Review of Trigonometry - MDHS Math Department...

37
Lesson1.notebook November 27, 2012 Unit 1 Representing and Operations with Vectors Algebra Over the years you have come to accept various mathematical concepts or properties: Communative Property Associative Property Distributive Property Identities Inverse Operations Problem Solving Skills 4 basic steps to effective problem solving: 1) Understand the problem: 2) Think of a plan: 3) Carry out the plan. 4) Reflect on solution:

Transcript of Review of Trigonometry - MDHS Math Department...

Lesson1.notebook November 27, 2012

Unit 1 ­ Representing and Operations with Vectors

Algebra ­

Over the years you have come to accept various mathematical concepts or properties:

Communative Property ­

Associative Property ­

Distributive Property ­

Identities ­

Inverse Operations ­

Problem Solving Skills ­ 4 basic steps to effective problem solving:

1)  Understand the problem:

2)  Think of a plan:

3)  Carry out the plan.

4)  Reflect on solution:

Lesson1.notebook November 27, 2012

Review of TrigonometryPythagorean Theorem

Right Angle Trigonometric Ratios

Sine Law

Cosine Law

Lesson1.notebook November 27, 2012

CAST Rule

Example:  From a cliff 50 m high, a person can see 2 boats.  One boat is S50W at an angle of depression of 30 degrees.  The second boat is S60E and is at an angle of depression of 45 degrees.  How far apart are the boats?

Lesson1.notebook November 27, 2012

Vector ConceptsToday's goal:  I can explain the difference between a vector and scalar and I can describe the properties and notation associated with vectors.

Vectors ­

Scalar ­

Examples:

Vector Notation

Lesson1.notebook November 27, 2012

Angles Between Vectors

Scalar Multiplication

Zero Vector

Unit Vectors

Examples:  List all equal vectors in the given diagram.

Lesson1.notebook November 27, 2012

Example:  For the given number line, state equivalent vectors.

    A         3           B         2        C                5                    D                     7                        E

Homework:  pg 121  #1 ­ 6, 8, 9Handoutpg 127  #1,2,4,6,8,9,13

Lesson2.notebook November 27, 2012

Algebraic VectorsToday's goal:  I can write a vector in both ordered pair and unit vector notation and complete the associated operations using algebraic methods.

There are two algebraic forms that we can use to represent vectors:

Ordered Pair Notation Unit Vector Notation

In 3 ­ space:

The Direction Cosines for a vector in 3 ­ space are:

From our grade 11 trigonometric identity:It now becomes:

Lesson2.notebook November 27, 2012

Example:  Determine the unit vector notation for the following vectors.A)  u = [ ­9, 12] B)   v = [3, 5, 8]

Example:  Write the following in order pair notation.A)  |u| = 20, [N20W] B)  |v| = 50,  θ = 230

Lesson2.notebook November 27, 2012

Example:  Determine the magnitude, direction and unit vector for the following:

A)  u = [2, ­6] B)  v = [1, 3, 9]

For 3 ­ space we can break it into "areas" or "planes".  For example:

HWpage 166  # 1 ­ 8, 11, 13, 14, 16 ­ 19, 23

Lesson3.notebook November 27, 2012

Operations with Algebraic Vectors

Today's goal:  I can extend my knowledge of algebraic vectors to the concepts of adding and subtracting, making the connection with currently understood algebra rules.

Two Algebraic vectors are equal if and only if their Cartesian components are equal.

Collinear vectors ­ are any two vectors that lie on the same line.Which means:

Operations with Algebraic Vectors

Scalar multiplication:    k(ai + bj) =

  k[a, b] =

Vector addition/subtraction:ai + bj ­ (ci ­ dj) =

[a, b] ­ [c, ­d] =

Example:  If u = [3,8] and v = [­2, 6], determine:

A)  w if w = 3u + 2v B)  w if w = ­2u + 1/2v

C)  |u + 3v|

Lesson3.notebook November 27, 2012

Example:  Given points P(­6, 1), Q(­2, ­1) and R(­3, 4), determine:A) QP B)  |RP|

Example:  Given points P(3, ­1, 4), Q(­3, 1, 5) and R(­7, ­4, ­2), determine:A)  QP B)  |RP|

Lesson3.notebook November 27, 2012

Example:  Determine if the following points are collinear.  Justify your answer.

P(2, 3, 6) Q(8, 1, 10) R(5, 2, 8)

HWpage 172  #2 ­ 10, 13, 14

Lesson4.notebook November 27, 2012

Vector LawsToday's goal:  I can apply the rules of vector addition to applications that model real­world situations, preparing me to apply them in a physics context.

If u and v are vectors:

1)  Closure

2)  Communative

3)  Associative

4)  Distributive (if a and b are scalars)

5)  Identity

Triangle Law of Vector Addition

When adding/subtracting two vectors:

1)  Draw the two vectors head to tail.

2)  The "sum" or resultant is a vector     that is measured from the tail of     the first vector to the head of the     second vector.

Lesson4.notebook November 27, 2012

Parallelogram Law of Vector Addition

When adding/subtracting two vectors:

1)  Draw the vectors tail to tail.

2)  Create a parallelogram using the     two vectors as two sides of the      parallelogram.

3)  Draw the resultant vector which      extends from the tails to the heads     of the vectors or it is the diagonal     of the parallelogram.

Example:  if |u| = 10 units, |v| = 5 units and the angle between the two vectors when placed tail to tail is 30 degrees, determine the resultant.

Lesson4.notebook November 27, 2012

Geometric VectorsExample:  Determine the resultant of 3u ­ 2v + 5w.

Algebraic VectorsTo use algebraic vectors we need to review the right angle triangle and discuss components.

Lesson4.notebook November 27, 2012

Example:  if |u| = 10 units, |v| = 5 units and the angle between the two vectors when placed tail to tail is 30 degrees, determine the resultant.

Algebraic Vectors  (Coordinate Form)Example:  Determine the resultant of 3u ­ 2v + 5w.

Lesson4.notebook November 27, 2012

Determine u given the following vectors. 

45 75

u  =  25v  =  10R =  15

Homework:

Pg 133, # 1, 3ab, 4 ­ 6, 10 ­ 12, 20Handout

Lesson6.notebook November 27, 2012

Force and Velocity of a VectorToday's goal:  I can apply previous understanding of vector addition and subtraction and apply them to real­world situations involving physics.

ForceFor this section everyone needs to "know" Newton's Three Laws:

1)

2)

3)

Example:  A 5 kg sign is suspended as shown.  Determine the tension in each wire.

45 60

Lesson6.notebook November 27, 2012

45 60

Example:  Chris and Josh are pulling a sled as shown.  If Josh is pulling with 70 N of force, determine with what force Chris must exert so the sled is kept travelling straight.

3050

70 N

x

Lesson6.notebook November 27, 2012

3050

70 N

x

Example:  Determine the resulting force.

Lesson6.notebook November 27, 2012

Velocity as a  Vector

Velocity is a measure of speed (magnitude) and direction.  We can use our knowledge of vectors to solve questions involving velocity.

Relative Velocity is the velocity an observer perceives other objects to be travelling at.

Complete the following chart:

Bus:Train:Car:

My Location Bus Train Car 

Lesson6.notebook November 27, 2012

Relative Motion Equation:  vrel = vA + vB where,vrel ­

vA  ­

vB  ­

Example:  A plane is travelling 400 km/h [N60E].  The pilot set a course of 500 km/h [N30E].  Determine the velocity of the wind.

Lesson6.notebook November 27, 2012

Example:  A ship steering 15 km/h [N70E].  If the current is 5 km/h [W10N],   determine the relative velocity of the boat when standing on shore.

Homework:

pg  141, # 2­4, 6­10, 13­15, 18, 24, 25pg  149, # 2 ­ 8, 13

Lesson7.notebook November 27, 2012

The Dot Product of Two Vectors

Today's goal:  I can recognize the need for the Dot Product and situations it is required.  I can then apply it using previously discussed methods.

Example:  Determine the amount of work to move the object from point A to point B in the diagram where:

f ­ applied forceAB ­ displacement vector

HINT:  W = force x displacementWork is also a scalar!

A

Bf

20

θθ

General Notes on the Dot Product (also known as the Scalar Product)

For non ­ zero vectors u and v, we define the Dot Product as:

u   v  = |u||v|cosθ, where θ is a value 0≤θ≤180.

If u or v is the zero vector, than u   v = 0.

If θ=90, then cosθ = 0.  If u and v are perpendicular to each other, the dot product is zero.

Lesson7.notebook November 27, 2012

Properties of the Dot Product

1)  For non ­ zero vectors u and v, if u   v = 0, the vectors are perpendicular.

2)  For any vectors u and v, u   v = v   u.  The Dot Product is communative.

3)  For any vector u, u  u = |u|2.

4)  For any vectors u and v with a scalar value k, k εR,(ku)   v = k(u    v) = u   (kv)

5)  For any vectors u, v, and w,u   (v + w) = u   v + u     w

Applying the Dot Product

If u = uxi + uyj + uzk  and v = vxi + vyj + vzk then,

Multiplying unit vectors:

Performing the Dot Product:

u  v  =

Lesson7.notebook November 27, 2012

Summary:

If u = [a, b, c] and v = [d, e, f] then:

u  v =

Example:  Determine the Dot Product.

1)  u = [3,7] and v = [4, ­2] 2)  u = 2i + 3j ­ 4k and v = ­i + 6j + 2k

Lesson7.notebook November 27, 2012

Example:  Determine the angle between the two vectors.

1)  u = [2,4] and v = [­7, 2] 2)  u = [5, 2, 1] and v = [10, ­3, 4]

Example:  Determine the value of z to make the vectors perpendicular.

u = [2, 7, ­6] and v = [5, ­4, z]

Homework:

page 178  #1 ­ 15, 21

Lesson8.notebook November 27, 2012

The Cross Product of Two Vectors

Today's goal:  I can identify when the Cross Product would be required and how in principle it works.  I can use the appropriate skills to determine its value.

Example:  A wrench is tightening a nut.  Discuss the forces involved.

Magnitude will depend on:

1)

2)

Resulting formula:

Why is torque a vector?

The Right Hand Rule

The Right Hand Rule is applied because we can model 3 vectors (ie. applied force, Torque or Moment, and lever length) using fingers from our hand.

In general, we point our fingers along vector u (ie. the lever length) and then curl our fingers in the direction v (ie. applied force) for angles of 0≤θ≤180.  The direction of our thumb then indicates the direction of the torque or moment (ie. is the bolt or screw tightening or loosening from the board).

Lesson8.notebook November 27, 2012

Notation

u x v = |u||v|sinθn, where:

General Properties

1)  u x v = ­(v x u)  Not communative

2)  For non­zero vectors u and v, both vectors are collinear if, and only if,     u x v = 0.

3)  Two vectors are not collinear if u x v ≠ 0.

4)  For vectors u, v, and w:u x (v + w) =(u + v) x w =ku x v =

Applying the Cross Product

For vectors u = [ux, uy, uz] and v = [vx, vy, vz]:

u x v =

 =

Easier forms to help remember:

Lesson8.notebook November 27, 2012

Example:  Determine the Cross Product.

1)  |u| = 5,  |v| = 10, θ = 30 2)  u = [3, 6, 2] and v = [­2, 4, ­8]

3)  u = 2i ­ 3j + 5k and v = ­7i + 2j ­ 3k

Example:  Determine a vector perpendicular to u = [­1, 3, 2] and v = [­3, ­2, 1].  Justify your answer.

Lesson8.notebook November 27, 2012

Example:  If |u x v| = 34, |u| = 4, and |v| = 9 the find θ.

Example:  Find a x b where a = 2i ­ 3j + 5k  and  b = ­7i + 2j ­3k.

Homework:page 185  #1 ­ 10, 14

Lesson9.notebook November 27, 2012

Applications of the Dot and Cross Product

Today's goal:  I can determine when the Dot and Cross Product need to be applied and understand how they are used in a variety of real­world applications that are modelled in a simple format.

The Dot and Cross product have a variety of applications where they can be applied individually or in combination.

Determining 3 ­ Space

What is 3 ­ space?

Example:  Determine if the given vectors are the basis for space:

u = [2, ­3, 5]    v = [­1, 0, 3]   w = [­4, 1, 0]

Lesson9.notebook November 27, 2012

ProjectionsWe talked about the x and y ­ components of a vector also being the projection (or shadow) onto the x and y ­ axis.  What about the projection of one vector onto another?  For example...

Area of a ParallelogramWith drafting programs, they often have the ability to calculate the area of a given shape.  This is how they work...

h

b

wArea =

Lesson9.notebook November 27, 2012

Volume of a Parallelepiped (or any other rectangular prism)Similar to area, programs can also calculate volume.  This is how they work...

Volume =

Work

Torque

Lesson9.notebook November 27, 2012

Example:  If u = [­1, 3, 6] and v = [­2, 1, ­3], find the projection of u onto v and the magnitude of the projection.

Example:  A parallelogram has vertices A(1, 1, 1), B(4, 3, 2), C(1, 2, ­3) and D(­2, 0, ­4).  Determine the area.

Lesson9.notebook November 27, 2012

Example:  Use the Dot Product to prove the cosine law.

Example:  Determine the Torque for the following.

Lesson9.notebook November 27, 2012

Homework:Proof questions:

1)  Prove that: |u x v|2 = |u|2|v|2 ­ (u   v)2

2)  Prove that: |a + b|2 + |a ­ b|2 = 2|a|2 + 2|b|2

3)  Prove that:  |a|2|b|2 ­ (a   b)2 = 0

4)  ABC is an isosceles triangle with base BC.  Use vectors to     prove that the median from vertex A is perpendicular to the     base.

page 192  #1 ­ 3, 7, 9 ­ 18

Unit Test:

End date of unit:

Test dates:

Review dates:

Review material:  Handoutpg 153 (pick and choose)pg 155 (pick and choose)pg 194 (pick and choose)pg 197 (pick and choose)