Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

23
Ultrasonic CO 2 measurements during quiet breathing with a portable spirometer may potentially diagnose airway obstruction Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

description

Ultrasonic CO 2 measurements during quiet breathing with a portable spirometer may potentially diagnose airway obstruction. Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D. Ultrasound Transit Time Flow Measurement. Transit time differences - PowerPoint PPT Presentation

Transcript of Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Page 1: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Ultrasonic CO2 measurements during quiet breathing with a

portable spirometer may potentially diagnose airway

obstruction

Robert Jensen, Ph.D.Christian Buess, Ph.D.

Robert Crapo, M.D.

Page 2: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Ultrasound Transit Time Flow Measurement

• Transit time differencesbetween upstream and downstream ultrasound pulses are used to measure gas flow velocity

• The bigger the difference in transit times, the faster the velocity (cm/sec)

• Velocity (cm/sec) x cross-sectional area (cm2) gives flow (cm3/sec) or (ml/sec)

Page 3: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Ultrasound Molar Mass Measurement

• The speed of sound in a gas is dependent upon the molar mass of the gas mixture. Although, temperature alters the speed of sound within a gas mixture it can be compensated for in the calculations.

• Mean molar mass of a mixture of n gases is determined as:Sum(i=1 to n) [ Molecular Weight[gas(i)] x

Concentration[gas(i)] ]

Page 4: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Examples: Molar Mass Calculations

Gas ConcentrationMolecular

Weight [g/mol]Fract. Molar Mass [g/mol]

Nitrogen 0.781 28 21.8680Oxygen 0.2093 31.99 6.6955

Carbon Dioxide 0.0003 44 0.0132Argon 0.0094 39.95 0.3755

1

28.95

Gas ConcentrationMolecular

Weight [g/mol]Fract. Molar Mass [g/mol]

Nitrogen 0.77998 28 21.8394Oxygen 0.14 31.99 4.4786

Carbon Dioxide 0.07 44 3.0800Argon 0.0094 39.95 0.3755Water 0.00062 18 0.0112

1

29.78

Room Air

End Tidal Gas From The Lungs

Mean Molar mass of End Tidal Gas

Mean Molar mass of Air at 0% Humidity

Page 5: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Accuracy of Measurements

Molar mass resolution of ultrasonic flow meter= 0.01 g/mol

Average Molar Mass = 29.4 g/mol

100% x (0.01 / 29.4) = 0.034%

Page 6: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Molar Mass, Flow, and Volume Changes During Quiet Breathing

Page 7: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Application to Pulmonary Function Testing

Molar Mass (MM) is a Potential Surrogate for CO2

• The sensor can simultaneously measure the molar mass of the exhaled gas using same transit time signals used to measure air flow.

• Eliminates problems associated with common analyzers– Time alignment– Calibration– Response time

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8Volume [L]

CO

2 %

/Mol

ar M

ass

[g/m

ol]

MMCO2

Molar Mass (MM) &

CO2% (mass spec)

Page 8: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Study Objectives

• Compare Molar Mass signals to CO2 signals measured simultaneously with a mass spectrometer

• Extract similar parameters from both CO2 and Molar Mass signals and compare them

• Evaluate the possibility of categorizing clinical patients with Molar Mass signal parameters into categories of obstruction

Page 9: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Study DesignPatients and healthy volunteers at the pulmonary function laboratory at LDS Hospital in Salt Lake City, Utah, USA

N=40 (21 Men, 19 Women) Mean Age: 50.2 (range 22 to 75)

Measurements:Spirometry (FVC, FEV1, PEF and FEV1/FVC ratio)DLCO (only in scheduled patients)Mass spectrometer (%CO2 Measurements)Ultrasonic flow sensor (Flow, Molar Mass

Measurements)

Page 10: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Data Collection

• Subject seated using nose clips• Relaxed breathing for 5 minutes• Slow vital capacity within first and last

minutes of testing

• Mass spectrometer calibrated prior to each test

• Signals digitized at 200 samples/sec• Tidal breaths combined for analysis into two

composite curves (Volume vs CO2 andVolume vs Molar Mass)

Page 11: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Parameters extracted from composite curves (for Volume-%CO2 and Volume-Molar Mass curves):

1. Maximum slope of the volume-gas curve2. Volume where the maximum slope occurs3. Slope of phase III of the volume-gas curve4. Volume at beginning of Phase III

Parameter Extraction

0.0 0.2 0.4 0.6 0.8 1.0

Exhaled Volume (liters)

0

1

2

3

4

5

6

7

8

CO

2 or M

ola

r Ma

ss

(3)Slope of Phase III

(1)Maximum Slopeof Volume-Gas

Curve

(4)Volume at Start of Phase III

(2)Volume atMaximum

Slope

Page 12: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Clinical Classifications From Spirometry, DLCO And Physician

Diagnosis• Normal (n=16)• Mild Obstruction (4)• Moderate Obstruction (6)• Severe Obstruction (10)

Total Analyzed = 36

Page 13: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Statistical Analysis• Correlations between CO2 and Molar Mass

parameters

• Linear Discriminant Analysis

– Compare % Classification using Volume-%CO2 parameters vs. Volume-Molar Mass parameters to categorize subjects

– Incorporate Age, Gender in addition to Molar Mass parameters to categorize subjects

– Categorize to “Normal” or “Any Obstruction”

Page 14: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Mean Parameter Values

Normal Mild Moderate Severe

FEV1 3.11 ± 0.75 3.24 ± 0.84 1.91 ± 0.74 1.55 ± 0.55

FVC/FEV1 77.9 ± 8.6 66.3 ± 3.0 59.3 ± 6.6 46.4 ± 8.9

Max %CO2/L 3.54 ± 1.80 2.82 ± 1.36 3.37 ± 1.62 1.75 ± 0.48

Volume at Max %CO2/L

0.120 ± 0.031

0.172 ± .062

0.123 ± .021

0.141 ± .036

Slope Phase III 2.19 ± 1.45 4.82 ± 1.85 4.74 ± 3.33 4.90 ± 2.23

Volume at Phase III

0.450 ± 0.443 ± .015

0.435 ± .037

0.450 ±

Page 15: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Correlation of Maximum Slope between CO2 (mass spec) and Molar Mass (MM)

MM and CO2 Phase II slope comparisonMM and CO2 slope are quite similar

y = 8.3828x + 14.686

R2 = 0.82330

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

DeltaVGMax MM

Del

taV

GM

ax C

O2

Page 16: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Correlation of maximum slope betweenCO2 (mass spec) and molar mass

Graph of Maximum Volume-Gas ChangeUsing Molar Mass and Mass Spectrometer [CO2]

0 1 2 3 4 5 6 7 8 9

Maximum Slope of Volume-Gas Concentration( Molar Mass / liter )

0

10

20

30

40

50

60

70

80

Ma

ximu

m S

lop

e o

f Vo

lum

e-

Ga

s Co

nce

ntra

tion

( %C

O2

mass sp

ec / lite

r )

Mild Obstruction Moderate Obstruction Severe Obstruction Normal

y = 8.38x + 14.7R2 = 0.82

Page 17: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Graph of Maximum Volume-Gas Change

Using Molar Mass and Mass Spectrometer [CO2]

0 1 2 3 4 5 6 7 8 9

Maximum Slope of Volume-Gas Concentration( Molar Mass / liter )

0

10

20

30

40

50

60

70

80

Maxim

um S

lope of Volum

e-Gas C

oncentration( %

CO

2m

ass sp

ec / liter )

Mild Obstruction Moderate Obstruction Severe Obstruction Normal

Page 18: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Category Comparisons

012345678

0 0.2 0.4 0.6 0.8 1

Volume [L]MMCO2

Average For Normal Group

FVC/FEV1 77.9 %

Max %CO2/L 3.54

Volume Max Slope (L)

0.120

Normal Mild Obstruction

012345678

0 0.2 0.4 0.6 0.8 1

Volume [L]MMCO2

Average For Mild Group

FVC/FEV1 66.3 %

Max %CO2/L 2.82

Volume Max Slope (L)

0.172

Page 19: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

012345678

0 0.2 0.4 0.6 0.8 1

Volume [L]MMCO2

Normal Moderate

012345678

0 0.2 0.4 0.6 0.8 1

Volume [L]

MM

CO2

Average for Normal Group

FVC/FEV1 77.9 %

Max %CO2/L 3.54

Volume Max Slope (L)

0.120

Average for Moderate Group

FVC/FEV1 59.3 %

Max %CO2/L 3.37

Volume Max Slope (L) 0.123

Page 20: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

012345678

0 0.2 0.4 0.6 0.8 1

Volume [L]MMCO2

012345678

0 0.2 0.4 0.6 0.8 1

Volume [L]MMCO2

Normal Severe Obstruction

Average for Normal Group

FVC/FEV1 77.9 %

Max %CO2/L 3.54

Volume Max Slope (L)

0.120

Average for Severe Group

FVC/FEV1 46.4 %

Max %CO2/L 1.75

Volume Max Slope (L)

0.141

Page 21: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Discriminant Analysis Findings

• Using four parameters– %CO2 correctly categorized 72% of the

subjects into their spirometric “Normal” or “Obstruction” category

– Molar Mass correctly categorized 67%• Using only Molar Mass parameters

– Adding Age and Gender, Molar Mass correctly categorized 78%

– Molar Mass correctly classified 83% into either “Normal” or “Any Obstruction”

Page 22: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Conclusions

• Molar mass measurements may provide an effort-independent test that will diagnose airway obstruction.

• Molar mass measurements are simple.– No external sensors or analyzers needed– No calibration necessary

• May add additional information to traditional spirometry

Page 23: Robert Jensen, Ph.D. Christian Buess, Ph.D. Robert Crapo, M.D.

Next Steps

• Additional data required (larger patient databases)• Studies in asthmatic patients

– Pre and post bronchodilator studies– Changes during methacholine

challenges

• Pediatric studies