SAA Report

54
STATISTICAL PROCESS CONTROL RUN TESTS PROCESS CAPABILITY OC CURVE

Transcript of SAA Report

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 1/54

STATISTICALPROCESS

CONTROL

RUN TESTS

PROCESS CAPABILITY

OC CURVE

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 2/54

Run Tests

An additional test for randomness

Even if all points are within the control limits the process may

not be random

Any sort of pattern in the data would suggest a non-random

process

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 3/54

Nonrandom Patternsin Control Charts

Cycle

Trend 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 4/54

 

UCL

LCL

UCL

LCL

UCL

LCL

Bias

Mean shift

Too muchdispersion

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 5/54

U U D U D U D U U D

B A A B A B B B A A B

Counting Runs

Counting Above/Below Median

Counting Ups/Down 

7

8SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 6/54

Run Tests Procedures

Ensure that process arein statistical control

based on the controlcharts

Make a run tests ofproducts and make

measurements ofdeviations from processspecifications or median

or mean

Count number ofobserved runs from thegraph, grouping similar consecutive patters as

one

Compute for z

       

     

 

Compute for thestandard deviation of

the run:

Ợmed= ( 1)/4 

ỢU/D= (16 29)/90 

Compute for theexpected run values:

E( r )med =

+ 1 

E( r )u/d =−

 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 7/54

ILLUSTRATION:

Twenty sample means have beentaken from a process. The means are

shown in the following table. Usemedian and up/down run tests with z= 2 to determine if assignable causesof variation are present. Assume the

median is 11.

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 8/54

Given:

Sample Mean

1 10.0

2 10.4

3 10.2

4 11.5

5 10.8

6 11.6

7 11.1

8 11.2

9 10.6

10 10.9

11 10.7

12 11.3

13 10.8

14 11.8

15 11.2

16 11.6

17 11.2

18 10.6

19 10.7

20 11.9

A/B

B

B

B

A

B

A

A

A

B

B

B

A

B

A

A

A

A

B

B

A

9.5

10

10.5

11

11.5

12

0 5 10 15 20 25

Mean

Mean

Median

N = 20z = 2

Median = 11

Observed Runmed = 10SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 9/54

Observed RunU/D = 17

9.5

10.0

10.5

11.0

11.5

12.0

0 5 10 15 20 25

M

e

a

n

 

Sample

Ups/Downs Chart

Mean

Sample Mean

1 10.0

2 10.4

3 10.2

4 11.5

5 10.8

6 11.6

7 11.18 11.2

9 10.6

10 10.9

11 10.7

12 11.3

13 10.8

14 11.815 11.2

16 11.6

17 11.2

18 10.6

19 10.7

20 11.9

Ups and DownsU/D 

U D 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 10/54

Computation of Expected Run (Er)

E( r )med =

+ 1 =

+ 1 =  11  10 

E( r )u/d =−

 

2(20) 1

3  13 17 

Er   Or  

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 11/54

Chance Variability Computation

Ợmed= ( 1)/4  = (20 1)/4 

ỢU/D= (16 29)/90 = (16(20) 29)/90 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 12/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 13/54

 

Decision Point

Run Tests Computed Value ≤≥ ZDesired Findings

Zmed -0.46 < ±2 Random

ZU/D 2.22 > ±2 Not Random

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 14/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 15/54

Common Terms For Variability Of Process

Tolerances or specifications

Range of acceptable values established by engineering

design or customer requirements

Process variability

Natural variability in a process

Process capability

Process variability relative to specification

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 16/54

Capability Analysis

Lower

Specification

Upper

Specification

A. Process variability

matches specifications

LowerSpecification UpperSpecification

B. Process variability

well within specificationsLowerSpecification

UpperSpecification

C. Process variability

exceeds specificationsSAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 17/54

(a) Acceptance sampling(Some bad units

accepted)

(b) Statistical processcontrol (Keep theprocess in control)

(c) Cpk >1 (Designa process thatis in control)

Lowerspecification

limit

Upperspecification

limit

Process mean, m SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 18/54

Actions In Case Of Tightness

redesign the process so that it can achieve thedesired output

use an alternative process that can achieve the

desired output retain the current process but attempt to

eliminate unacceptable output using 100 percentinspection; and,

examine the specifications to see whether they

are necessary or could be relaxed withoutadversely affecting customer satisfaction

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 19/54

Process Capability

The natural variation of a process should be small enough to produce products that meet the standards required

 A process in statistical control does not necessarily meet the design specifications

Process capability is a measure of the relationship between the naturalvariation of the process and the design specifications SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 20/54

Process Capability Ratio Cp 

Cp =Upper Specification - Lower Specification

6s 

 A capable process must have a Cp of at least 1.0

Does not look at how well the process iscentered in the specification range

Often a target value of Cp = 1.33 isused to allow for off-center processes

 Six Sigma quality requires a Cp = 2.0SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 21/54

Process Capability Ratio 

Cp =Upper Specification - Lower Specification

6s

 

Insurance claims process

Process mean x = 210.0 minutes

Process standard deviation s = .516 minutesDesign specification = 210 ± 3 minutes

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 22/54

Process Capability Ratio 

Cp =Upper Specification - Lower Specification

6s

 

Insurance claims process

Process mean x = 210.0 minutes

Process standard deviation s = .516 minutesDesign specification = 210 ± 3 minutes

= = 1.938213 - 207

6(.516)

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 23/54

Process Capability Ratio 

Cp =Upper Specification - Lower Specification

6s

 

Insurance claims process

Process mean x = 210.0 minutes

Process standard deviation s = .516 minutesDesign specification = 210 ± 3 minutes

= = 1.938213 - 207

6(.516)Process iscapable

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 24/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 25/54

ILLUSTRATION

Standard

Deviation

(mm)

Machine

Capability

(sd x 6)

Cp

(c/U-L)

0.13 0.78 1.03

0.08 0.48 1.67

0.16 0.96 0.83

0.78

0.48

0.96

1.03

1.67

0.83

B’s Cp of 1.67 > 1.33SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 26/54

Process

mean

Lowerspecification

Upper

specification

1350 ppm 1350 ppm

1.7 ppm 1.7 ppm

+/- 3 Sigma

+/- 6 Sigma

3 Sigma and 6 Sigma Quality 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 27/54

Cpk 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 28/54

 A capable process must have a Cpk of at 

least 1.0  A capable process is not necessarily in the

center of the specification, but it falls withinthe specification limit at both extremes 

Cpk = minimum of ,

Upper  Specification - x

Limit  3s 

Lower  x - Specification

Limit 3s 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 29/54

New Cutting Machine

New process mean x = .250 inches Process standard deviation s = .0005 inches 

Upper Specification Limit = .251 inchesLower Specification Limit = .249 inches 

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 30/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 31/54

New Cutting Machine

New process mean x = .250 inches Process standard deviation s = .0005 inches 

Upper Specification Limit = .251 inchesLower Specification Limit = .249 inches 

Cpk = = 0.67.001

.0015 

New machine isNOT capable

Cpk = minimum of ,(.251) - .250

(3).0005 

.250 - (.249)

(3).0005

Both calculations result in

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 32/54

Cpk = negative number  

Cpk = zero  

Cpk = between 0 and 1

Cpk = 1

Cpk > 1SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 33/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 34/54

ILLUSTRATION

A process has a mean of 9.20 grams and a standard

deviation of .30 gram. The lower specification limit

is 7.50 grams and the upper specification limit is

10.50 grams. Compute Cpk·

Cpk =10.50−9.20

3(.30

)

(upper specs.)

=9.20−7.50

3(.30)(lower specs.)

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 35/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 36/54

IMPROVING PROCESS

CAPABILITY

Simplify

StandardizeMistake-proof 

Upgrade equipmentAutomate

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 37/54

Acceptance Sampling

Form of quality testing used for incoming materials or finished goods

Take samples at random from a lot(shipment) of items

Inspect each of the items in the sample

Decide whether to reject the whole lot

based on the inspection results

Only screens lots; does not drivequality improvement efforts SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 38/54

Operating Characteristic Curve

Shows how well a sampling plandiscriminates between good andbad lots (shipments)

Shows the relationship betweenthe probability of accepting a lot

and its quality level

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 39/54

Return wholeshipment

% Defective in Lot

   P   (   A  c  c

  e  p   t   W   h  o   l  e

   S   h   i  p  m

  e  n   t   )

100  –  

75  –  

50  –  

25  –  

0  –  | | | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100

Cut-Off

Keepwhole

shipment

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 40/54

AQL and LTPD

Acceptable Quality Level (AQL)

Poorest level of quality we arewilling to accept

Lot Tolerance Percent Defective(LTPD)

Quality level we consider bad

Consumer (buyer) does not wantto accept lots with more defectsthan LTPD SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 41/54

Producer’s and Consumer’s Risks 

Producer's risk ()

Probability of rejecting a good lot

Probability of rejecting a lot when thefraction defective is at or above theAQL

Consumer's risk (b)

Probability of accepting a bad lot

Probability of accepting a lot whenfraction defective is below the LTPDSAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 42/54

Probability ofAcceptance

Percentdefective

| | | | | | | | |

0 1 2 3 4 5 6 7 8

100  – 95  – 

75  – 

50  – 

25  – 

10  – 

0  – 

 = 0.05 producer’s risk for AQL 

b = 0.10

Consumer’srisk for LTPD

LTPDAQL

Bad lotsIndifference

zoneGoodlots

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 43/54

n = 50, c = 1

n = 100, c = 2

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 44/54

 A shipment of 2,000 portable battery units for microcomputers isabout to be inspected by a Malaysian importer. The Koreanmanufacturer and the importer have set up a sampling plan inwhich the risk is limited to 5% at an acceptable quality level (AQL)of 2% defective, and the ß risk is set to 10% at Lot Tolerance Percent

Defective (LTPD) = 7% defective. We want to construct the OCcurve for the plan of n = 120 sample size and an acceptance levelof c ≤ 3 defectives. Both firms want to know if this plan will satisfytheir quality and risk requirements. Use range values of 1 to 8percent as defectives.

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 45/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 47/54

SAA

8.4%

Defective

B  a d  L 

 ot   s 

AQL = .221 

GoodLots

-

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 48/54

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12

GOOD

LOTS ≤

2.4% D

= 0.22 PR for 

AQL

ß = .03 CR

for LTPD

B

A

D

L

O

T

S

>

8.4%D

INDIFFERENCE

Percent Defective

P

o

b

a

b

i

l

i

t

y

 

o

f

 

A

c

c

e

p

t

a

n

c

e

 

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 49/54

Average Outgoing Quality

1. If a sampling plan replaces alldefectives

2. If we know the incoming percent

defective for the lot, we can computethe average outgoing quality (AOQ) inpercent defective

The maximum AOQ is the highestpercent defective or the lowest averagequality and is called the averageoutgoing quality limit (AOQL) SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 50/54

Average Outgoing Quality

where

Pd = true percent defective of the lot

Pa = probability of accepting the lot

N = number of items in the lot

n = number of items in the sample

AOQ =(Pd)(Pa)(N - n)

N

SAA

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 51/54

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 52/54

Table of Illustration 2

SAA

p pac AOQ 

0 0 (P x Pac)

0.05 0.914 0.046

0.10 0.736 0.074

0.15 0.544 0.082

0.20 0.376 0.075

0.25 0.244 0.0610.30 0.149 0.045

0.35 0.086 0.030

0.40 0.046 0.019

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 53/54

SAA

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4

The deliveries is 92.8%,(100-8.2)% good at 8.2AOQL.

   A

   O   Q

8/2/2019 SAA Report

http://slidepdf.com/reader/full/saa-report 54/54

SAA