SAP V Bukaveckas Intro & 2012 [Compatibility Mode]

17
Fifth Meeting of DEQ Science Advisory Panel for James River CHLa Study VCU Rice Center April 26, 2013 http://wp.vcu.edu/jamesriver/

Transcript of SAP V Bukaveckas Intro & 2012 [Compatibility Mode]

Fifth Meeting of DEQ Science Advisory Panel for James River CHLa Study

VCU Rice Center

April 26, 2013http://wp.vcu.edu/jamesriver/

James River CHLa Study

Evaluate existing numeric CHLa criteria for the James. Are they protective of designated uses?

Assess modeling framework: watershed loads, hydrodynamics, and water quality.

Data Collection:• When, where, why of algal

blooms.• Effects on water quality,

human health and aquatic life resources.

Modeling: James-specific linkages between nutrient inputs to the estuary and CHLa in the estuary.

Data Collection Team (PIs)• Iris Anderson (VIMS)• Paul Bukaveckas (VCU)• Harold Marshall (ODU)• Ken Moore (VIMS)• Margie Mulholland (ODU)• Kim Reece (VIMS)

Modeling Team (PIs)• Jim Fitzpatrick (HydroQual)• David Jasinski (CEC)• Andrew Parker (TetraTech)• Jian Shen (VIMS)• Harry Wang (VIMS)

DEQArthur Butt, Anne Schlegel

Science Advisory PanelClifton Bell (MPI) Brian Benham (VPI) Claire Buchanan (ICPRB) Paul Bukaveckas (VCU) Greg Garman (VCU) Eileen E. Hoffman (ODU) Will Hunley (HRSD) Rebecca LePrell (VDH) Winston Lung (UVA) Harold G. Marshall (ODU)Kenneth Moore (VIMS) Margaret Mulholland (ODU) Kimberly Reece (VIMS) Peter Tango (USGS) Harry V. Wang (VIMS)

funding

DEQ prioritizes funding allocations based on recommendations in SAP Workplan.

reporting

DEQ approves reports on data collection & modeling activities submitted by PIsSynthesis products developed for SAP by Bukaveckas, Butt and Schlegel

synthesis

Project StatusDEQ Science Advisory

Panel

Data Collection Team: VCU, VIMS, ODU

Modeling Team: CEC, Tetra Tech, HydroQual, VIMS

establish panel & leadership

Workplan developed

award contracts

Phase 2 Report Completed (under review)

2012 Data Collection Completed

2012 Reporting in Progress

2013 Proposals in Review

SAP Priorities: Spring 2013

n Evaluate results from 2012 data collectionn Assess 2013 data collection activitiesn Evaluate progress in modeling effort

Today’s Meeting10:00 am Opening Remarks by Paul Bukaveckas 10:15 Highlights of Year-1 Findings (P. Bukaveckas) 11:00 Panel Discussion of Year-1 Results 11:15 Year 2 Data Collection Activities (Anne Schlegel) 11:45 Panel Discussion of Year-2 Activities 12:00 Lunch Break 12:30 Primer on the Phytoplankton Model (Jim Fitzpatrick) 1:15 Overview of Modeling Report (Dave Jasinski) 1:30 Watershed Inputs and Critical Conditions (Andrew Parker) 2:15 Historical Water Quality Data Analysis (Jian Shen & Harry Wang) 3:00 Reference Curves (Jim Fitzpatrick) 3:30 Panel Discussion of Modeling Report 4:00 Wrap-Up & Adjourn Meeting

Data Collection and Modeling Framework

PointSources

WatershedRunoff

NutrientLoad

External Drivers

CHLa

Hydrodynamics(WRT, transport)

HABs

System Response

1o

Consumers2o

Consumers

TN,TP,DIN,SRP

A

A. Nutrients, bioavailability & algal uptake

C

C. HABs & CHLa

D

D. HABs & living resources

B

B. Magnitude, duration of blooms

Nutrients, bioavailability & uptake

P N PN Light

Fisher et al. 1999 0 0 0 11

This study 0 2 11 12

Results from algal bioassay experiments performed at JMS75 in 1989-1994 (Fisher et al. 1999) and 2012 (this study).

Main Channel

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15

Irradiance (E/m2/d)

PO

C (m

g/L)

PN

Con

In

Nutrients, bioavailability & uptake

Urea and NH4+ were the dominant forms of N taken up (e.g., ~90% of total N uptake during Cochlodinium bloom). These results suggest that wastewater (tf) and regenerated N were important for fueling phytoplankton growth.

Magnitude, duration & extent of blooms

Tidal freshq Bloom lasting 183 days (CHLa > 20 µg/L) comprised of

diatoms (76%), chlorophytes (16%) and cyanobacteria (6%).

Mesohalineq Spring bloom by the non-HAB dinoflagellate Heterocapsa

triquetra (> 190,000 cells/ml; CHLa >300 µg/L).

Polyhalineq Summer bloom of Cochlodinium polykrikoides (up to 75,000

cells/ml; CHLa >300 µg/L). Bloom appears in headwaters of the Lafayette River and moved to the mouth of the river at the end of June. In situ N regeneration appeared to be the dominant process contributing to bloom sustainability.

Tidal-fresh 2010-2012

0

500

1000

1500

2000

Jul-10 Nov-10 Mar-11 Jul-11 Nov-11 Mar-12 Jul-12 Oct-12

m3/s

0

10

20

30

40

50

Jul-10 Nov-10 Mar-11 Jul-11 Nov-11 Mar-12 Jul-12 Oct-12C

o or

days °C

WRT (d)

0

40

80

120

160

Jul-10 Nov-10 Mar-11 Jul-11 Nov-11 Mar-12 Jul-12 Nov-12

µg/L

0.0

0.3

0.6

0.9

1.2

1.5

Jul-10 Nov-10 Mar-11 Jul-11 Nov-11 Mar-12 Jul-12 Nov-12

mg/

L

TNDIN

0.00

0.04

0.08

0.12

0.16

Jul-10 Nov-10 Mar-11 Jul-11 Nov-11 Mar-12 Jul-12 Nov-12

mg/

L

TPSRP

Discharge

CHLa

Magnitude, duration & extent of blooms

Mesohaline

Polyhaline

Heterocapsa

Cochlodinium

CHLa & HABs

n Meso- and poly- haline: significant positive relationship between CHLa and dinoflagellate biomass.

n Tidal-fresh: significant relationships between CHLa and Microcystin.

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1000

phyt

opla

nkto

n bi

omas

s (µ

gC/L

)

chlorophyll (ug/L)

Dinoflagellates

R2 = 0.54p = 0.0002

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

CHLa (µg/L)

Mic

rocy

stin

(µg/

L)

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1,000 10,000 100,000 1,000,000

Microcystis 16S (copies/ml)

Mic

rocy

stin

(ug

/L)

Microcystin in tidal fresh James 2012

n Detected in 104 of 105 water samples during May through October.

n Detected in 11 of 60 sediment samples during same period.

n Detected in 254 of 379 (67%) individuals for fish and shellfish. Highest incidence of Microcystin contamination in blue crabs (viscera = 100%; muscle = 64%). Microcystin in blue crab tissues exceeded WHO safety guidelines in August.

HABS & Living Resources

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Apr-12 Jun-12 Aug-12 Oct-12 Dec-12 Feb-13

Mic

rocy

stin

(µg

/g D

W L

iver

)

0.0

0.2

0.4

0.6

0.8

1.0

Wat

er C

olum

n M

icro

cyst

in (

µg/L

)

Threadfin Shad

Gizzard Shad

Gizzard Shad YOY

Water Column

YOY gs = 0.98

Microcystin concentrations in water and fish tissues.

HABS & Living Resources

0102030405060708090

100

0 12 2436 / NO DATA48 60 72 84 96

% M

OR

TALI

TY (

mea

n)

TIME (hours)

A. salina / Elizabeth Rr. C. polykrikoides Bloom Event 02 July 2012

Control FED

Control UNFED

Raw Sample FEDRaw Sample UNFED

CHLa = 154 µg/L, 17,000 cells/ml

0102030405060708090

100

0 17 29 41 53 65 77 89 101

% M

OR

TALI

TY (

mea

n)

TIME (hours)

A. salina / Hampton Roads NSN Pier C. polykrikoidesBloom Event 10 July 2012

Control FED

Control UNFED

Raw Sample FED

CHLa = 116 µg/L, 6,000 cells/ml

Three Key Objectives

PointSources

WatershedRunoff

NutrientLoad

External Drivers

CHLa

Hydrodynamics(WRT, transport)

HABs

System Response

1o

Consumers2o

Consumers

TN,TP,DIN,SRP

A

A. Linking nutrient loads to bioavailability & algal uptake

B

B. Linking HABs to CHLa

C

C. Linking HABs to effects on living resources