Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf ·...

91
Hetro junction devices Session 4: Solid State Devices 1

Transcript of Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf ·...

Page 1: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

Hetro junction devices

Session 4: Solid State Devices

1

Page 2: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Outline

� A� B

� C

� D

� E

� F� G

� H

� I

� J

2

Page 3: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Outline

� Ref: Brennan and Brown

3

Page 4: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Review Homojunction!

4

Homojunction: the junction is between two regions of the same material

Heterojunction: the junction is between two different semiconductors

Page 5: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions –Before Being Joined

5

electrically neutral in every region

electron affinity : Χ��work function Φ: Φ ��� � ��Φ � Φ�

�� �� ��

��n

�� � ���������

��p

�� ���������� ��� ������ ��

Page 6: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

6

�� �� ��

n

���������

p

Page 7: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

7

�� �� ��

n

���������

p

Page 8: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

8

�� �� ��

n

���������

p

Depletion region

����

Remember ����� � 0under equilibrium.

Band bending occurs around the metallurgical junction!

Page 9: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

9

�� �� ��

n

���������

p

depletion region

����� � �!" � ��!!

��� �!! ��� �!"

#�

Page 10: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

Reverse Biased

10

��

n

���

p

depletion region

�$� � �!" � ��!!

��� �!"����!!

#�

��$

Page 11: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

Forward Biased

11

��

n

���

p

depletion region

��� � �!" � ��!!

����!! ��� �!"

#�

���

Page 12: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions (Qualitative)

12

n

�p

depletion region

%�%

%�%& % �%�

Page 13: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions -Assumptions

13

Charge Distribution :

The Depletion Approximation : Obtaining closed-form solutions for the

electrostatic variables

%

& � �'( � ) * +, � +-.

% �%� 0np& � 0 & � 0

& � �'+, � +-.

Note that

(1) �%� / % / % : p & n are negligible (∵ 1 exist).

(2) % / �%�or % 2 % : & � 0

Page 14: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

How to Find & % ,1 % ,� %

14

��1. Find the built-in potential ���2. Use the depletion approximation → &'%.(depletion-layer widths %�, % unknown)

3. Integrate &'%. to find 1'%.boundary conditions 1'�%�. � 0, 1'% . � 04. Integrate 1'%. to obtain �'%.boundary conditions �'�%�. � 0, �'% . � ���5. For 1'%. to be continuous at % � 0, +-%� � +,% � solve for %�, %

&% �%�

�� ������

�+,

��+-

Page 15: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Built-In Potential ���

15

��For non-degenerately doped material:

�� �������� ��� �������� � ���� * ��� � �� � �� � * �� � ��

�� � �� � � 56 ln ()� � 56 ln +-)��� � �� � 56 ln ))� � 56 ln +,)�9 → ��� � 56� ln +-+,)�:

What shall we do for (; � ) (or ); � () junction?!?!?

�� � �� � � �<2 �� � �� � �<2(;: );:

Page 16: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

The Depletion Approximation

16

The electric field is continuous at % � 0

%�%

& ?1?% � &@% �%� *�+,��+- & � ��+- →

1 % � ��+-@ * A � ��+-@ '% * %�.& � �+, →1 % � �+,@ * A′ � �+,@ '% � % .

%�+- � % +,Charge neutrality condition as well!

Page 17: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Electrostatic Potential in the

Depletion Layer

17

%�%

& ?�?% � �1% �%� *�+,��+-

�%� C % C 0:1 % � ��+-@ '% * %�.

1 % � ��+,@ '% � %.%

�� % � �+-2@ % * %� : * A � �+-2@ % * %� :

0 C % C % :� % � ��+,2@ % � % : * AD � ��� � �+,2@ % � % :

���E,

Page 18: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Depletion Layer Width

18

�%� C % C 0: � % � �+-2@ % * %� :� % � ��� � �+,2@ % � % :0 C % C % :

� 0 � �+-2@ %�: � ��� � �+,2@ % :%�+- � % +, 9 → % � 2@����� +-+,'+- * +,.

%� � 2@����� +,+-'+- * +,.Summing, we have:

E � %� * % � 2@����� 1+, * 1+-

Page 19: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Depletion Layer Width

19

%�+- � % +, → %� ≪ % → %� H 0

If +- ≫ +,as in a (; � ) junction:

E � 2@����� 1+, * 1+- → E � 2@�����+, H %

Note:

��� � �<2� * 56� ln+,)�

Page 20: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Example

20

%� � % +,+- � 1.2 K 10LMNO � 1.2P~0

A (; � ) junction has +- � 10:�ROLSand +, � 10TUROLS. What is

E H 2@�����+, � 2 K 12 K 8.85 K 10LTM K 11.6 K 10TY K 10TU � 0.12NOa) its built in potential,

b) E ,

c) % , and

d) %�

��� � �<2� * 56� ln+,)� H 1�

% H E � 0.12NO

Page 21: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Biases pnJunction (assumptions)

21

np

depletion region

�-1

Negligible voltage drop

(Ohmic contact)�- dropped here

will apply continuity

equation in this region

1) Low level injection

2) Zero voltage drop (1 � 0)

Since (1 � 0) may apply

minority carrier diffusion

equations

Note: �- should be significantly smaller than ���(Otherwise, we cannot assume low-level injection)

Page 22: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Effect of Bias on Electrostatics

22

Energy Band Diagram

1) The Fermi level is omitted from the depletion

region because the device is no longer in

equilibrium: We need the quasi Fermi energy level.

2) �!� � �! � ���-np

%�

%&

�- � 0

*�+,

��+-

%� ���

E�- C 0�- Z 0

�- � 0 �- C 0�- Z 0

�- � 0

�- Z 0�- C 0

Page 23: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

VaApplied Voltage

23

Now as we assumed all voltage drop is in the depletion region

(Note that VA ≤ Vbi)

%�+- � % +,% * %� � E � 2@�'��� � �-.� 1+, * 1+-

Page 24: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

W vs. Va

24

The junction width for one-sided step junctions in silicon as a function of junction

voltage with the doping on the lightly doped side as a parameter.

10

1

0.1

0.010.1 1 10�[ � ��� � �'�.

10TM10T\10T]10TU10T^

De

ple

tio

n w

idth

m)

Page 25: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

W vs. Na

25

Junction width for a one-sided junction is plotted as a function of doping on the

lightly doped side for three different operating voltages.

10

1

0.1

0.0110TM +

De

ple

tio

n w

idth

m)

10T^10TU10T]10T\

Page 26: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction:

I-V Characteristic (assumptions)

26

Assumption :

1) low-level injection: )� ≪ (�~+-(or ∆) ≪ (� , (~(� in p-type)

( ≪ ) ~+,(or ∆( ≪ )� , )~)� in n-type)

2) In the bulk, ) ~) � � +, , (�~(�� � +-3) For minority carriers �� �!" ≪ ���!! in quasi-neutral region

4) Nondegenerately doped step junction

5) Long-base diode in 1-D (both sides of quasi-neutral regions are much longer than

their minority carrier diffusion lengths, ` or `�)

6) No Generation/Recombination in depletion region

7) Steady state ? ?a⁄ � 08) cd�" � 0

Page 27: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

27

Game plan:

i) continuity equations for minority carriers

ii) minority carrier current densities in the quasi-neutral region

e∆)�ea � 1� e� e% � ∆)�f * cd�"e∆( ea � �1� e��e% � ∆( f� * cd�"

� � � � �!" * � ��!! � �)N 1 * �g ?)?% ~�g ?)?%�� � ��� �!" * ����!! � �(N�1 � �g� ?(?%~ � �g� ?(?%

Page 28: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

28

np�-Steady-State solution is:

?:∆)�?%: � ∆)�g f → ∆)� � hi� jk⁄ * liL� jk⁄ ` � g f diode is long enough!

% �%� % %′%′′∆)�'%DD. � h′′iL�DD jk⁄ ∆( '%D. � h′iL�D jm⁄∆( '%D. � ∆( '% .iL�D jm⁄∆)�'%DD. � ∆)�'�%�.iL�DD jk⁄

� � �g ?)?% �� � ��g� ?(?%��'%D. � �g�`� ∆( '% .iL�D jm⁄� '%DD. � �g ` ∆)�'�%�.iL�DD jk⁄

%��'%D.� '%DD.� � � 0DD * ��'0D.��� �!"'%DD. � nopqr'%D.

Page 29: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

29

np�-

Now! we need to find ∆)� �%� and ∆( % vs �

% �%� % %′%′′�� %D � �g�`� ∆( '% .iL�D jm⁄� '%DD. � �g ` ∆)�'�%�.iL�DD jk⁄ %��'%D.� '%DD.

� � � 0DD * ��'0D.

� � � 0DD * �� 0D � �g ` ∆)� �%� * �g�`� ∆( %

�: � �T � 56� ln ):)T � 56� ln (T(: → �� � � � 56� ln )'% .)'�%�. � 56� ln ('�%�.('% .+, +-

�� � 56� ln+-+,)�: → ) �%� � )��is� tu⁄( % � ( �is� tu⁄

Page 30: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

30

np�- % �%� % %′%′′( % � ( �is� tu⁄

%

log'), (. ) �( �)��

(��

`�` ) �%� � )��is� tu⁄

forward

( % � ( �is� tu⁄%

log'), (. ) �( �)��

(��

`�` ) �%� � )��is� tu⁄

reverse

Page 31: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

31

� � � 0DD * �� 0D � �g ` ∆)� �%� * �g�`� ∆( %

� � � g ` )�� * g�`� ( � is� tu⁄ � 1

) �%� � )��is� tu⁄ ; ∆)� �%� � ) � )�� � )��'is� tu⁄ � 1. ;)�� � )�: +-⁄( % � ( �is� tu⁄ ; ∆( % � ( � ( � � ( �'is� tu⁄ � 1. ;( � � )�: +,⁄

# � h�# � �h g ` )�:+- * g�`� )�:+, is� tu⁄ � 1 � #� is� tu⁄ � 1

#� � �h)�: g f 1+- * g�f� 1+,

Page 32: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

32

# � �h g ` )�:+- * g�`� )�:+, is� tu⁄ � 1 � #� is� tu⁄ � 1asymmetrically doped junction

If (; � ) diode (+- ≫ +,), then

If ); � ( diode (+, ≫ +-), then

#� H �hg�`� )�:+,#� H �hg ` )�:+-

That is, one has to consider only the lightly doped side of such junction in

working out the diode I-V characteristics.

Page 33: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

33

V=0

V>0

�� �� ��

��������� ����

� � �!" � ��!!

��� �!" ����!!

�� ���� � �!" � ��!!

��� �!" ����!!����'��� � ��.

Page 34: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

pnJunction: I-V Characteristic

34

The minority carrier concentrations on either side of the junction under forward bias

∆( '% .∆)�'�%�.

`�` )�� ( �

( % � ∆( % * ( �)� % � ∆)� % * )��

% �%�

Page 35: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Minority-Carrier Charge Storage

35

np�- % �%� % %′%′′

%

) �%� � )��is� tu⁄( % � ( �is� tu⁄

)�� ( �∆( '%D. � ∆( '% .iL�D jm⁄∆)�'%DD. � ∆)�'�%�.iL�DD jk⁄

`�` yzy{

yz � ��h∆( % `zy{ � ��h∆)� �%� ` e∆)�ea � 1� e� e% � ∆)�f * cd�"e∆( ea � �1� e��e% � ∆( f� * cd�"

forward

Page 36: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Charge Control Model

36

%

( % � ( �is� tu⁄

( �∆( '%D. � ∆( '% .iL�D jm⁄

`�yz

In general: ∆( '%, a.e∆( ea � �1� e��e% � ∆( f�e'�h∆( .ea � �he��e% � �h∆( f�eea �h | ∆( ?%}�k � �h | ?��~'}.

~'�k. � 1f� �h | ∆( ?%}�k

??a yz � h��'% . � yzf���

??a yz � #�'% . � yzf�%��'%D.� '%DD.

� � � 0DD * ��'0D.�� �!"'%DD. � nopqr'%D.

Steady state:??a � 0

#� % � yzf� similarly # �%� � yzf

Page 37: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

PN junctions –Before Being Joined

37

electrically neutral in every region

electron affinity : Χ��work function Φ: Φ ��� � ��Φ � Φ�

�� �� ��

��n

�� � ���������

��p

�� ��

Page 38: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –Before Being Joined

38

�������

��n

�� �

���

��M

�� �� ������

��� work function �� electron affinity ��� � 4.05i�, �<� � 4i�, �<-� � 4.07i��-� � 4.75i�, ��� � 4.5i�, �-� � 4.28i�

Page 39: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Reminder

39

�� �� �� ���

���������g'�.

metal p-type n-type

Page 40: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Plotting Energy Bands for MS Junction

40

Step by step:

1. Vacuum energy (��) is continuous.

2. �< and � are intrinsic properties of materials and should remain constant.

(which means ��, ��, and �� are all parallel)

3. At equilibrium �� is constant while by applying voltage ∆�� � ���.

Page 41: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –Before Being Joined

41

�������

��

n-type

���

��

Metal

�� ������4.75i� 4.05i�

Page 42: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –Qualitative

42

�������

��

n-type

���

��

Metal

�� ������4.75i� 4.05i�

Page 43: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –Qualitative

43

�������

��

n-type

���

��

Metal

�� ���������

���

��� � �'�� � ��.

���

��� � �'�� � �.� ��� * '�� � ��.#�→� #�→�

Page 44: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –Qualitative

44

���������� ��� ��� � �'�� � ��.������ � ��� * '�� � ��.#�→� #�→�

%%�

%&E�%�

�+,

���

1@ |�|

Page 45: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions -SchottkyEffect

45

1 0 � ��+,E @⁄

as ��� � �'�� � ��. seems that �� is independent of the applied voltage

�� � LT:E1 0 ��+,E: 2@⁄ E � 2@�+, '�� � �. 1 0 � � 2�+,@ '�� � �.

But it is not! This is known as “Schottky Effect” This will lower ��'��.a little bit.

%%

Image method

Metal � % � ��:16�@%:→ Φ % � ���'%. � ��:16�@%

Page 46: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions, I-V Curve

46

#

���� ∝ %:

� ∝ 1 %⁄�∆����D � �� � ∆��

������ ������ � �'�� � ��.

������ � ��� * '�� � ��.

∆�� � �S+,8�:@: '�� � �.�

#�→� � h�∗6:iLs'���L��. tu⁄ #�→� � �h�∗6:iLs��� tu⁄# � #�→� � #�→� � h�∗6:iLs��� tu⁄ is�� tu⁄ � 1 � #� is�� tu⁄ � 1

#���d""t� ≅ 100 � 1000#�� shottky pn

0.7V0.3~0.4V

Page 47: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –OhmicContact

47

�������

��

n-type

���

��

Metal

�� ������

��� C ���

Page 48: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MS junctions –OhmicContact , Tunneling

48

���������� ���

��� � �'�� � ��.��� #�→���� � ��� * '�� � ��.#�→�

E E ∝ 1 +,⁄��

�������� ������ � �'�� � ��.

��� #�→���� ≅ ���#�→�

E E ∝ 1 +,⁄p p+

Page 49: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

49

End of Review!

Page 50: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Hetro-junction!

50

��:��:��:

��Χ: Φ�:

��T

��T��T

��ΧT ΦT��T��T ���:��:

��

∆��

∆��∆�<� ∆�� * ∆��

We expect discontinuities in the energy bands

Page 51: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Plotting Energy Bands for HetroJunction

51

1. Vacuum energy (��) is continuous.

2. �< and � are intrinsic properties of materials and should remain constant.

(which means ��, ��, and �� are all parallel)

3. At equilibrium �� is constant while by applying voltage ∆�� � ���.1. Align the Fermi level with 2 semiconductors separated (leave enough

room for transition region).

2. Indicate ∆��, ∆�� at the metallurgical junction .

3. Connect conduction and valance band regions, keeping the band gap

constant in each region.

Page 52: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Plotting!

52

��:��:��:

��T

��T��T

∆��

∆��

Page 53: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Plotting!

53

∆��∆��

��T

��T��T ��:��:��:

Page 54: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Plotting!

54

∆��∆��

��T

��T��T ��:��:��:

Page 55: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Interface structure

55

Page 56: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Interface structure

56

Page 57: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Streetman’s Example

57

∆�<� 1.85 � 1.43 � 0.42i� ∆��� 0.28i�∆��� 0.14i�

1.85 1.430.280.14

h�c�h� c�h�

Page 58: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Streetman’s Example

58

1.851.430.28

0.14

); � h�c�h� ) � c�h�

1.851.430.28

0.14

Page 59: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Streetman’s Example

59

); � h�c�h� ) � c�h�

1.851.430.28

0.14); � h�c�h� (; � c�h�

1.851.430.28

0.14

Page 60: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Why it is important?

60

MODFET: along the heterostructure

HBT: perpendicular to the heterojunctioncarrier transport

Page 61: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

3 types of Heterostructures

61

h��c�TL�h� c�h�

h��.M\#)�.\:h� #)�

c���#)h�

Type I

Type II

Type III

Page 62: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Carrier Flow Parallel to the Heterointerface

62

Page 63: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

carrier flow perpendicula to the

heterointerface

63

Carrier flow

Carrier flow in a heterostructure from the narrow gap semiconductor towards

the wider gap semiconductor. In this case, the carriers encounter a potential

barrier at the interface that arises from the band edge discontinuity. The

electrons can overcome the barrier and enter the wide gap material provided

they have sufficient kinetic energy. (b) Carrier flow in a heterostructure from the

wide gap semiconductor towards the narrow gap semiconductor. In this case, the

carriers gain energy from crossing the potential step.

Page 64: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

MODFET

64

modulation doping provides a means of increasing the free carrier

concentration without introducing donor atoms into the channel.

MODFETs, HEMTs (high electron mobility transistors)

80s, GaAs (channel) and AlGaAs (n-doped layer) are lattice matched

Page 65: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

HEMT

65

Page 66: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

HEMT

66

Page 67: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Performance Metric

67

�u � ��2�A<� � 12�f

f � `:N�,�f � `��"

f transit time of electrons in the device

depends on the length of the channel

Long Channel:

Short Channel:

tradeoff between �u and Power dissipation

N�� � 300 �� ¡¢ → �u � 4c£¤N:, � 4000 �� ¡¢ → �u � 62c£¤` � 1¥O '1450.

'8500.

N � �fO�∗

Page 68: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

InGaAsChannel (PHEMT)

68

channel layer is formed with

In0.15Ga0.85As and the doped layer is

GaAs. (Rosenberg et al. 1985)

Though the GaAs and InGaAs are not lattice

matched, if the InGaAs layer is grown

sufficiently thin it will adopt the lattice constant

of the underlying GaAs layer.

The InGaAs layer is pseudomorphic.

critical thickness of about 20.0 nm

N�� � 1450 cm:VsN<-� � 8500 cm:VsNª -� � 33000 cm:Vs �<ª -� � 0.35eV

�<<-� � 1.42eV

Page 69: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

HEMT

69

(Brown et al., 1989).

N:, � 12000 cm:Vs��" � 3 K 10URO/�

deep well!

�u � 170c£¤

Page 70: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

HBT

70

Page 71: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Bulk Semiconductor Potential , ϕF

71

�� �� �� ���

������

Definition:

p-type n-type

��� ≡ �� � �� � �� ���t � ��

�� � 56� ln +-)� Z 0 �� � �56� ln +,)� C 0���

���

�� �� ��

��������� ����

���� ��� � ��� � �� � 56� ln +,+-)�:� 56� ln ) )� � 56� ln (�(

Page 72: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Built in Voltage

72

��:��:��:

��Χ: Φ�:��T

��T��T

�� ΧT ΦT��T��T ���:��:��

∆��∆��

∆�<� ∆�� * ∆��

∆��∆��

��T

��T��T ��:��:��:

����

��� � �T � �:� ∆��� * ��T � �! � ��: � ���

) � +� iL'�­L��. tu⁄( � +�iL'��L�®. tu⁄

) � )� i'��L�p. tu⁄( � )� i'�pL��. tu⁄

��� � ∆��� * 56� ln )T�+�:):�+�T

effective density of states

Page 73: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Modulation Doping

73

Modulation doping : free carrier concentration (within semiconductor layer) can

be increased significantly without the introduction of dopant impurities.+, ↗⟹ ionized impurity scattering ↗⟹carrier mobility ↘); � h�c�h� ² � c�h�

1.851.430.28

0.14Typically, an undoped AlGaAs spacer layer is formed between the doped AlGaAs

and undoped GaAs layers to increase the spatial separation of the electrons from

the ionized donors, further reducing the ionized impurity scattering.

Page 74: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Free Electron

74

Free electron � % � 0, with energy �� ³:2O�

?:´?%: * �'µ.´ � �´� ³:2O�?:´?%: * �'µ.´ � �´ time-independent Schrodinger equation?:´?%: � �2O��³: ´ � �5:´?:´?%: � �2O��³: ´ � �5:´

´ � h;iL�t� * hLi;�t�´ � h;iL�t� * hLi;�t� 5 � 2O��³5 � 2O��³ � � ³:5:2O�� � ³:5:2O�Ψ'%, a. � h;iL�'t�L·". * hLi;�'t�L·".Ψ'%, a. � h;iL�'t�L·". * hLi;�'t�L·".

� � ³:5:2O� → O∗ � ³:?:� ?5:⁄� � ³:5:2O� → O∗ � ³:?:� ?5:⁄

Page 75: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

1-D Quantum Well (Box)

75

Outside the box:

Consider a particle with mass m under potential as:

?:´?%: * 2O�³: ´ � 0?:´?%: * 2O�³: ´ � 0

| ´∗´?%;}L} � | h: sin ¹�j :?%j

� � 1 → h � 2 `⁄| ´∗´?%;}L} � | h: sin ¹�j :?%j

� � 1 → h � 2 `⁄

5 � 2O� ³⁄5 � 2O� ³⁄

)�̀ � 2O�³ → � � ):�:³:2O`:)�̀ � 2O�³ → � � ):�:³:2O`:´ 0 � ´ ` � 0 → ´ � h sin 5% ; 5 � )�̀ , ) � 1,2,3,⋯´ 0 � ´ ` � 0 → ´ � h sin 5% ; 5 � )�̀ , ) � 1,2,3,⋯

�'%.�'%.� � ∞� � ∞ � � ∞� � ∞� � 0� � 0� � ∞ → ´ � 0� � ∞ → ´ � 0

Inside the box:

assin 5%, cos 5%sin 5%, cos 5%continuity of ´ at 0 and `: ) is the quantum number

normalization:

´ � :j sin' ¹j �.

´T´T

´:´:´S´S00 `̀

Page 76: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

1-D Quantum Well (Box)

76

�T�T

� � ∞� � ∞ � � ∞� � ∞� � 0� � 0

´ � :j sin' ¹j �.

´:´:

´S´S

´T´T�: � 4�T�: � 4�T�: � 9�T�: � 9�T

�:³: 2O`:⁄00 `̀

� � ):�:³:2O`:

` ↗ ∞ →free electron

`~0.5)O'atom.�T � 1.5i��: � �T � 4.5i�

Page 77: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

1-D Finite Well

77

We first need to find the values of the energy

for which there are solutions to the Schrödinger

equation, then deduce the corresponding

wavefunctions.

Boundary conditions are given by continuity of

the wavefunction and its first derivative.

?:´?%: � �2O�³: ´ � �5:´?:´?%: � �2O�³: ´ � �5:´

�'%.�'%.� � ¿� � ¿ � � ¿� � ¿� � 0� � 0

assume � C ¿

Finite ´:´ªª � � sin 5% * c cos 5%

00 `̀## #### ######

Region ##Region ##

5 � 2O�³5 � 2O�³

Region # and ###Region # and ###?:´?%: � 2O'¿ � �.³: ´ � À:´?:´?%: � 2O'¿ � �.³: ´ � À:´ À � 2O'¿ � �.³À � 2O'¿ � �.³⇒ ´ � hiÂ� * liLÂ�, % C 0and% Z `

⇒ Ä´ª � hiÂ�, % C 0´ªªª � liLÂ�, % C `

Page 78: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Finite vs. Infinite Well

78

0.39)O0.39)On=1

n=2

n=3

n=4

n=5

n=6

2.47 eV

9.87 eV

22.2 eV

39.5 eV

61.7 eV

88.8 eV

0.39)O0.39)On=1

n=2

n=3

n=4

n=5

n=6

1.95 eV

7.76 eV

17.4 eV

30.5 eV

63.6 eV

46.7 eV

64 eV

Page 79: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Bulk Semiconductor Potential , ϕF

79

� � ³:5�:2O� * ³:5�:2O� * ��� � ³:5�:2O� * ³:5�:2O� * ��

Infinite triangular potential well

self-consistent solution of the Schrodinger and Poisson

equations

�� � ³:2O�TS 32��1

:S ² * 34:S�� � ³:2O�

TS 32��1:S ² * 34

:S1: electric field strength corresponding

to the slope of the energy band

Page 80: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Electron Concentration

80

gT, � ∝ �LT/:

); � h�c�h� ² � c�h�

1.851.430.28

0.14 g:, � ∝ Rai � O∗ �³:⁄gS, � ∝ �T/:+� � | � � g � ?��Å;�q

�Å �� � �³:+�O∗�� � �T * �³:+�O∗

�� � ∆�� � �� � ��������� � � | 1?¤LÆ

�. � �+,E:2@�@-�<-�

�T * �³:+�O∗ � ∆�� � �� � �����

Page 81: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Electron Concentration -Example

81

Page 82: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

carrier flow perpendicula to the

heterointerface

82

Carrier flow

Carrier flow in a heterostructure from the narrow gap semiconductor towards

the wider gap semiconductor. In this case, the carriers encounter a potential

barrier at the interface that arises from the band edge discontinuity. The

electrons can overcome the barrier and enter the wide gap material provided

they have sufficient kinetic energy. (b) Carrier flow in a heterostructure from the

wide gap semiconductor towards the narrow gap semiconductor. In this case, the

carriers gain energy from crossing the potential step.

Page 83: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Potential Well

83

�'%.�'%.� � ��� � ��00 %%## ####

�³:2O ?:´ª?%: � �´ª�³:2O ?:´ª?%: � �´ª

B.C. � h, l, g

Region ##Region ##

Region #Region #

´ª � hi�t� * liL�t�'% C 0.

?:´ª?%: * 5:´ª � 0?:´ª?%: * 5:´ª � 0 wherewhere 5 � 2O� ³⁄5 � 2O� ³⁄�³:2O ?:´ªª?%: * ��´ªª � �´ªª�³:2O ?:´ªª?%: * ��´ªª � �´ªª?:´ªª?%: � À:´ªª � 0?:´ªª?%: � À:´ªª � 0 wherewhere À � 2O'� � ��. ³⁄À � 2O'� � ��. ³⁄

´ªª � AiÂ� * giLÂ�'% Z 0.Ψª %, a � hi� t�L�" ³⁄ * li� t�;�" ³⁄Ψªª %, a � giLÂ�L��" ³⁄

gh � 2� � ² �� � � ���lh � 2� � �� � 2² �� � � ���� � 1i�, �� � 2i�→ TÂÇ�.: �penetration depth

Page 84: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Potential Well

84

Page 85: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Bulk Semiconductor Potential , ϕF

85

³:5::2O: � ³:5T:2OT * ∆��³:5::2O: � ³:5T:2OT * ∆��5T� � 5:�5T� � 5:�5T� � 5:�5T� � 5:�

For simplicity, let us assume

that the electron is confined

completely to the x–z plane

³:'5T�: * 5:È: .2O: � ³:'5T�: * 5TÈ: .2OT * ∆��³:'5T�: * 5:È: .2O: � ³:'5T�: * 5TÈ: .2OT * ∆�� Solving for 5:È

Page 86: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Tunneling

86

�'%.�'%. ¿¿

00 %%## ####�³:2O ?:´?%: * ¿´ � �´�³:2O ?:´?%: * ¿´ � �´

À � 2O'¿ � �. ³⁄À � 2O'¿ � �. ³⁄• Transmission coefficient (T): The

probability that the particle

penetrates the barrier.

• Reflection coefficient (R): The

probability that the particle is

reflected by the barrier.

• T + R = 1

######`̀É ´ª � i�t� * µiL�t�'% C 0. ´ªª � hiÂ� * liLÂ�'0 C % C `. ´ªªª � ai�t�'% Z `.5 � 2O� ³⁄5 � 2O� ³⁄

´ª � ´ªª@% � 0 ?´ª?% � ?´ªª?% @% � 0´ªª � ´ªªª@% � `?´ªª?% � ?´ªªª?% @% � `⇒ Ë hla ⟶ 6 � a :µ ⟶ � � µ :

Page 87: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Tunneling

87

�'%.�'%. ¿¿

00 %%## #### ######`̀

6 � 1 * ¿:4� � � ¿ sin: À` LT�¿

61 classical

quantum

À � 2O'¿ � �. ³⁄À � 2O'¿ � �. ³⁄For ¿ � �For ¿ � � 6 � 1 * �2 O`:³: LTFor ¿ ≫ �For ¿ ≫ � 6~expÐ�2³̀ 2O'¿ � �.Ñ

Page 88: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Material Properties

88

Page 89: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Bulk Semiconductor Potential , ϕF

89

Page 90: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Bulk Semiconductor Potential , ϕF

90

Page 91: Session 4: Solid State Devices Hetrojunction devicesee.sharif.edu/~sarvari/25798/25801-004.pdf · Plotting Energy Bands for HetroJunction 51 1. Vacuum energy ( ) is continuous. 2.

1. I

2.

3.

4.

5.

Bulk Semiconductor Potential , ϕF

91