆ’ 0.7 โˆ’ โˆš

2 ร— 50๐œ‡

50๐œ‡ ร— 10= 1.0366 ๐‘‰

The minimum input voltage when M1 is still operating in saturation mode

๐‘‰๐‘–๐‘›,๐‘š๐‘–๐‘› = ๐‘‰๐‘†๐‘† + ๐‘‰๐บ๐‘†3,๐‘ ๐‘Ž๐‘ก โˆ’ |๐‘‰๐‘‡๐‘1| = ๐‘‰๐‘†๐‘† + โˆš2๐ผ๐ท3

๐พ3โˆ’ |๐‘‰๐‘‡๐‘1| + ๐‘‰๐‘‡๐‘›3

๐‘‰๐‘–๐‘›,๐‘š๐‘–๐‘› = โˆ’2.5 + โˆš2 ร— 25๐œ‡

110๐œ‡ ร— 10= โˆ’2.287 ๐‘‰

Page 8: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

8

4.

๐ด๐‘ฃ๐‘œ = ๐‘”๐‘š1๐‘…๐‘œ๐‘ข๐‘ก1 ร— ๐‘”๐‘š6๐‘…๐‘œ๐‘ข๐‘ก2

๐‘…๐‘œ๐‘ข๐‘ก1 = ๐‘Ÿ๐‘‘๐‘ 2// ๐‘Ÿ๐‘‘๐‘ 4 =1

(๐œ†๐‘› + ๐œ†๐‘)๐ผ๐ท2

= 0.444 ๐‘€ฮฉ

๐‘…๐‘œ๐‘ข๐‘ก2 = ๐‘Ÿ๐‘‘๐‘ 6// ๐‘Ÿ๐‘‘๐‘ 7 =1

(๐œ†๐‘› + ๐œ†๐‘)๐ผ๐ท7

= 44.4 ๐พฮฉ

โˆด ๐‘”๐‘š1 = โˆš2 ร— 25๐œ‡ ร— 10 ร— 50๐œ‡ = 0.158 ๐‘š๐ด/๐‘‰

โˆด ๐‘”๐‘š6 = โˆš2 ร— 250๐œ‡ ร— 50 ร— 110๐œ‡ = 1.658 ๐‘š๐ด/๐‘‰

โˆด ๐ด๐‘ฃ๐‘œ = 0.158๐‘š ร— 0.444๐‘€ ร— 1.658๐‘š ร— 44.4๐พ = 5164.25

5.

๐บ๐ต =๐‘”๐‘š1

๐ถ๐‘=

0.158๐‘š

5๐‘ƒร—

1

2๐œ‹= 5.03 ๐‘€๐ป๐‘ง

6.

๐‘๐‘‘๐‘–๐‘ ๐‘  = 2๐‘‰๐ท๐ท(๐ผ๐ท8 + ๐ผ๐ท5 + ๐ผ๐ท7) = 1.75๐‘š๐‘Š

Page 9: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

9

Problem 4: A two-stage, BiCMOS op amp is shown. For the PMOS transistors, the model Parameters are

KPโ€™=50_A/V2, VTP = -0.7V and _P = 0.05V-1. For the NPN BJTs, the model parameters are

ฮฒF = 100, VCE(sat) = 0.2V, VA = 25V, Vt = 26mV, Is = 10fA and ฮท=1.

a) Identify which input is positive and which input is negative.

b) Find the numerical values of differential voltage gain, Av(0), GB (in Hertz), the slew

rate, SR, and the location of the RHP zero.

c) Find the numerical value of the maximum and minimum input common mode

voltages.

Given: KPโ€™=50_A/V2, VTP = -0.7V and _P = 0.05V-1;For the NPN BJTs, the model

parameters are๐›ฝ๐น = 100, VCE(sat) = 0.2V, VA = 25V, Vt = 26mV,Is = 10fA and

ฮท=1.

Solution:

1. Since the gain of the input stage is inverting for V2 and non- inverting

for V1 and the gain of the second stage is inverting therefore V2 is the

positive(non-inverting) terminal; while V1 is the negative

(inverting)terminal

2.

๐ด๐‘ฃ๐‘œ = ๐ด๐‘ฃ1 ร— ๐ด๐‘ฃ2

Page 10: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

10

๐ด๐‘ฃ1 = โˆ’๐‘”๐‘š1๐‘…๐‘œ๐‘ข๐‘ก1

โˆด ๐‘”๐‘š1 = โˆš2 ร— 25๐œ‡ ร— 10 ร— 50๐œ‡ = 0.158 ๐‘š๐ด/๐‘‰

๐‘…๐‘œ๐‘ข๐‘ก1 = ๐‘Ÿ๐‘‘๐‘ 2// ๐‘Ÿ๐‘œ4 = 0.8๐‘€ฮฉ//1๐‘€ฮฉ = 0.44๐‘€ฮฉ

๐ด๐‘ฃ2 = โˆ’๐‘”๐‘š6๐‘…๐‘œ๐‘ข๐‘ก2

๐‘…๐‘œ๐‘ข๐‘ก2 = ๐‘Ÿ๐‘‘๐‘ 7// ๐‘Ÿ๐‘œ6 = 0.2๐‘€ฮฉ//0.25๐‘€ฮฉ = 0.111๐‘€ฮฉ

โˆด ๐‘”๐‘š6 =๐ผ๐ถ6

๐‘‰๐‘‡=

100๐œ‡

26๐‘š= 3.846 ๐‘š๐ด/๐‘‰

โˆด ๐ด๐‘ฃ๐‘œ = 0.158๐‘š ร— 0.44๐‘€ ร— 3.846๐‘š ร— 0.111๐‘€ = 29678.5

๐บ๐ต =๐‘”๐‘š1

๐ถ๐‘=

0.158๐‘š

5๐‘ƒร—

1

2๐œ‹= 5.03 ๐‘€๐ป๐‘ง

๐‘†๐‘… =๐ผ๐ท5

๐ถ๐‘=

50๐œ‡

5๐‘ƒ= 10 ๐‘‰/๐œ‡๐‘ ๐‘’๐‘

โˆต ๐‘ค๐‘ง =๐‘”๐‘š6

๐ถ๐ถ= 769.2 ๐‘€๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

3.

The maximum input voltage when M5 is still operating in saturation

mode

๐‘‰๐‘–๐‘›,๐‘š๐‘Ž๐‘ฅ = ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘†๐บ1 โˆ’ ๐‘‰๐‘†๐ท5,๐‘ ๐‘Ž๐‘ก

๐‘‰๐‘–๐‘›,๐‘š๐‘Ž๐‘ฅ = ๐‘‰๐ท๐ท โˆ’ โˆš2๐ผ๐ท1

๐พ1โˆ’ |๐‘‰๐‘‡๐‘1| โˆ’ โˆš

2๐ผ๐ท5

๐พ5

๐‘‰๐‘–๐‘›,๐‘š๐‘Ž๐‘ฅ = 1.5 โˆ’ โˆš2 ร— 25๐œ‡

50๐œ‡ ร— 10โˆ’ 0.7 โˆ’ โˆš

2 ร— 50๐œ‡

50๐œ‡ ร— 10= 0.0366 ๐‘‰

Page 11: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

11

The minimum input voltage when M1 is still operating in saturation

mode

๐‘‰๐‘–๐‘›,๐‘š๐‘–๐‘› = ๐‘‰๐‘†๐‘† + ๐‘‰๐ต๐ธ3 โˆ’ |๐‘‰๐‘‡๐‘1|

๐‘‰๐‘–๐‘›,๐‘š๐‘–๐‘› = ๐‘‰๐‘†๐‘† + ๐‘‰๐‘‡๐‘™๐‘› (๐ผ๐ถ3

๐ผ๐‘œ๐‘ ) โˆ’ |๐‘‰๐‘‡๐‘1|

๐‘‰๐‘–๐‘›,๐‘š๐‘–๐‘› = โˆ’1.5 + (0.026 ร— ๐‘™๐‘› (25๐œ‡

10๐‘“)) โˆ’ 0.7 = โˆ’1.637 ๐‘‰

Page 12: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

12

Problem 5: The figure below shows the internal circuit of the 741-opamp. Q11, Q12, and R5 generate a

reference bias current, IREF. Q10, Q9, and Q8 bias the input stage, which is composed of Q1 to

Q7. The second gain stage is composed of Q16 and Q17 with Q13B acting as active load. The

class AB output stage is formed by Q14 and Q20 with biasing devices Q13A, Q18, and Q19, and

an input buffer Q23. Transistors Q15, Q21, Q24, and Q22 serve to protect the amplifier against

output short circuits and are normally cut off.

Given: ๐›ฝ = 250, the reverse saturation current Io =10-14mA for all transistors except

Q14 and Q20 (Io14(or 20)) =3*10-14mA.

Required: (1) All the DC collector currents.

(2) Explain the operation of the SC protection circuit.

(3) Find the input resistance, output resistance and the voltage gain of the input and

second stages assuming the loading effect is neglected and the output stage is ideal

buffer. Assuming VAn =100 V and VAp=50V

(4) Draw the complete small signal model of the op-amp and find the overall gain.

(5) Find the high frequency gain of this op-amp assuming CC is the dominant

capacitance in the circuit.

(6) Find GB and SR of the 741-op-amp.

Page 13: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

13

Solution:

1. All DC collector currents

a. For the input stage

The current source Q11 and Q10

๐ผ๐‘Ÿ๐‘’๐‘“ =2๐‘‰๐ถ๐ถ โˆ’ ๐‘‰๐ต๐ธ11 โˆ’ ๐‘‰๐ธ๐ต12

๐‘…5=

30 โˆ’ 1.4

39๐พ= 0.73 ๐‘š๐ด

Page 14: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

14

Neglecting all base currents

๐ผ๐‘Ÿ๐‘’๐‘“ = ๐ผ๐ถ11 = ๐ผ๐ถ12

Q11 and Q10 form a current mirror called Widlar current mirror; so they are

matched and operating in the active region

๐‘‰๐ต๐ธ11 = ๐‘‰๐ต๐ธ10 + ๐ผ๐ถ10๐‘…4

๐‘‰๐ต๐ธ11 โˆ’ ๐‘‰๐ต๐ธ10 = ๐ผ๐ถ10๐‘…4

๐‘‰๐‘‡๐‘™๐‘› (๐ผ๐ถ11

๐ผ๐ถ10) = ๐ผ๐ถ10๐‘…4

Using trial and error we will calculate the

Collector current of Q10

๐ผ๐ถ10 = 18.4๐œ‡๐ด

Q10 and Q9 are connected in series and we

will neglect the base current of Q3 and Q4

๐ผ๐ถ10 = ๐ผ๐ถ9 = 18.4 ๐œ‡๐ด

Q8 and Q9 are a current mirror and we will neglect their bases currents

โˆด ๐ผ๐ถ8 = ๐ผ๐ถ9 = 18.4 ๐œ‡๐ด

For the differential amplifier Q1 and Q2 we work at the optimum DC

operating point ๐‘‰๐ผ๐ท = 0๐‘‰

๐ผ๐ถ1 = ๐ผ๐ถ2 =๐ผ๐ถ8

2= 9.2 ๐œ‡๐ด

Since all transistors have very large ๐›ฝ so we can assume that

๐ผ๐ถ โ‰… ๐ผ๐ธ

๐ผ๐ธ1 โ‰… ๐ผ๐ถ1 = ๐ผ๐ธ3 โ‰… ๐ผ๐ถ3

Page 15: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

15

๐ผ๐ถ3 = ๐ผ๐ถ4 = 9.2 ๐œ‡๐ด

Q5 and Q3 are in series ; Q4 and Q6 are in series neglecting the base currents

(note that Q5 and Q6 act as a current mirror)

๐ผ๐ถ5 = ๐ผ๐ถ6 = 9.2 ๐œ‡๐ด

For Q7 we will find itโ€™s emitter current

๐ผ๐ธ7 = ๐ผ๐ต5 + ๐ผ๐ต6 + ๐ผ๐‘…3

๐ผ๐ธ7 =๐ผ๐ถ5

๐›ฝ+

๐ผ๐ถ6

๐›ฝ+ ๐ผ๐‘…3

๐ผ๐‘…3 =๐‘‰๐ต๐ธ6 + ๐ผ๐ถ6๐‘…2

๐‘…3=

๐‘‰๐‘‡๐‘™๐‘› (๐ผ๐ถ6

๐ผ๐‘‚๐‘†) + ๐ผ๐ถ6๐‘…2

๐‘…3

๐ผ๐‘…3 =25๐‘š ร— ๐‘™๐‘› (

9.2๐œ‡10โˆ’14) + 9.2๐œ‡ ร— 1๐พ

50๐พ= 10.5 ๐œ‡๐ด

๐ผ๐ธ7 =9.2๐œ‡

250+

9.2๐œ‡

250+ 10.5 ๐œ‡ = 10.58 ๐œ‡๐ด

For the gain stage

Q13 is equivalent to two transistors

Each one has a part of its total collector

current

Io13B=0.75 Io

Io13A=0.25 Io

Page 16: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

16

Q12 and Q13 form a current mirror so they have the same collector currents

โˆต ๐ผ๐ถ,13๐ต = 0.75๐ผ๐ถ12 = 547.5 ๐œ‡๐ด

๐ผ๐ถ17 = ๐ผ๐ถ,13๐ต = 547.5 ๐œ‡๐ด

For Q16:

๐ผ๐ธ16 = ๐ผ๐ต17 + ๐ผ๐‘…9

๐ผ๐ธ16 =๐ผ๐ถ17

๐›ฝ+ ๐ผ๐‘…9

๐ผ๐‘…9 =๐‘‰๐ต๐ธ17 + ๐ผ๐ถ17๐‘…8

๐‘…9=

๐‘‰๐‘‡๐‘™๐‘› (๐ผ๐ถ17

๐ผ๐‘‚๐‘†) + ๐ผ๐ถ17๐‘…8

๐‘…9= 13.46 ๐œ‡๐ด

โˆด ๐ผ๐ธ16 โ‰… ๐ผ๐ถ16 = 15.65 ๐œ‡๐ด

For the output stage:

Page 17: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

17

Q15, Q21, Q24, Q22 are normally off as they are turned on only when the

output node is short circuit.

Ignore the base currents for Q14 and Q20

โˆต ๐ผ๐ถ,13๐ด = 0.25๐ผ๐ถ12 = 182.5 ๐œ‡๐ด

๐ผ๐ถ23 = ๐ผ๐ถ,13๐ด = 182.5 ๐œ‡๐ด

๐ผ๐ถ23 = ๐ผ๐‘…10 + ๐ผ๐ธ18

Assume that ๐‘‰๐ต๐ธ18 = 0.6 ๐‘‰

๐ผ๐‘…10 =๐‘‰๐ต๐ธ18

๐‘…10= 15๐œ‡๐ด

โˆด ๐ผ๐ธ18 = ๐ผ๐ถ23 โˆ’ ๐ผ๐‘…10 = 167.5 ๐œ‡๐ด

โˆด ๐ผ๐ถ19 โ‰… ๐ผ๐ถ13,๐ด โˆ’ ๐ผ๐ธ18 = 15๐œ‡๐ด

As for Q14 and Q20 (class AB push-pull)

Assume that ๐‘‰๐ต๐ธ14 = ๐‘‰๐ธ๐ต20

2๐‘‰๐ต๐ธ14 = ๐‘‰๐ต๐ธ18 + ๐‘‰๐ต๐ธ19

๐‘‰๐ต๐ธ14 = 0.559๐‘‰

๐ผ๐ถ14 = ๐ผ๐ถ20 = ๐ผ๐‘‚๐‘†14๐‘’๐‘ฅ๐‘ (๐‘‰๐ต๐ธ14

๐‘‰๐‘‡) = 154.15 ๐œ‡๐ด

2. If the output node is grounded and ๐‘‰๐‘– keeps increasing and with it the

base and collector currents of Q14 increases as well; thus the power

dissipated in Q14 increases so that it may damage or destroy the

transistor;

By connecting R6 and Q15 as the collector current of Q14 increases

the voltage drop across R6 increase till it turns on Q15 and thus part of

the base current of Q14 will flow through Q15 and the power

dissipation decreases;

Page 18: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

18

Note that during the negative clock cycle R7 and Q23 will protect Q20

from damage by the same way.

3. AC analysis for the op-amp:

The input stage:

๐‘…๐‘–๐‘›1 = ๐‘Ÿ๐œ‹1 +๐‘Ÿ๐œ‹3(1 + ๐›ฝ1)

(1 + ๐›ฝ3)+ ๐‘Ÿ๐œ‹4 +

๐‘Ÿ๐œ‹2(1 + ๐›ฝ4)

(1 + ๐›ฝ2)

Page 19: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

19

Since Q1, Q2, Q3, Q4 have same ๐›ฝ & ๐ผ๐ถ then they have same ๐‘Ÿ๐œ‹

๐‘…๐‘–๐‘›1 = 4๐‘Ÿ๐œ‹1 = 2.72 ๐‘€ฮฉ

๐‘…๐‘œ๐‘ข๐‘ก1 = [๐‘Ÿ๐‘œ4 + (1 + ๐‘”๐‘š4๐‘Ÿ๐‘œ4)๐‘Ÿ๐œ‹2

1 + ๐›ฝ] //[๐‘Ÿ๐‘œ6 + (1 + ๐‘”๐‘š6๐‘Ÿ๐‘œ6)๐‘…2]

โˆด ๐‘…๐‘œ๐‘ข๐‘ก1 = 6.26 ๐‘€ฮฉ

๐‘ฃ๐‘œ๐‘ข๐‘ก1 = โˆ’2๐›ฝ๐‘–๐‘1๐‘…๐‘œ๐‘ข๐‘ก1

โˆต ๐‘–๐‘1 =๐‘ฃ๐‘–๐‘›

๐‘…๐‘–๐‘›1

โˆด๐‘ฃ๐‘œ๐‘ข๐‘ก1

๐‘ฃ๐‘–๐‘›=

โˆ’2๐›ฝ๐‘…๐‘œ๐‘ข๐‘ก1

4๐‘Ÿ๐œ‹1=

โˆ’๐‘”๐‘š1๐‘…๐‘œ๐‘ข๐‘ก1

2= โˆ’1151.84

Let

๐‘”๐‘š1๐‘’๐‘ž =๐‘”๐‘š1

2= 0.193 ๐‘š๐ด/๐‘‰

โˆด ๐ด๐‘ฃ1 =๐‘ฃ๐‘œ๐‘ข๐‘ก1

๐‘ฃ๐‘–๐‘›= โˆ’๐‘”๐‘š1๐‘’๐‘ž๐‘…๐‘œ๐‘ข๐‘ก1

For the second stage:

Page 20: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

20

๐‘ฃ๐‘œ๐‘ข๐‘ก2 = (1 + ๐›ฝ)๐‘–๐‘16๐‘…9

๐‘–๐‘16 =๐‘ฃ๐‘œ๐‘ข๐‘ก1

๐‘Ÿ๐œ‹16 + (1 + ๐›ฝ)๐‘…9

โˆด๐‘ฃ๐‘œ๐‘ข๐‘ก2

๐‘ฃ๐‘œ๐‘ข๐‘ก1=

(1 + ๐›ฝ)๐‘…9

๐‘Ÿ๐œ‹16 + (1 + ๐›ฝ)๐‘…9

โˆต ๐‘ฃ๐‘œ๐‘ข๐‘ก = โˆ’๐›ฝ๐‘–๐‘17๐‘…๐‘œ๐‘ข๐‘ก2

๐‘–๐‘17 =๐‘ฃ๐‘œ๐‘ข๐‘ก2

๐‘Ÿ๐œ‹17 + (1 + ๐›ฝ)๐‘…8

โˆด๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘œ๐‘ข๐‘ก2=

โˆ’๐›ฝ๐‘…๐‘œ๐‘ข๐‘ก2

๐‘Ÿ๐œ‹17 + (1 + ๐›ฝ)๐‘…8

โˆด๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘œ๐‘ข๐‘ก1=

๐‘ฃ๐‘œ๐‘ข๐‘ก2

๐‘ฃ๐‘œ๐‘ข๐‘ก1ร—

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘œ๐‘ข๐‘ก2

โˆด ๐ด๐‘ฃ2 =๐‘ฃ๐‘œ๐‘ข๐‘ก2

๐‘ฃ๐‘œ๐‘ข๐‘ก1=

โˆ’๐›ฝ๐‘…๐‘œ๐‘ข๐‘ก2

๐‘Ÿ๐œ‹17 + (1 + ๐›ฝ)๐‘…8ร—

(1 + ๐›ฝ)๐‘…9

๐‘Ÿ๐œ‹16 + (1 + ๐›ฝ)๐‘…9

Let

๐‘”๐‘š2๐‘’๐‘ž =๐›ฝ

๐‘Ÿ๐œ‹17 + (1 + ๐›ฝ)๐‘…8ร—

(1 + ๐›ฝ)๐‘…9

๐‘Ÿ๐œ‹16 + (1 + ๐›ฝ)๐‘…9= 6.6 ๐‘š๐ด/๐‘‰

๐‘…๐‘œ๐‘ข๐‘ก2 = ๐‘Ÿ๐‘œ13๐ต//[๐‘Ÿ๐‘œ17 + (1 + ๐‘”๐‘š17๐‘Ÿ๐‘œ17)๐‘…8] = 78.95๐พฮฉ

โˆด ๐ด๐‘ฃ2 =๐‘ฃ๐‘œ๐‘ข๐‘ก2

๐‘ฃ๐‘œ๐‘ข๐‘ก1= โˆ’๐‘”๐‘š2๐‘’๐‘ž๐‘…๐‘œ๐‘ข๐‘ก2 = โˆ’524.52

๐‘…๐‘–๐‘›2 = ๐‘Ÿ๐œ‹16 + (1 + ๐›ฝ)(๐‘…9//(๐‘Ÿ๐œ‹17 + (1 + ๐›ฝ)๐‘…8)) = 5.695 ๐‘€ฮฉ

Page 21: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

21

4.

The overall gain:

๐‘ฃ๐‘œ๐‘ข๐‘ก1 = โˆ’๐‘”๐‘š1๐‘’๐‘ž(๐‘…๐‘œ๐‘ข๐‘ก1//๐‘…๐‘–๐‘›2)๐‘ฃ๐‘–๐‘›

๐‘ฃ๐‘œ๐‘ข๐‘ก = โˆ’๐‘”๐‘š2๐‘’๐‘ž๐‘…๐‘œ๐‘ข๐‘ก2๐‘ฃ๐‘œ๐‘ข๐‘ก1

โˆด๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘–๐‘›= ๐‘”๐‘š1๐‘’๐‘ž๐‘”๐‘š2๐‘’๐‘ž(๐‘…๐‘œ๐‘ข๐‘ก1//๐‘…๐‘–๐‘›2)๐‘…๐‘œ๐‘ข๐‘ก2 = 285713.1

โˆด๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘–๐‘› ๐‘‘๐ต

= 20๐‘™๐‘œ๐‘” (๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘–๐‘›) = 109.12 ๐‘‘๐ต

5.

From the lectures we have

๐ด๐‘ฃ(๐‘†) โ‰…๐ด๐‘ฃ๐‘œ

(1 +๐‘†

๐‘ค1)

๐‘ค1 =1

๐ถ๐ถ๐‘”๐‘š2๐‘’๐‘ž(๐‘…๐‘œ๐‘ข๐‘ก1//๐‘…๐‘–๐‘›2)๐‘…๐‘œ๐‘ข๐‘ก2= 21.467 ๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

ineqm vg 1inv 1outv1inR 1outR

+

-

2inR 12 outeqm vg 2outR outv

ineqm vg 1inv 1outv1inR 1outR

+

-

2inR 12 outeqm vg 2outR outv

CC

Page 22: Sheet 6: Operational Amplifiers Compensation, Analysis and ...

22

OR using Miller theorem:

๐ถ1 = ๐ถ๐ถ(1 โˆ’ ๐ด)

๐ถ2 = ๐ถ๐ถ(1 โˆ’ ๐ดโˆ’1)

โˆต ๐ด =๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘œ๐‘ข๐‘ก1=

โˆ’๐‘”๐‘š2๐‘’๐‘ž๐‘…๐‘œ๐‘ข๐‘ก2๐‘ฃ๐‘œ๐‘ข๐‘ก1

๐‘ฃ๐‘œ๐‘ข๐‘ก1

โˆด ๐ด = โˆ’๐‘”๐‘š2๐‘’๐‘ž๐‘…๐‘œ๐‘ข๐‘ก2 = โˆ’521.07

โˆด ๐ถ1 = 15.67 ๐‘›๐น

โˆด ๐ถ2 = 30.06 ๐‘ƒ๐น

โˆด ๐ด๐ป๐น =๐‘ฃ๐‘œ๐‘ข๐‘ก

๐‘ฃ๐‘–๐‘›= ๐‘”๐‘š1๐‘’๐‘ž๐‘”๐‘š2๐‘’๐‘ž (๐‘…๐‘œ๐‘ข๐‘ก1//๐‘…๐‘–๐‘›2//

1

๐‘†๐ถ1) (๐‘…๐‘œ๐‘ข๐‘ก2//

1

๐‘†๐ถ2)

โˆด ๐ด๐ป๐น =๐ด๐‘€๐น

(1 +๐‘†

๐‘ค1) (1 +

๐‘†๐‘ค2

)

Where

๐‘ค1 =1

๐ถ1(๐‘…๐‘œ๐‘ข๐‘ก1//๐‘…๐‘–๐‘›2)= 21.27 ๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ค2 =1

๐ถ2๐‘…๐‘œ๐‘ข๐‘ก2= 4.21 ร— 1023 ๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

It is clear that ๐‘ค1 is the dominant pole

6.

๐บ๐ต = ๐ด๐‘ฃ๐‘œ๐‘“1 = 285713.1 ร—21.467

2๐œ‹โ‰… 1 ๐‘€๐ป๐‘ง

๐‘†๐‘… =๐ผ๐ถ8

๐ถ๐ถ= 0.613 ๐‘‰/๐œ‡๐‘ ๐‘’๐‘