PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung...

104

Transcript of PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung...

Page 1: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología
Page 2: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

PROGRAMANDABSTRACTS

XIREUNIÓNDEBIOLOGÍAVEGETALDECHILE

28deNoviembreal1deDiciembre2016

HotelTermasdeChillán,Chillán.Chile

ORGANIZERS

Page 3: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

2

SPONSORS

Page 4: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

3

EXHIBITORS

Page 5: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

4

COMMITTEES

CONGRESSORGANIZERSANDSCIENTIFICCOMMITTEE:

ChileanSocietyofPlantBiologistsLeadership

RodrigoGutiérrez,PontificiaUniversidadCatólicadeChile

FranciscaBlanco,UniversidadAndrésBello

RaúlHerrera,UniversidaddeTalca

MichaelHandford,UniversidaddeChile

LocalOrganizingCommittee

MarelyCuba,UniversidaddeConcepción

CristianBalbontín,InstitutodeInvestigacionesAgropecuarias(INIA-Quilamapu)

GerardoTapia,InstitutodeInvestigacionesAgropecuarias(INIA-Quilamapu)

ScientificCommittee

GraceArmijo,PontificiaUniversidadCatólicadeChile

CristianBalbontín,InstitutodeInvestigacionesAgropecuarias(INIA-Quilamapu)

FranciscaBlanco,UniversidadAndrésBello

MarelyCuba,UniversidaddeConcepción

PabloFigueroa,UniversidaddeTalca

MauricioGonzálezAgüero,InstitutodeInvestigacionesAgropecuarias(INIA-LaPlatina)

RodrigoGutiérrez,PontificiaUniversidadCatólicadeChile

MichaelHandford,UniversidaddeChile

RaúlHerrera,UniversidaddeTalca

LorenaNorambuena,UniversidaddeChile

BorisSagredo,InstitutodeInvestigacionesAgropecuarias(INIA-Rayantué)

GerardoTapia,InstitutodeInvestigacionesAgropecuarias(INIA-Quilamapu)

Page 6: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

5

SCIENTIFICPROGRAM

MONDAY,NOVEMBER28TH

16:00-18:00 Registration

18:30-19:00 Openingwelcome

19:00-20:00 KeynoteOpeningChair:RodrigoGutiérrezOrellanaA,CentrodeBiotecnologíaVegetalandFONDAPCenterforGenomeRegulation.FacultaddeCienciasBiológicas,UniversidadAndresBello,Santiago,Chile.Copingwithlifeinextremeenvironments:Cistanthelongiscapa,acaseofstudy.

20:00-21:00 WelcomeReception

TUESDAY,NOVEMBER29TH

09:00-11:20 PlenarySession1:PlantGenomeRegulation Chairs:FranciscaBlanco&JavierCanales09:00-09:50 PlenaryLecture1:PlantGenomeRegulation

Saez-VasquezJ.1LaboratoireGénomeetDéveloppementdesPlantesUniversitédePerpignanViaDomitia(UPVD).Nucleolus:Structureandfunctionsinplants.

09:50-10:20 HoluigueL,Herrera-VásquezA.,SeguelA.,UgaldeJ.M.,FonsecaA.,delRíoV.andLamigL.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas,PontificiaUniversidadCatólicaDeChile.

RegulationofsalicylicacidlevelsanditsroleintheredoxmodulationofdefenseresponsesagainstbioticandabioticstressinArabidopsis

10:20-10:40 Contreras-López O1, Vidal E2, Moyano T1, Alvarez J1, Sparks E3, Benfey P3, Gutiérrez R1.

1GenéticaMolecularyMicrobiología,CienciasBiológicas,PontificiaUniversidadCatólicaDeChile. 2CentrodeGenómicayBioinformática,Ciencias,UniversidadMayor. 3BiologyDukeUniversity.Spatio-temporal gene regulatory network analyses identify new transcription factorscontrollingresponsetonitrateinArabidopsisroots.

10:40-11:00 CastroA1,QuirozD2,SanchezE3,MicconoM2,AguirreC3,RamírezA4,MontesC3,PrietoH3.1Life Sciences Innovation Center University of California, Davis- Chile. 2BiotechnologyLaboratory La Platina Research Station, Instituto de Investigaciones Agropecuarias,3Biotechnology Laboratory La Platina Research Station, Instituto de InvestigacionesAgropecuarias.4ChemistryandBiologicalSciencesFacultyUniversidaddeSantiagodeChile.

Page 7: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

6

SynthesisofanartificialVitisviniferamiRNA319eusingoverlapping longprimersand itsapplicationforgenesilencing.

11:00-11:20 Gomez-PaezM1,CorralesAR1,Dominguez-FigueroaJ1,CarrilloL1,Renau-MorataB2,Molina

R.-V2,NebauerS2,Vicente-CarbajosaJ1,MedinaJ1,1CentrodeBiotecnologíayGenómicadePlantas(UPM-INIA).CampusdeMontegancedo.Madrid,Spain.2UniversitatPolitècnicadeValència(UPV).Valencia.Spain.Accelerating Gene Discovery for enhanced use of nitrogen resources and plant biomassproduction

11:20-11:50 CoffeeBreak

11:50-12:40 PlenaryLecture2:PlantGenomeRegulation Chair:RodrigoGutiérrez

DeLorenzoL1,LeonhardtN2,OttF3,SanLeonD1,CastrilloG1,GilE1,LeyvaA1,CouplandG4,Nussaume L2, Weigel D3, Paz-Ares J1. 1Department of Plant Molecular Genetics, CentroNacionaldeBiotecnología,CSIC-Madrid,Spain.2InstitutdeBiologieEnvironnementaleetBiotechnologie, CNRS–CEA–Université Aix-Marseille, France. 3Department of MolecularBiology,MaxPlanck Institute forDevelopmentalBiology,Germany. 4DepartmentofPlantDevelopmentalBiology,MaxPlanckInstituteforPlantBreedingResearch,Köln,Germany.Genome wide analysis of targets of PHOSPHATE STARVATION RESPONSE REGULATOR 1providesnovelinsightsonTranscriptionfactorfunctionandonplantnutrientphysiology.

12:40-14:10 PlenarySession2:FruitRipeningandPost-Harvest Chairs:RaúlHerrera&ReinaldoCampos12:40-13:10 Garrido-Bigotes A1,2, Figueroa P2, Figueroa C2. 1Programa de Doctorado en Ciencias

Forestales, Facultad de Ciencias Forestales, Universidad de Concepción. 2PhytohormoneResearchLab,InstitutodeCienciasBiológicas,UniversidaddeTalca.Toward understanding the role of jasmonates during development and ripening ofstrawberryfruit.

13:10-13:30 Olmedo P1, Moreno A1, Balic I1, Campos-Vargas R1 ,1Centro de Biotecnología Vegetal,FacultaddeCienciasBiológicas,UniversidadAndrésBello.

AcPPO:aGolgilocalizedpolyphenoloxidaseincherimoya(AnnonacherimolaMill.).

13:30-13:50 Valenzuela-RiffoF1,GuajardoJ1,StappungY1,Moya-LeónM1,HerreraR1,Morales-QuintanaL11LaboratoriodeFisiologíaVegetalyGenéticaMolecular,InstitutodeCienciasBiologícas,UniversidaddeTalca.Transcriptional analysis and structural characterization of Xyloglucanendotransglycosylase/hydrolases(XTH)involvedinsofteningofFragariachiloensisfruit.

13:50-14:10 MartínezJP1,FariasK7,SalinasL2,MuenaV3,AlfaroJ4,GutierrezM3,FuentesL5,FuentesR6,LoyolaN7, Lutts S8, 1Centro Regional de Investigación La Cruz INIA-CREAS. 2INIA La Cruz.4CentrodeBiotecnologíaUniversidad Técnica Federico SantaMaría. 5CentroRegional de

Page 8: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

7

EstudiosdeAlimentosySalud (CREAS). 6Departamentode IndustriasUniversidadTécnicaFedericoSantaMaría.7EscueladeAgronomíaUniversidadCatólicaDelMaule.8GroupedeRecherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A)UniversitéCatholiquedeLouvain.EffectofrootstockonfruitqualityinoldLimachinotomatoundergreenhouseconditionsintheregionofValparaiso.

14:10-15:30 Lightlunchandposterinstallation(OddNumbers)15:30-17:00 PlenarySession3:Cell&DevelopmentalPlantBiology Chairs:LorenaNorambuena&RodrigoGutiérrez15:30-16:00 Canales J1, Contreras-López O2, Álvarez J2, Gutiérrez R2. 1Instituto de Bioquímica y

Microbiología,Ciencias,UniversidadAustralDeChile.2DepartamentodeGenéticaMolecularyMicrobiologíaPontificiaUniversidadCatólicadeChile.NitratecontrolofroothairinitiationismediatedbyNRT1.1-TGA1/4inArabidopsisthaliana.

16:00-16:20 IbeasMA1,GrantS1,Vargas-PerezJ1,RoschzttardtzH1,1GeneticaMolecularyMicrobiologíaPontificiaUniversidadCatólicaDeChile.Ironlocalizationinseeds.

16:20-16:40 MoralesS1,NorambuenaL1, 1CentrodeBiologíaMolecularVegetal,FacultaddeCiencias,UniversidadDeChile.Endocytictraffickingspecifieslateralrootfoundercellsthroughcellcomponentrelocation.

16:40-17:00 GrasD1,VidalE2,RiverasE2,UndurragaS2,AlabadiD3,BlázquezM3,GutierrezR2.1InstitutodeAgrobiotecnologíadelLitoral(CONICET-UNL),UniversidadNacionaldelLitoral.2GenéticaMolecular y Microbiología, Ciencias Biológicas, Pontificia Universidad Católica De Chile.3Instituto de Biología Molecular y Celular de Plantas, CSIC, Universidad Politécnica deValencia.SMZ/SNZandgibberellinsignalingarerequiredfornitrate-eliciteddelayoffloweringtimeinArabidopsisthaliana.

17:00-17:30 CoffeeBreak

17:30-18:20 PlenaryLecture3:Cell&DevelopmentalPlantBiology Chair:RodrigoGutiérrez

BenkovaE,DuclercqJ,CuestaC,andHurnyA.InstituteofScienceandTechnologyAustriaAustria,Austria.Auxinandcytokininregulationoftherootsystemarchitecture–antagonismorsynergy?

18:30-20:30 PostersessionI:OddNumbers

20:30-22:00 Dinner

Page 9: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

8

WEDNESDAY,NOVEMBER30TH

09:00-09:50 PlenaryLecture4:MetabolismandNaturalproducts Chair:MarelyCuba

CernadasA1,2,ConteM2,PividoriM3,StegmayerG3,AsísR4,SanceM5,AsprelliP5,6,PeraltaI5,7,ValleM.E8,MiloneD3,CarrariF1,2,1UniversidaddeBuenosAires.FacultaddeAgronomía.BuenosAires,Argentina. 2InstitutodeBiotecnología.CICVyA INTACastelar,BuenosAires.Argentina. 3Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional(sinc(i)),FICH-UNL,CONICET,Argentina.4CIBICI,FacultaddeCienciasQuímicas,UniversidadNacional de Córdoba, Argentina. 5Universidad Nacional de Cuyo, Facultad de CienciasAgrarias, Mendoza, Argentina. 6Instituto Nacional de Tecnología Agropecuaria, EstaciónExperimentalLaConsulta,Mendoza,Argentina.7CCTCONICETMendoza,InstitutoArgentinodeInvestigacionesenZonasÁridas,Mendoza,Argentina.8InstitutodeBiologíaMolecularyCelulardeRosario,CONICET,UniversidadNacionaldeRosario,Argentina.

Amulti-holistic approach to the understanding of the (epi)genetics andmolecular basesdeterminingnutritionalqualityinfruits.

09:50-11:20 PlenarySession4:MetabolismandNaturalproducts Chairs:MichaelHandford&AlejandraMoya09:50-10:20 Moya-LeónMA,LizanaR,Morales-QuintanaL,GaeteC,andHerreraR.InstitutodeCiencias

Biológicas,UniversidaddeTalca,Chile.UnderstandingthesofteningofFragariachiloensisfruit.

10:20-10:40 CabezaR1,LieseR2,SchulzeJ3.1DepartamentodeProducciónAgrícola,FacultaddeCienciasAgrarias, Universidad De Talca. 2Department of Plant Ecology and Ecosystems Research,FacultyofBiology,UniversityofGoettingen.3PlantNutritionandCropPhysiology,FacultyofAgriculturalSciences,UniversityofGoettingen.Similar molecular mechanisms are responsible for the decline in nitrogenase activity innodulesofMedicagotruncatulaunderdifferenttreatments.

10:40-11:00 Miranda S1, Araya J1, HandfordM1. 1Centro de BiologíaMolecular Vegetal, Facultad deCiencias,UniversidadDeChile.

Solanum lycopersicum possessesmitochondrial and plastidial lipoyl synthases capable ofincreasinglipoylationlevelsinvivo.

11:00-11:20 Restovic F1, Veloso V2, Arce-Johnson P1. 1Departamento de Genética Molecular yMicrobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica De Chile.2FacultaddeCienciasUniversidadDeChile.EvaluationoftheplantbiostimulanteffectofArthrospiramaximaextracts.

11:20-11:50 CoffeeBreak11:50-13:20 PlenarySession5:Bioticstress

Chairs:LoretoHoluigue&FranciscaBlanco

Page 10: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

9

11:50-12:20 DreyerI1.1CentrodeBioinformáticaySimulaciónMolecular(CBSM)UniversidaddeTalca.Cooperation through competition - Dynamics andmicroeconomics of aminimal nutrienttradesysteminarbuscularmycorrhizalsymbiosis.

12:20-12:40 Armijo G1, Agurto M1, Meyer C1, Nuñez C1, Solano I1, Schlechter R1, Arce-Johnson P1.

1Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas,PontificiaUniversidadCatólicaDeChile.MolecularcharacterizationofVitisviniferaresistancetofungalpathogensBotrytiscinereaandErysiphenecator.

12:40-13:00 Silva-SanzanaC1,Saez-AguayoS1,SalinasH1,ChorbadjianR2,Blanco-HerreraF1.1CentrodeBiotecnologia Vegetal, Facultad de Ciencias Biologicas, Universidad AndrésBello.2DepartamentodeCienciasVegetales,FacultaddeAgronomíae IngenieríaForestal,PontificiaUniversidadCatólicaDeChile.Pectinstructureandcompositiondynamicsduringearlyandlateplant-aphidinteraction.

13:00-13:20 Seguel A1, Jelenska J2, Herrera A1, Greenberg J2, Wildermuth M3 and Holuigue L1,

1Departamento deGenéticaMolecular yMicrobiología, PontificiaUnivesidad Católica deChile. 2Department of Molecular Genetics and Cell Biology, The University of Chicago.3DepartmentofPlantandMicrobialpathology,UniversityofCalifornia,Berkeley.PHB3 interactswith ICS1andregulates theSA-mediateddefenseresponsecontrollingthelevelsofICS1inArabidopsisthaliana.

13:20-14:10 PlenaryLecture5:PlantStressChair:MarelyCubaGraether S, BoddingtonK, ClarkeM, andSinghK.DepartmentofMolecular andCellularBiology,UniversityofGuelph,Guelph,Ontario,Canada.The role of disordered proteins in the protection of plants from abiotic stresses: anexaminationofthestructureandfunctionofdehydrins.

14:10-15:30 Lightlunchandposterinstallation(EvenNumbers)

15:30-17:00 PlenarySession6:Abioticstress Chairs:MarelyCuba&CristianBalbontín15:30-16:00 TapiaG1, InostrozaL1,DelPozoA2,VegaMV1,MendezJ1,YañezA2,ArreyO1,CortezD1.

1Unidad de Recursos Genéticos Vegetales Instituto de Investigaciones Agropecuarias.2DepartamentodeproducciónagrícolaUniversidadDeTalca.Traits and genes for drought tolerance: studies in germplasm collection of Lotus spp,tomatoesandwheat.

16:00-16:20 SotoD1,VaralaK2,ArausV1,Carrasco-PugaG1,DíazF1,Nilo-PoyancoR1,CoruzziG2,GutiérrezR1, 1Departamento de Genética Molecular Pontificia Universidad Católica De Chile.2DepartmentofBiologyNewYorkUniversity.

Page 11: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

10

Metatranscriptomic approach reveals conserved adaptive processes in Atacama Desertplants.

16:20-16:40 Herrera-VásquezA1, FonsecaA1,Ugalde J1, SeguelA1,Vidal E2,MoyanoT1,GutierrezR1,HoluigueL1,1GenéticaMolecularyMicrobiología,CienciasBiologicas,PontificiaUniversidadCatólicaDeChile.2CentrodeGenómicayBioinformáticaUniversidadMayor.TranscriptionfactorsfromtheTGAclassIIfamilycontroltheantioxidantresponseagainstabioticstressinArabidopsis.

16:40-17:00 YáñezM1, Del Pozo A2, Tapia G3, Guerra F4. 1Ciencias Agrarias y Forestales UniversidadCatólica Del Maule. 2Centro de Mejoramiento Genético y Fenómica Vegetal, CienciasAgrarias,UniversidadDeTalca.3RecursosGenéticosINIA.4InstitutodeCienciasBiológicasUniversidadDeTalca.Stemcarbohydratedynamicsandexpressionofgenesinvolvedinfructanaccumulationandremobilization during grain growth in wheat (Triticum aestivum L.) genotypes withcontrastingtolerancetowaterstress.

17:00-17:30 CoffeeBreak

17:30-18:20 PlenaryLecture6:PlantStress Chair:CristianBalbontín

SchreiberL.Dept.ofEcophysiology,IZMB,BonnUniversity.Plant/environment interfaces in leaves and roots: biosynthesis and function of cutin andsuberin.

18:30-20:30 PosterSession2(EvenNumbers)20:30-22:00 Dinner

THURSDAY,DECEMBER1ST

09:00-09:50 PlenaryLecture7:PlantBreeding Chair:GerardoTapia

SadrasV.SouthAustralianResearchandDevelopmentInstitute,Australia.Understandingandquantifyingthedriversofcropyield.

09:50-12:00 PlenarySession7:Phenomicsandecophysiology Chairs:ClaudioMeneses&PaulaPimentel09:50-10:20 LobosGA1,delPozoA1,1CentrodeMejoramientoGenéticoyFenómicaVegetal,Facultadde

CienciasAgrarias,PIEIAdaptacióndelaAgriculturaalCambioClimático(A2C2),UniversidaddeTalca.

Page 12: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

11

Chile,ahotspotforplantphenomic.

10:20-10:40 Mendez-EspinozaA1,GarrigaM1,RomeroS1,EstradaF1,EscobarA1,LobosG1,DelPozoA1.1Departamento de Producción Agrícola, Centro de Mejoramiento Genético y FenómicaVegetal,FacultaddeCienciasAgrarias,UniversidadDeTalca.Drought effect on leaf gas exchange and chlorophylls contents of four cereals grown ingreenhouse.

10:40-11:00 Romero-BravoS1,Méndez-EspinozaAM1,GarrigaM1,EstradaF1,EscobarA1,delPozoA1,Lobos GA1. 1Departamento de Producción Agrícola, Centro deMejoramiento Genético yFenómicaVegetal,FacultaddeCienciasAgrarias,UniversidadDeTalca.High throughput phenotyping in an INIAwheat breeding program for drought toleranceselection.

11:00-11:30 CoffeeBreak 11:30-13:00 PlenarySession8:GeneticResources&PlantBreeding

Chairs:ClaudiaStange&BorisSagredo11:30-12:00 SagredoB1,DonosoJ1,LemusG1,AlmadaR2,PerezJ1,BastiasA1,RojasP1,MartinC1,Correa

F1, 1Biotecnología y recursos naturales, INIA-Rayentué.2Genómica, Centro de estudiosavanzadosenfruticultura.

MoleculartoolsforPrunussp.(L.)improvement

12:00-12:20 PachecoI1,SalazarJ2,SilvaC1,ShinyaP2,MoralesH3,PeñaA3,InfanteR2.1LaboratoriodeBioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos(INTA),UniversidadDeChile.2DepartamentodeProducciónAgrícola,FacultaddeCienciasAgronómicas,UniversidadDeChile.3DepartamentodeAgroindustriayEnología,FacultaddeCienciasAgronómicas,UniversidadDeChile.PolyphenolprofilinginaJapaneseplum(PrunussalicinaL.)smallcultivarcollection:towardsgeneticdissectionoffunctionalcompoundcontenttrait.

12:20-13:40 Muñoz M1, Folch C1, Kalazich J1, 1Centro Regional Experimental Remehue Instituto de

InvestigacionesAgropecuariasINIA.UseandimpactofbiotechnologyinplantbreedinginChile:experienceofthepotatobreedingprogramofINIA.

12:40-13:00 AuerC1,RizzitelloR1,ChangC1,1PlantScienceUniversityofConnecticut.EcologicalrisksandbenefitsfromthenoveloilseedcropCamelina.

13:30-15:30 Lightlunch

15:30-16:30 ClosurePlenaryLecture:Metabolismandnaturalproducts Chair:RaúlHerrera

AllanA1.1BreedingandGenomicsPlant&FoodResearch.NewZealandExploringalltheoptionstowardsengineeringanevenhealthierapple.

Page 13: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

12

16:30-17:00 CoffeeBreak17:00-20:00 FreeAfternoon20:30-22:00 ConferenceDinner&awards 22:00 ConferenceParty

Page 14: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

13

KEYNOTELECTURES

KeynoteOpening

Orellana Ariel1, 1Centro de Biotecnología Vegetal and FONDAP Center for Genome Regulation. Facultad de CienciasBiológicas,UniversidadAndresBello,Santiago,Chile.

COPINGWITHLIFEINEXTREMEENVIRONMENTS:CISTANTHELONGISCAPA,ACASEOFSTUDY

[email protected]

TheAtacamaDesertisonetheoldestanddriestplacesonearth,withhighradiationlevelsandprecipitationlevelsthatrangefrom100mmtolessthan10mmperyearatthehyperaridcore.Episodesofrainfallexceedingtheselevelsoccurfewtimeseverydecadeandareresponsiblefortriggeringtheriseofarichcommunityofplantspeciesinaphenomenonknownas “bloomingof thedesert”.Cistanthe longiscapa, anannual species fromtheMontiaceae family, is themostabundantsightedspeciesduringthisphenomenonandcanwithstandaprolongedperiod(3-4months)withoutfurtherprecipitations.Wefoundthat thisspeciesexhibitseco-physiologicaladaptations thatareprobably relatedto thehighirradiationdryenvironmentitinhabits.Tobetterunderstandhowtheseadaptationsandtodetectmolecularmechanismsrelatedtoitsresiliencetohighirradiationandwaterscarcity,thegenomeofthisspecieswassequenced.Thepredictedgenomesizewasofnearly800Mbpandagenenumberestimatedof31,133.Bothkaryotypeandkmeranalysissuggestthatthespeciesisdiploid,eventhoughsomelevelofduplicationtypicalofpolyploidspecieswasfound.Thishigherthanexpectednumberofduplicatedgenescanbeexplainedbyafamilylevelconservedancientwholegenomeduplication.Comparativegenomicsallowed thedetectionofgenecomplement sizeexpansion for certaingene families related toresponse tohigh radiationprotection (xanthophyll cycle andearly light-inducedproteins). Several of theseexpandedgenes displayed differential gene expression when assessed in six different tissues, supporting their possibleneofunctionalizationafterduplication.Acknowledgments:Fondap-CRG15090007,BasalPB-16.

KeynoteClosure

EXPLORINGALLTHEOPTIONSTOWARDSENGINEERINGANEVENHEALTHIERAPPLE

AllanAndrew1,1TheNewZealandInstituteforPlant&FoodResearchLimited,PrivateBag92169,Auckland,1142,NewZealand.

[email protected]

Appleisconsideredhistoricallyoneofthemostconvenientandhealthyoptionsforthedailydiet.Withreasonablelevelsofflavonoids,vitaminCandvitaminA,thisperceptionisnot inaccurate.However,mostofapple’shealthbenefitsarelocated in the skin, leaving a large volume of flesh ready for "improvement".We have beenmanipulating levels ofsecondarymetabolites inappleforoveradecade,throughbothconventionalbreedingandGMapproaches.Twonewbreedingtechnologies-rapidfloweringforplantbreeding,andgeneediting-produceplantswithoutnewDNA.Thesetechniquesofferwaysofprovidinglargechangesinthehealthpotentialofapple,ifthepublicwillaccepttheresultingfruit.ExcitingnewresultsinregulatinglevelsofvitaminC,anthocyanins,andcarotenoidsarethetargetsofourapproach,whichaimstoprovidetheconsumerwithnewcultivarsthathavemeasurablebenefits.

PLENARYLECTURES

PlenaryLecture1:CellandDevelopmentalPlantBiology

NUCLEOLUS:STRUCTUREANDFUNCTIONSINPLANTS

Saez-VasquezJ1,1LaboratoireGénomeetDéveloppementdesPlantesUniversitédePerpignanViaDomitia(UPVD).

[email protected]

Page 15: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

14

Thenucleolusisthemostprominentnuclearsubstructure.Itsfunctionalstatehaslongbeenknowntobeintimatelylinkedtoribosomebiogenesis,withdirectconnectionstocellgrowthandproliferation.ThedrivingforcefornucleolarassemblyisribosomalDNA(rDNA)transcriptionandprocessingof45SRNAprecursors(pre-rRNA)transcribedbyRNApolymeraseI(RNApolI).Itisalsoclearthatthissubnuclearcompartmentplayswiderroles,notablyinglobalchromatinorganization,proteinsequesteringandincellularresponsestointrinsicandenvironmentalchanges.The talk will illustrate findings regarding factors and mechanism controlling ON/OFF switching of transcriptionallycompetentrRNAgenesandmolecularprocessesassociatedwiththeactivityofthenucleolus.ItwillbealsopresentedaseriesoffindingsthatlinknucleolusstructureandlongintergenicnoncodingrRNA(lincRNA)expressiontotheheatstressresponseinArabidopsis.Howtheseandotheractivitiesrequiredforprocessingofnon-codingRNAmightaffectfunctionalandstructuralnucleolarorganizationwillbereported.

PlenaryLecture2:PlantGenomeRegulation

GENOME WIDE ANALYSIS OF TARGETS OF PHOSPHATE STARVATION RESPONSE REGULATOR 1 PROVIDES NOVELINSIGHTSONTRANSCRIPTIONFACTORFUNCTIONANDONPLANTNUTRIENTPHYSIOLOGY

deLorenzoL1,LeonhardtN2,OttF3,SanLeonD1,CastrilloG1,GilE1,LeyvaA1,CouplandG4,NussaumeL2,WeigelD3,andPaz-AresJ1.1DepartmentofPlantMolecularGenetics,CentroNacionaldeBiotecnología,CSICMadrid,Spain.2UMR7265,Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale etBiotechnologie,CNRS–CEA–UniversitéAix-Marseille,France.3DepartmentofMolecularBiology,MaxPlanckInstituteforDevelopmentalBiology,Germany.4DepartmentofPlantDevelopmentalBiology,MaxPlanckInstituteforPlantBreedingResearch,Germany.

[email protected]

PlantsevolvedanarrayofadaptiveresponsestocopewithgrowthunderlowPiregimens.Theseinvolvedevelopmentalandbiochemicalchanges,aimingto increasePiacquisitionanduseefficiencyandtoprotecttheplantfromthestresscausedbyPistarvation.PHOSPHATE(Pi)STARVATIONRESPONSE1(PHR1)transcriptionfactor(TF)isacentralregulatorofplant Pi-starvation responses.We found PHR1 binds 2622 sites in theArabidopsis genome, 664 corresponding to Pi-starvationresponsivegenes.Thesesitesareenrichedintwomotifs,P1BSIandP1BSII,whichdisplayhighandlowintrinsicbindingaffinityandareboundbyPHR1asdimerandmonomer,respectively.ResultsusingfusionsofmultimersofP1BSIItoaminimalpromotershoweditisabonafidePistarvationresponseelement,althoughoflowerstrengththanP1BSI,previouslystudied.Pi-starvation induced(psi)P1BSIandP1BSII targetsdisplaysignificantdifferences inontologytermenrichment,andthesemotifsexhibitdifferentevolutionaryconstraints;nevertheless,P1BSIandP1BSIIconservationandenrichmentinunrelatedTFbindingsitessurroundingthesemotifsisnotonlyassociatedtotranscriptionaloutput,butalsotositeoccupancy.ThesefindingsinformonthefunctionalityofPHR1bindingsitesnotproducingaconcurrenteffectontranscription.Atthephysiologicalground,wefoundthatpsiPHR1targetsareoverrepresentedindrought/osmoticstressinducedgenes.OsmoticstressinductionofpsigeneswasfoundtobedependentonPHR1.Wewilldiscussonthepotentialadaptiveimportanceofthecross-talkbetweentheOsmoticstressandPistarvationsignallingpathways.

PlenaryLecture3:CellandDevelopmentalPlantBiology

AUXINANDCYTOKININREGULATIONOFTHEROOTSYSTEMARCHITECTURE–ANTAGONISMORSYNERGY?

BenkovaE,DuclercqJ,CuestaCandHurnyA.InstituteofScienceandTechnologyAustriaAustria,AmCampus1,3400Klosterneuburg,Austria.

[email protected]

Theplanthormonesauxinandcytokininarecentralendogenoussignalingmoleculesthatregulaterootgrowthandlateralrootorganogenesis.Stimulatoryeffectofauxiniscounterbalancedbycytokinin,andthus,tightcontrolandmutualbalanceoftheirantagonisticactivitiesareparticularlyimportantduringtheearlyphasesoflateralrootorganogenesistoensurecontinuous lateral root initiation and proper development of lateral root primordia. To investigate the molecularmechanismoftheauxinandcytokininhormonalcrosstalk,genome-widetranscriptomeprofilingwastakenasthemainstrategy.Weaimedtoidentifygenesatwhosetranscriptionalregulationauxinandcytokininpathwaysconvergeduringearly lateral rootorganogenesis. TheSYNERGISTICAUXINCYTOKININ1 (SYAC1) gene coding for aproteinofunknownfunctionwasidentifiedasagenesynergisticallyregulatedbybothhormones.FurtherprogressinunderstandingofSYAC1roleinauxin-cytokinincrosstalkandregulationoftherootsystemarchitecturewillbediscussed.

Page 16: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

15

PlenaryLecture4:MetabolismandNaturalproducts

AMULTI-HOLISTICAPPROACHTOTHEUNDERSTANDINGOFTHE(EPI)GENETICSANDMOLECULARBASESDETERMININGNUTRITIONALQUALITYINFRUITS

CernadasA1,2,ConteM2,PividoriM3,StegmayerG3,AsísR4,SanceM5,AsprelliP5,6,PeraltaI5,7,ValleM.E8,MiloneD3,CarrariF1,2*.1UniversidaddeBuenosAires.FacultaddeAgronomía.BuenosAires,Argentina.2InstitutodeBiotecnología.CICVyA INTA Castelar, Buenos Aires. Argentina. 3Instituto de Investigación en Señales, Sistemas e InteligenciaComputacional(sinc(i)),FICH-UNL,CONICET,Argentina.4CIBICI,FacultaddeCienciasQuímicas,UniversidadNacionaldeCórdoba, Argentina. 5Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Mendoza, Argentina. 6InstitutoNacional de Tecnología Agropecuaria, Mendoza, Argentina. 7CCT CONICET Mendoza, Instituto Argentino deInvestigacionesenZonasÁridas,Mendoza,Argentina. 8InstitutodeBiologíaMolecular yCelulardeRosario,CONICET,UniversidadNacionaldeRosario,Argentina.

[email protected]

Thethoroughunderstandingoftherelationshipsbetweenthevariablesthatdetermineproductivityandqualityincropspeciesrequiresholisticapproachesbasedonthecollectionandanalysisofdataexposingchangesinthesevariablesatdifferentorganizationallevels:molecular,metabolicandphenotypic.Tomato,inadditiontoitsnutritionalandeconomicimportance, isanexcellentmodelfortheapplicationofsystemicapproachestotheunderstandingoftheproblemsofproductivityandquality,since ithasawidegeneticvariability (naturaland induced),sequencedgenomesofdifferentaccessionsandrelatedspecies,alongwithabatteryofhighprocessivityphenotypingtechniquessetforthespecies.Byusing a germplasm collection from along the Argentine Andean valleys and cultivated ex-situ during several growingseasons an extensive set of data about morpho-agronomic and biochemical characters; including transcriptomics,metabolomicsandsensoryattributeshasbeenobtained.Theapplicationmulti-modalclusteringalgorithmsthatcanfusesuch diverse data set without normalization reveals unknown associations between the assayed variables and allowselectingeliteaccessionsthatcanbeusedasinputforbreedingprogramsofthespecies.

PlenaryLecture5:PlantStress

THEROLEOFDISORDEREDPROTEINSINTHEPROTECTIONOFPLANTSFROMABIOTICSTRESSES:ANEXAMINATIONOFTHESTRUCTUREANDFUNCTIONOFDEHYDRINS

SteffenP.Graether,KellyF.Boddington,MatthewClarke,andKaramjeetK.Singh.DepartmentofMolecularandCellularBiology,UniversityofGuelph,Guelph,Ontario,Canada

[email protected]

Plants express a largenumberof differentproteins toprotect them fromdamage causedbydrought, cold, andhighsalinity.Onefamilyofproteins,knownasdehydrins(dehydrationproteins),appearstobekeytoaplantssurvival.Ourresearch revolves around understanding the structure and function of dehydrins in vitro, with a long-term goal ofunderstandingdehydrinsinaninvivoenvironment.Dehydrinsareintrinsicallydisorderedproteins,thatis,theydonothaveadefined3Dstructure,whichalsoresultsinoverallpoorsequenceconservation.Abioinformaticsanalysisofover600dehydrinsequencesfromthePhytozomeandPfamdatabasesshowsuswhichresiduesareconservedandwhicharenot.Biochemicalanalysis shows that thedisorderednatureofdehydrins is important forprotectionofenzymes fromdamagecausedbyfreezing.Incontrast,dehydrinsgainsomestructureinthepresenceofmembranes,whichisnecessaryfortheproteintointeractwithandprotectmembranesfromcoldstress.WewillalsoshowunpublisheddatathatsuggestthatdehydrinsareabletoprotectDNAfromdamagecausedbyoxidativestress.Lastly,wewilldiscussfutureexperimentsthatwillexaminethestructureandfunctionofdehydrinsinsideofplantcellsusingadvanceNMRtechniques.SPGthanksNSERCforfundingthisproject,andNSERCPCGSandOGSscholarshipsforKFB.

PlenaryLecture6:PlantStress

PLANT/ENVIRONMENTINTERFACESINLEAVESANDROOTS:BIOSYNTHESISANDFUNCTIONOFCUTINANDSUBERIN

SchreiberL.,Dept.ofEcophysiology,IZMB,BonnUniversity.

Page 17: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

16

[email protected]

Livingplanttissueisseparatedfromthesurroundingenvironmentbyextracellularlipophilicbiopolymers.Theinterfacebetween the atmosphere and leaves is formed by the cuticle, composed of cutin and cuticularwaxes, sealing outerepidermalcellwallsandcoveringfruitsurfaces.Soil/rootinterfacesareessentiallyformedbyexodermalandendodermaltissue,eachcharacterizedbyasinglelayerofcellswithsuberizedcellwalls.Asmainfunctiontheselipophilicinterfacesformbarriersregulatingwaterandsolutetransportbetweenthelivingplanttissueandthesurroundingenvironmentandtheysignificantlyhelptocopewithabioticandbioticstressfactors.Genesandbiosyntheticpathwaysinvolvedincutin,suberinandwaxformationwillbepresentedanddiscussed.CuticulartransportbarriersofArabidopsisleavescomparingwildtypewith wax and/or cutinmutants have been conducted. Results indicated that cuticular barrier properties ofArabidopsisleaveseitherincreasedordidnotchangeatallwhenwaxand/orcutinamountsweregeneticallyincreasedordecreased.Animprovementofcuticularbarrierpropertieswithenhancedwaxand/orcutinamountswasnotobserved.ChemicalcompositionandbarrierpropertiesofsuberizedrootshavebeeninvestigatedwithriceandArabidopsis.Saltandoxygenstresssignificantlyenhancedsuberizationinriceroots,thusreducingradialuptakeofNaClandradiallossofoxygenfromtheroottothesoilenvironment.Arabidopsismutantswithenhancedrootsuberizationweremoredroughtstolerant,whereasArabidopsismutantswithreducedamountsofrootsuberinwerecharacterizedbysignificantlyenhancedradialroothydraulicconductivities.Onthebasisoftheseresultsbarrierpropertiesofcutinizedleavesandsuberizedrootswillbecomparedandsimilaritiesanddifferencesbetweenthesetwoimportantlipophilicplantenvironmentinterfaceswillquantitativelybediscussedonthebasisofpermeances.

PlenaryLecture7:PlantBreeding

UNDERSTANDINGANDQUANTIFYINGTHEDRIVERSOFCROPYIELD

SadrasV.SouthAustralianResearchandDevelopmentInstitute,Australia.

victor.sadras@sa.gov.auYielddependsonthetechnologyusedtoestablish,protect,growandharvestthecrop,theenvironmentwhereitisgrownandtheinteractionbetweenenvironmentandtechnology.Intheshorttomediumterm(5-10years),theenvironmentover-ridestechnology.Inthelong-term(decades),technologyincreasesyield,whereastheenvironmentmodulatestherateoftechnologicalgainandcontributestooftensignificantdeviationsaroundtime-trends.Despiteitsimportance,theenvironment is often characterised superficially, nominally as location and season, high vs low input, etc. This paperoutlinesmethodstoquantifyandcomparethedroughtenvironmentsforwheat,fieldpeaandchickpeainAustralia,andtheirimplicationsforcropimprovementandmanagement.Weupdatediscussionsonleveloforganisationandscaling[1],reinforcingthenotionthatsometraitsscalefrommoleculartocroplevel(e.g.herbicideresistance)butothertraitsdonotscale(e.g.photosynthesis,yield).Naturalselectionfavourscompetitiveplantswhereasselectionforseedyieldinagriculturefavourslesscompetitivetypes,whichconformtothephenotype of Donald’s “communal plant”. Experiments in chickpea showed high-yielding lines are less responsive tocompetition, in agreement with Donald’s theory and Fst genome scan highlights the lack overlap in the geneticarchitectureunderlyingyieldofcropstandsandyieldunderrelaxedcompetition.Theimpactofplant-plantinteractionsisfurther illustrated in sunflower, where self-organisation of standsmediated by light quality is shown to increase oilproductionperunitlandarea.[1]SadrasVOandRichardsRA.2014.Improvementofcropyieldindryenvironments:benchmarks,levelsoforganisationandtheroleofnitrogen.JournalofExperimentalBotany,65:1981-1995.

PlenarySession:PlantGenomeRegulation

REGULATIONOFSALICYLICACIDLEVELSANDITSROLEINTHEREDOXMODULATIONOFDEFENSERESPONSESAGAINSTBIOTICANDABIOTICSTRESSINARABIDOPSIS

Holuigue L,Herrera-Vásquez A, Seguel A, Ugalde JM, Fonseca A, del Río V and Lamig L.Departamento de GenéticaMolecularyMicrobiología,FacultaddeCienciasBiológicas,PontificiaUniversidadCatólicadeChile.

[email protected]

Page 18: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

17

Sinceitsdiscoveryintheearly90´s,theimportanceofsalicylicacid(SA)hasbeenincreasinglyrecognizedbecauseofitscrucialroleinthedefenseresponseagainstbioticandabioticstress.SAisresponsiblefortranscriptionalchangesoccurringin the infected/damaged tissues, as well as in the neighboring cells, orchestrating the local and systemic defenseresponses.EvidencealsoindicatesthatSAisinvolvedintheredoxmodulationofthedefenseresponse,interplayingwithredoxsignalssuchasROSandglutathione.InspiteoftheimportanceofSAasastresshormone,westillignoreessentialaspectsofitsmodeofaction.HereweshowtwoaspectsofourstudiesonSAfunction.Ononehand,weshowevidenceforanewmechanismthatcontrolSA levels.Ourresults indicatethatprohibitin3(PHB3), through its interactionwithisochorismatesynthase1(ICS1),themainenzymeinvolvedinSAbiosynthesis,regulatesthelevelsofSA.Ontheotherhand,wewillfocusinhowSAandglutathioneinterplayduringsignalingandmodulationofredoxstatusinthestressedtissues.Particularly,wewillshowevidenceofthecontributionofproteinswithantioxidantfunctions(glutaredoxinsandglutathioneS-transferases),codedbySA-responsivegenes, intheredoxmodulationof the localandsystemicdefenseresponse.Acknowledgments:FONDECYT(grantN°1141202)andMilleniumNucleusCenterforPlantSystemsandSyntheticBiology(NC130030).SPATIO-TEMPORALGENEREGULATORYNETWORKANALYSESIDENTIFYNEWTRANSCRIPTIONFACTORSCONTROLLINGRESPONSETONITRATEINARABIDOPSISROOTS

Contreras-López O1, Vidal E2, Moyano T1, Alvarez J1, Sparks E3, Benfey P3, Gutiérrez R1, 1Genética Molecular yMicrobiología, Ciencias Biológicas, Pontificia Universidad Católica De Chile. 2Centro de Genómica y Bioinformática,Ciencias,UniversidadMayor.3BiologyDukeUniversity.

[email protected]

Genome-widetranscriptionalanalyseshaveprovidedanimpressivecatalogofN-responsivegenesparticipatinginawiderangeofprocesses.Themajorityofthesegenome-widestudieswereperformedatdefinedtimepointsinwholeplantsororgansimpairingourunderstandingofcell-specificregulatorygenenetworksandhowtheyinteracttocoordinateorganresponsesovertime. Inthisresearch,wemappedandcharacterizeddynamicN-regulatorynetworksactingwithincelltypesinArabidopsisroots.Wecombinedcell-sorting,transcriptomicsanalysesandintegrativenetworkbioinformaticstoidentify cell-type-specific gene regulatorynetworks controlling root responses tonitrateover time.Ourexperimentaldesignuncoveredthousandsofnewnitrate-regulatedgenes,mostofthemregulatedinonecell-typeandone-timepoint.Clusters of geneswith specific regulation patterns at cell-type levelwere significantly enriched in different biologicalprocesses.Besidesthediversityoffunctionsregulatedbynitrate,thereisalimitedrepertoireofgeneexpressionpatternsindicatinghighlystructuredregulatorynetworks.Analysisofpredictedgeneregulatorynetworksrevealedthatnetworkcomplexityandspecificityvariesincelltypesandovertime.Ourdatashowspatiotemporalanalysisnotonlyincreasesthenumber of genes involved in an organ response to stimulus, but also show that expression dynamics are cell-typedependent and coordinated at biological processes level. At the coreof this regulatory network,we found fivemainclusters of transcription factor that command the nitrate response in all cell types. We were able to identify newtranscriptionfactorscontrollingresponsetonitrateinArabidopsisroots.Acknowledgments:NM-NC130030,FONDECYT1141097,FONDAP1509007,HHMI.

SYNTHESISOFANARTIFICIALVITISVINIFERAMiRNA319EUSINGOVERLAPPINGLONGPRIMERSANDITSAPPLICATIONFORGENESILENCING

CastroA1,QuirozD2,SanchezE3,MicconoM2,AguirreC3,RamírezA4,MontesC3,PrietoH3, 1LifeSciences InnovationCenterUniversityofCalifornia,Davis-Chile.2BiotechnologyLaboratoryLaPlatinaResearchStation,INIA.3BiotechnologyLaboratoryLaPlatinaResearchStation,INIA.4ChemistryandBiologicalSciencesFacultyUniversidaddeSantiagodeChile.

danielaquirozlarrain@gmail.comTheconservedmechanismofactionofmicro-RNAs (miRNAs)as regulatorsofgeneexpressionhasallowedtheuseofartificialmiRNAs(amiRNAs)asapowerfultoolforcandidategeneevaluationinplants.BasedontheuseofaVitisviniferamiRNAmolecule(vvi-miR319e),thepresentworkpresentsanewmethodologyfordesigningartificialmiR319eprecursors(pre-amiR319e).As aproofof concept,we silenced the green fluorescentprotein (GFP) gene in transgenicNicotianabenthamianaplants.Thismethodologyincludesatwo-stepPCRreactioninwhichoverlappinglongprimersallowforthe

Page 19: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

18

completegenerationofpre-amiR319e-GFPmoleculesthatareadequateforrecombinationintoGatewayvectorswithnofurtherrequirements.TheseedregioninamiRNAwasdirectedagainstthe3ʹ-endportionoftheGFPgene.Threegroupsof transformedN. benthamiana plantswere generated:GFP-, amiR319e-GFP-, andGFPplusmiR319e-GFP-expressingvectors.Asimilargroupofwild-typeplantswasincluded.ConfocalmicroscopyevaluationofthesegroupsrevealedstrongsilencingoftheGFPphenotypeinthedoubleGFPplusamiR319e-GFPgroup.Themolecularcharacterizationofsilencedplantswasachievedviamodified5ʹRACEoftheGFPmRNAandrevealedtheoccurrenceofapartial,3ʹ-endGFPmRNAmoleculethatwasgenerated inplanta. Inaddition,large-scalesmallRNAsequencingconfirmedtheoccurrenceoftheexpected21-ntmiR319e-GFP species andother 22- and24-nt species that exhibited sequence relationshipswith theexpectedamiRNA.Theseresultshighlightthepossibilityofusingvvi-MIR319asatemplateforthegenerationofsingleamiRNAsasatoolforgenesilencinginplants.Acknowledgments:FundedByTheBiofrutalesS.A.Consortium,Corfo-ChileGrant13CTI-21520-SP7.

ACCELERATINGGENEDISCOVERY FORENHANCEDUSEOFNITROGENRESOURCESANDPLANTBIOMASSPRODUCTIONGomez-PaezM1,CorralesA.-R1,Dominguez-FigueroaJ1,CarrilloL1,Renau-MorataB2,MolinaR.-V2,NebauerS2,Vicente-CarbajosaJ1,MedinaJ1,1CentrodeBiotecnologíayGenómicadePlantas(UPM-INIA).CampusdeMontegancedo.Madrid,Spain.2UniversitatPolitècnicadeValència(UPV).Valencia.Spain.

[email protected]

Duringdevelopmentplantsusuallyhavetoencountersimultaneouslywithmultiplenutrientstressconditions.Untilnowresearchhasbeenmainlyfocusedinthestudyofplantresponsestoindividualstresses,andunderstandingofadaptationto combinatorial stress is reduced, but indicative of non-additive genetic effects. Different of transcriptomic andmetabolomicanalysisandfunctionalcharacterizationofindividualgeneshasfoundoutasignificantcrosstalkbetweensignalingpathwaysfornutrientandwaterstressadaptation.Weareinterestedinthestudyofregulatorynetworksandsignalingpathwaysinvolvedinplantresponsestoadverseconditionssuchaslimitationofwaterandnutrientslikenitrateand sulfur and to identifynewcandidate genes that canbeused in anewgenerationof improved-biomass-breedingprogramsincrops.The tolerance to theseheterogeneous stresses is a very complexphenomenon,which involvea flexible anddynamicmetabolic adjustment that implies changes innutrientuseefficiency, partitioningof assimilates and changes inplantorganslikerootsandcellstructuresastheplantcellwallandendoplasmicreticulum.WesetupcomprehensiveforwardgeneticscreeningsandsystemsbiologyapproachesthatallowustoidentifieddifferentArabidopsistranscriptionfactorsthatmightbeinvolvedinmetabolicadjustmentinresponsetothosenutritionlimitations.Remarkably,overexpressionofsomethosetranscriptionfactorsintomato,enhancetolerancetoseveralnutrientdeficienciesandsignificantincreaseinbiomassproduction.

PlenarySession:FruitRipeningandPost-Harvest

TOWARDUNDERSTANDINGTHEROLEOFJASMONATESDURINGDEVELOPMENTANDRIPENINGOFSTRAWBERRYFRUIT

Garrido-Bigotes A1,2, Figueroa P2, Figueroa C2, 1Programa de Doctorado en Ciencias Forestales, Facultad de CienciasForestales,UniversidaddeConcepción. 2PhytohormoneResearch Lab, InstitutodeCienciasBiológicas,UniversidaddeTalca.

[email protected]

Jasmonates (JAs) are phytohormones involved in stress responses, reproductive development and production ofsecondarymetabolites,althoughitsroleindevelopmentandripeningoffleshyfruitisnotwellknown.Exogenousmethyljasmonate (MeJA) promotes anthocyanin and lignin accumulation in Chilean strawberry (Fragaria chiloensis) fruit.However,untilnowtheroleofendogenousJAshasnotbeenreportedinstrawberryspecies.Inthepresentstudy,wecharacterized the temporal dynamics of JAs biosynthesis during development and ripening of strawberry (Fragaria×ananassa)fruit.Moreover,westudiedwhetherthereisahormonalrelationshipbetweenJAsandabscisicacid(ABA),themainripening-associatedphytohormonedescribedinstrawberry.Theendogenousoxylipinscontentssuchas12-oxo-phytodienoic acid, jasmonic acid, MeJA and the bioactive JA, jamonoyl-isoleucine (JA-Ile), were quantified by

Page 20: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

19

chromatography-tandemmassspectrometry(LC-MS/MS).PhytohormonelevelswerecomparedwithexpressionofgenesencodingforJAmetabolismandsignallingcomponents.Noteworthy,theexpressionlevelsofJA-relatedgenesexhibiteda significant decrease concomitantwith a reduction of JA-Ile level from flowering to ripe stages, being this behaviorinversely correlated to ABA profile. Interestingly, exogenous application of MeJA to immature fruits triggered ananthocyaninaccumulationalongwithincreasedJA-IlelevelandaconcomitantdownregulationofFaNCED1,encodingarate-limitingstepforABAbiosynthesis,besidesadecreasedlevelofABA.Together,theseresultselucidateJAshomeostasisduring strawberry fruit development, suggesting that JA-Ile could participate in early fruit development. Finally, weproposeanoppositerelationshipbetweenJAandABAduringfruitdevelopmentandripeningthatcouldberelevanttoregulatetheripeningprocessinanon-climactericfruitasstrawberry.Acknowledgments:FONDECYT/Regular1140663.

AcPPO:AGOLGILOCALIZEDPOLYPHENOLOXIDASEINCHERIMOYA(ANNONACHERIMOLAMILL.)

OlmedoP1,MorenoA1,Balic I1,Campos-VargasR1, 1CentrodeBiotecnologíaVegetal, FacultaddeCienciasBiológicas,UniversidadAndrésBello.

[email protected]

Cherimoya (Annona cherimola Mill.) is an exotic tropical fruit with attractive organoleptic characteristics, but highlyperishable and susceptible to browning in postharvest. The browning is causedmainly by the activity of the enzymepolyphenol oxidase (PPO). The cherimoya PPO (AcPPO) catalyzes the oxidation of diphenols to quinones, whichspontaneouslypolymerizetoformbrownpigmentsthatreducetheconsumers’acceptability.Intheliterature,thereisnoconsensusaboutthebiologicalroleofPPOanditssubcellularlocalizationhasbeendescribedinplastidsandvacuolesindifferentplants.Inthepresentworkwestudiedthesubcellularlocalizationofpolyphenoloxidaseincherimoyaleaves.Inorder to determine where AcPPO enzyme is present, we cloned and performed a translational fusion of this genepreviouslydescribed(GenBank:DQ990911.1)withthegreenfluorescentprotein(GFP).ConfocalmicroscopyexperimentsshowedthatAcPPO-GFPsignalco-localizedwithaGolgimarker(Gm-ManI)intobaccoleaves.Additionally,wecarriedoutsucrosedensitygradientcentrifugationsusingcherimoyaandtransientlyexpressedAcPPO-GFPtobaccoleaves.SucrosedensityfractionationsofcherimoyaleavesrevealedacorrelationbetweenmaximumenzymeactivityofAcPPOandGolgiapparatusmarkers.TransientexpressionassaysalsoshownacorrelationofactivityofAcPPO-GFPwithGolgimarkersintobacco leaves.Moreover, topologyanalysisofGolgienriched fractions treatedwithTritonX-100andproteinaseK incherimoyaandtobaccoleavespointedoutthatAcPPOisfacingthelumenoftheGolgiapparatus.TheseresultsopennewperspectivesaboutthefunctionalityofAcPPOinthesecretorypathway,itsactiononcherimoyafruitphysiologyandtheevolutionofthisenzyme.

TRANSCRIPTIONAL ANALYSIS AND STRUCTURAL CHARACTERIZATION OF XYLOGLUCANENDOTRANSGLYCOSYLASE/HYDROLASES(XTH)INVOLVEDINSOFTENINGOFFRAGARIACHILOENSISFRUIT

Valenzuela-RiffoF1,GuajardoJ1,StappungY1,Moya-LeónM1,HerreraR1,Morales-QuintanaL1,1LaboratoriodeFisiologíaVegetalyGenéticaMolecular,InstitutodeCienciasBiologícas,UniversidaddeTalca

[email protected]

Fragariachiloensishaspotentialasanexotic fruit inthe internationalmarket,however its fastsofteningproducedbychanges in the cellulose-hemicellulose fraction take place during ripening of the fruit and this limits itscommercialization. Several studies have identified genes encoding proteins named Xyloglucanendotransglycosidase/hydrolase(XTH),whichhavebeenassociatedtofruitripening.Therefore,inordertoprovidenewdatarelatingtotheseenzymesintheripeningprocessofF.chiloensis,librariesobtainedbyRNAseqindifferentripeningstageswereanalyzed.Fromthoselibraries,15putativesequenceswasidentifiedandclassifiedasXTHs.Inordertovalidatethesesequencesandhaveafirstapproachoftheirparticipationinthisphenomenon,atranscriptomicprofilingof5genescodingforXTHswereanalyzedbyqPCR.Interestingly,differentialbutoverlappingexpressionpatternswasobservedforthem. With the aim to propose different roles for them, their 3D models were built by comparative modelingmethodology.Themodelsobtainedweresimilaranddisplayedasimilarβ-jellyroll–typestructurethatistypicalofGH16enzyme family thatcomprisesacurvaturegeneratedby8antiparallelβ-sheetsholds thecatalyticExDxEmotif that isorientedtowardsthecentralcavityoftheprotein.Theinteractionofasetofputativesubstrateswiththeproteinwas

Page 21: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

20

exploredusingmoleculardockingandmoleculardynamicssimulations,findingabetterinteractionwithxyloglucansthanotherputativecellwallligands.OurresultsprovideaviewatatomicleveloftheXTHsroleinthecellwalldisassembly,which is congruentwith the probable participation of XTHs during softening ofF. chiloensis fruit. Acknowledgments:FONDECYTNº11150543,AnilloACT-1110projectandPAI/Academia#79140027projectssupportedthiswork.

EFFECTOFROOTSTOCKONFRUITQUALITY INOLDLIMACHINOTOMATOUNDERGREENHOUSECONDITIONS INTHEREGIONOFVALPARAISO

MartinezJP1,FariasK7,SalinasL2,MuenaV3,AlfaroJ4,GutierrezM3,FuentesL5,FuentesR6,LoyolaN7,LuttsS8,1CentroRegional de Investigación La Cruz INIA-CREAS. 2Centro Investigación Regional La Cruz INIA. 3Centro de InvestigaciónRegionalLaCruzINIA.4CentrodeBiotecnologíaUniversidadTécnicaFedericoSantaMaría.5INIALaCruz-CREASCentroRegional de EstudiosdeAlimentos y Salud (CREAS). 6Departamentode IndustriasUniversidadTécnica Federico SantaMaría.7EscueladeAgronomíaUniversidadCatólicaDelMaule.8GroupedeRechercheenPhysiologieVégétale(GRPV),EarthandLifeInstitute-Agronomy(ELI-A)UniversitécatholiquedeLouvain.

[email protected]

Researchon rootstock in termsofproductivityand fruit specificqualityhasnot beenverydeveloped in local tomatovarieties with good organoleptic characteristics (color, taste, and aroma). In this line, our proposal considers theimplementationofgraftmanagementinthewell-knownoldLimachinoTomato.ThepurposeofthestudywastoevaluatetheeffectofaspecificINIA-rootstockongrowth,productivity,andspecificquality(agronomic,functional,andsensorial)ofthisspeciecomparedtothelong-livedtomato(LV)undergreenhouseconditions.ThetrialtookplaceatINIA-LaCruzintheregionofValparaíso.Threetreatmentswereevaluated:long-livedtomato(LV),self-graftedoldLimachinotomato(L/L)and the old Limachino tomato grafted onto INIA rootstock (L/P),with a design of six completely randomized blocks.Growth,productivity,andspecificquality(agronomic,functional,andsensorial)ofthefruitwereevaluatedacrossfiveharvestsof the three treatments.Notreatmenteffectwasobservedupon freshbiomassnor indryweight.However,productivityinthefirstfourharvestswasbetterintreatmentsL/LandL/PoftheoldLimachinotomatothanintheLVone.ThetreatmentsL/LandL/Ppresentedsmallersizes,fruitweightandfirmnessbutgreatertitratableacidity,polyphenolsandantioxidantcapacity(FRAP)comparedtotheLVtomato. Inbothtreatments,theoldLimachinotomatopresentedsuperiortaste,color,andaroma,butaworstertexturecomparedtotheLVtomato.WeconcludethatthisspecificINIA-rootstockdidnothaveasignificanteffectonthequalityoftheLimachinotomatofruit,but itpresentedbetterhealthattributesthantheLVtomato.Acknowledgments:TheFoundationForAgricultureInnovation(FIAProjectNºPYT2014-0227).

PlenarySession:Cell&DevelopmentalPlantBiology

NITRATECONTROLOFROOTHAIRINITIATIONISMEDIATEDBYNRT1.1-TGA1/4INARABIDOPSISTHALIANA

CanalesJ1,Contreras-LópezO2,ÁlvarezJ2,GutiérrezR2,1InstitutodeBioquímicayMicrobiología,FacultaddeCiencias,UniversidadAustralDeChile.2DepartamentodeGenéticaMolecularyMicrobiologíaPontificiaUniversidadCatólicadeChile.

[email protected]

Roothairsaretubularoutgrowthsofrootepidermalcellsspecializedinwaterandnutrientuptake.Theimportanceofroothairsfornutrientuptakeandplantgrowthhasbeenreportedforphosphateandothernutrientsinseveralplantspecies.However,theimportanceofroothairsfornitrogennutritionhasnotbeenaddressedindetail.Nitrate,themainsourceofnitrogen for plants in aerobic soils, has an important signaling role regulating global gene expression metabolic,physiologicalanddevelopmentalprocessesinplants.Inthiswork,weidentifiedthemolecularmechanismbywhichnitratecontrols roothair development inArabidopsis thaliana.Wealso showed roothairs have an important role innitrate

Page 22: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

21

acquisitioninA.thaliana.MoleculargeneticsanalysisofseveralmutantsrevealstheNRT1.1-TGA1/TGA4nitratesignalingpathway regulates root hair initiation by directly regulating expression of root hair cell fate specification genes inA.thaliana.Thisdevelopmentalresponserepresentsanimportantstrategyforenhancednitrogenacquisitionwhenplantsreachnitrate-enrichedsoilpatches.Theroothairresponsetonitrateavailabilityandthemolecularmechanismdescribedhererepresentsanattractivenewtargetforfuturebreedingprogramstoenhancenitrogen-useefficiencyandcropyield.Acknowledgments:FONDAP15090007,MillenniumNucleusCenterForPlantSystemsAndSyntheticBiology(NC130030),FONDECYT1141097AndFONDECYT11150070.

IRONLOCALIZATIONINSEEDS

Ibeas M A1, Grant S1, Vargas-Perez J1, Roschzttardtz H1, 1Genetica Molecular y Microbiologia Pontificia UniversidadCatolicaDeChile.

[email protected]

Themechanismsofironuptakeinplantrootsarenowwelldescribed,butthosewhogovernthedistributiontoorgans,cellsandorganellestargetsarestillverypoorlyunderstood.Thedevelopmentofmethodsallowingironvisualizationinplanttissueshasbeenkeyinthesignificantprogressobservedinourfieldlastyears.Recently,ahistochemicalironstainingmethod(Perls/DAB)hasbeenusedonplanttissues.Thankstothisapproachithasbeenpossibletoidentifynewpoolsofironinplants.Here,wewillshowforfirsttimewhereironaccumulatesindifferentseedplants.Ourresultsopennewquestionsabout themechanismsof irondistributionandaccumulation inseeds,andcouldbeusedasabasis for thedevelopmentofnovelbiotechnologicalstrategiestoincreasingtotalironcontentinseedsforhumanconsumption.Acknowledgments:FONDECYT1160334fromTheChileanGovernmentAndINTER6809VRIPUC-Chile.

ENDOCYTICTRAFFICKINGSPECIFIESLATERALROOTFOUNDERCELLSTHROUGHTCELLCOMPONENTRELOCATION

MoralesS1,NorambuenaL1,1CentrodeBiologíaMolecularVegetal,FacultaddeCiencias,UniversidadDeChile.

[email protected](LR)aredevelopedpostembryonicallyfromtherootpericyclecellsthatacquirethefatetobeLRfoundercells(LRFC)inaprocesscalledprimingthatinvolvesspecificationandactivation.LRFCactivationincludestheinductionofthetranscriptionfactorGATA23,accumulationofthemembraneassociated-kinaseregulatorMAKR4andcellulareventsinneighboringcellsoverlyingLRprimordia.However,thenatureoftheeventthatdefinesLRFCspecificationisstillunclear.Besides, we have shown that the induction of endocytic trafficking towards the vacuole promotes LR formationindependentlyoftheauxinreceptorSCFTIR1/AFBsbymeansofthesyntheticcompoundSortin2.ThiscompoundinducesdenovoLRformationsuggestingthataffectsLRpriming.Withthisbackground,thegoalofourworkisunravelingtheroleoftheendocytictraffickingtowardsthevacuoleinprimingevents.WehavefoundthatSortin2promotestheinductionofGATA23 and MAKR4. Interestingly, the temporal analysis of Sortin2-triggered events revealed that the induction oftraffickingtowardsthevacuole isdetectedbeforeLRFCactivationevents.ThisevidencestronglysuggeststhatproteintraffickingisindeedtheleadingeventforLRFCspecification.Furthermore,geneticapproachbymeansofknownproteintrafficking or LR formation-defective mutants, reinforces the link between these two processes. Indeed, particulartraffickingpathwaysforrelocatingcellcomponentareimportantforSortin2LRFCspecification.TogethertheseresultsplaceacellularprocessofLR-programwhere the inductionofendocytosis towards thevacuole,aswellas, relocationamongcompartmentspromotethespecificationofLRFC,allowingrootarchitectureremodelinginArabidopsisthaliana.Acknowledgments: FONDECYT 1120289. VID Enlace Grant 2016 ENL015/16 Universidad De Chile. CONICYT-PCHA/MagísterNacional/2014-22141870.

Page 23: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

22

SMZ/SNZ AND GIBBERELLIN SIGNALING ARE REQUIRED FOR NITRATE-ELICITED DELAY OF FLOWERING TIME INARABIDOPSISTHALIANA

GrasD1,VidalE2,RiverasE2,UndurragaS3,AlabadiD4,BlázquezM4,GutierrezR2,1InstitutodeAgrobiotecnologíadelLitoral(CONICET-UNL),BioquímicayCienciasBiológicas,UniversidadNacionaldelLitoral.2GenéticaMolecularyMicrobiología,CienciasBiológicas,PontificiaUniversidadCatólicaDeChile.3GenéticaMolecularyMicrobiologíaPontificiaUniversidadCatólicaDeChile.4InstitutodeBiologíaMolecularyCelulardePlantas,CSIC,UniversidadPolitécnicadeValencia.

[email protected]

Reproductive success of plants largely depends on the correct programming of developmental phase transitions,particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by theintegrationofanarrayofenvironmentalandendogenousfactors.Nitrogen(N)isthemineralmacronutrientplantsrequireinthelargestamount.Therefore,itsavailabilitygreatlyimpactsmanyaspectsofplantgrowthanddevelopment,includingfloweringtime.Wefoundnitratesignalinginteractswiththeage-relatedandgibberellicacidpathwaystocontrolfloweringtimeinArabidopsisthaliana.WeshowrepressorsoffloweringtimebelongingtotheAP2-typetranscriptionfactorfamilyincludingSCHLAFMUTZE (SMZ)andSCHNARCHZAPFEN (SNZ)areimportantregulatorsoffloweringtimeinresponsetonitrate.OurresultssupportamodelwherenitrateactivatesSMZandSNZviathegibberellinpathwaytorepressfloweringtimeinArabidopsisthaliana.Acknowledgments:HowardHughesMedical Institute,FondoDeDesarrolloDeAreasPrioritarias (FONDAP)CenterForGenomeRegulation(15090007),MillenniumNucleusCenterForPlantSystemsAndSyntheticBiology(NC130030);FondoNacionalDeDesarrolloCientíficoyTecnológico.

PlenarySession:MetabolismandNaturalproducts

UNDERSTANDINGTHESOFTENINGOFFRAGARIACHILOENSISFRUIT

Moya-LeónMA,LizanaR,Morales-QuintanaL,GaeteC,andHerreraR.,InstitutodeCienciasBiológicas,UniversidaddeTalca,Chile.

[email protected]

TheChileanstrawberry(Fragariachiloensis)fruitisanativespecieswithoutstandingqualitypropertiessuchasitsfruityaromaandexoticwhite-pinkcolor,neverthelessitsfastsofteninglimitscommercialization.FruitsofteningisrelatedtocellwalldisassemblingandinF.chiloensisfruitsignificantreductioninpectinandhemicellulosefractionsareobservedduring softening. Several cell wall degrading enzymes are taking part in F. chiloensis’s softening, includingpolygalacturonase (PG), xyloglucan endotransglycosylase/hydrolase (XTH1) and expansin 2 (Exp2), among others. Theexpression levelofFcPG,FcXTH1 andFcExp2 increasesas softening is takingplace, inaddition to their correspondingactivities.F.chiloensis isanon-climactericfruit,andthecontrolof itsripeningremainsunclear. Inordertotest ifABAcouldinterferewiththeripeningofF.chiloensis,fruitwastreatedwith1mMABAor100µMfluridone(ABAbiosynthesisinhibitor).AsignificantincreaseintheaccumulationofPG,XTH1andExp2transcriptswasobservedinresponsetoABA,andareductioninresponsetofluridone.Toexplainthisregulatorymechanism,thepromoterregionsofthesegeneswereobtainedbyGenomewalker,andthe insilicoanalysis revealsputativecis regulatoryelements responding toABA.Tofurther explore the participation of these cell wall degrading enzymes their 3D protein models were built throughhomologymodeling,andtheirinteractionwithdifferentcellwallpolysaccharideswasevaluated.ThedatasupportsthepreferentialinteractionofXTH1withhemicellulose,Exp2withcelluloseandPGwithhomogalacturonan,confirmingthehypothesisofacollaborativeparticipationofenzymesincellwallmatrixdisassembling.TheseevidenceshadprovidedusefulinformationtounderstandthesofteningofF.chiloensisfruitanditsregulation.Acknowledgments:AnilloACT-1110project.

Page 24: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

23

SIMILARMOLECULARMECHANISMSARERESPONSIBLEFORTHEDECLINEINNITROGENASEACTIVITYINNODULESOFMEDICAGOTRUNCATULAUNDERDIFFERENTTREATMENTS

CabezaR1,LieseR2,SchulzeJ3,1DepartamentodeProducciónAgrícola,FacultaddeCienciasAgrarias,UniversidadDeTalca.2DepartmentofPlantEcologyandEcosystemsResearch,FacultyofBiology,UniversityofGoettingen.3PlantNutritionandCropPhysiology,FacultyofAgriculturalSciences,UniversityofGoettingen.

rcabeza@u.uchile.clThenitrogenaseactivityinMedicagotruncatulanodulesshowsadailypatternthatiscommonfordifferenttreatmentsthatproduceN-satietystatusinleaves,e.g.anutrientdeficiencyorhypernodulation(M.truncatulasupernumericnodulesmutant).Thegoalofthisworkwastoshowthatthosetreatmentsthatinduceadailyrhythminnitrogenaseactivityhavesimilar molecular mechanisms.We compared the nodule transcriptome ofM. truncatula in plants growing under Pdeficiencyandinplantstreatedwithnitrate,andwemeasuredthenoduleactivityinplantsgrowinginanaeroponicsystemthatallowscontrollednutrientsupplyandcontinuousnon-invasivemeasurementofperplantnitrogenaseactivity.PlantsinthePdeficiencytreatmentdevelopedlessdrymatterandhadlowerPconcentrationsinshootsandnodules,buthigherNconcentrationinshoots.AnRNAseq-basedcomparativetranscriptomeprofilingofnodulesduringdeclineofnitrogenaseactivity revealedsimilaritiesbetweenthetwotreatments (Pdeficiencyversusnitratesupply). Inbothtreatments, thereductionofnitrogenaseactivitywasimpairedbyamassivereductionintheexpressionofnumerousgenesfornodule-specificcysteine-richpeptides(NCR),andprobablyalsobyadisturbanceoftheinnercellironallocation.Inaddition,thestrong reduction in the expression of leghemoglobin restricted the supply of oxygen for respiration. Additionally,weconductedRNAseqanalysisofnodulesandrootsofM.truncatulaearlierintimeafternitrateadditioninordertodecipherthefirstmolecularreactionsbeforethenitrogenaseactivitydeclines.Acknowledgments: FONDECYTDe Inicio en Investigación 2014GrantN° 11140135 and TheGermanNational ScienceFoundationDFGSCHU1602/7-1.

SOLANUMLYCOPERSICUMPOSSESSESMITOCHONDRIALANDPLASTIDIALLIPOYLSYNTHASESCAPABLEOFINCREASINGLIPOYLATIONLEVELSINVIVO

MirandaS1,ArayaJ1,HandfordM1,1CentrodeBiologíaMolecularVegetal,FacultaddeCiencias,UniversidadDeChile.

[email protected]

Thepowerfulantioxidantcapacitiespresentineukaryoticandprokaryoticorganisms.LAistheprostheticgroupofseveralkeymulti-subunit enzymes complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase of thetricarboxylicacid(TCA)cycle.LAbiosynthesisandincorporationintothesetargetproteins(lipoylation)proceedsdenovoorviaasalvagepathway.Duringdenovo synthesis,octanoyl transferase (LIP2)usesoctanoylgroups linkedtoanacylcarrierproteintotransoctanylatetargetproteins.Subsequently,lipoylsynthase(LIP1)catalysesthefinalstepbyinsertingtwo sulphur atoms into the prosthetic group.Whilst a number of the enzymes have been functionally-characterisedinArabidopsisthaliana,theaimofthecurrentworkistoidentifyandevaluatetheroleofthispathwayinafruit-bearingspecies.Towardsthisaim,weidentifiedtwoproteinsintomato(Solanumlycopersicum)withthemolecularcharacteristicsofLIP1.WecalltheseproteinsSlLIP1andSlLIP1p,whichpossess78%and84%aminoacididentitywithAtLIP1andAtLIP1p,respectively.Confirmingbioinformaticpredictions,SlLIP1hasamitochondriallocalisationwhereasSlLIP1pisplastidial,asshownbyconfocalmicroscopy.Furthermore,bothproteinsrescuecarbonsourcerequirementsandlipoylationlevelsofanEscherichiacolilipoylsynthasemutant(lipA),andthusactaslipoylsynthasesinthisheterologoussystem.Additionally,stableover-expressionofthesegenesintomatoproducestranscriptionalalterationsingenesencodingproteinsinvolvedinLAmetabolism,andtargetproteinsof theTCAcycle,which in turncorrelatewith the increased levelof lipoylationmeasuredintheseover-expressinglines. Acknowledgments:CONICYTMaster(22151178toSM)andDoctoral(21160916toJA)scholarships,andAnilloACT-1110andFondecyt1140527(MH).

Page 25: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

24

EVALUATIONOFTHEPLANTBIOSTIMULANTEFFECTOFARTHROSPIRAMAXIMAEXTRACTS

Restovic F1, VelosoV2, Arce-JohnsonP1, 1DepartamentodeGenéticaMolecular yMicrobiología, FacultaddeCienciasBiológicas,PontificiaUniversidadCatólicaDeChile.2FacultaddeCienciasUniversidadDeChile.

[email protected] fertilizer consumption is on the rise,mostly due to an increasing demand associated to a growing globalpopulation,whichaccordingtotheUN,willreachmorethan9billionpeoplein2050.Ithasbeenshownthatfertilizeruseisdirectlyrelatedtoagricultureyield,although,recentstudieshaveestablishedthatplantsareactuallyassimilating10-40% of it. This overuse has been linked to environmental problems such as eutrophication of water bodies, soildegradation,anddiseases,amongothers.Inordertocounterthis,severalinvestigationsarefocusingonnewsubstancesthatcouldincreasefertilizeruptakeandplanthealth.Withinthiswecanfindarelativelynewconcept,plantbiostimulants.Theserefertosubstancesthatimproveplantnutrientabsorption,cropyield,stresstolerance,andthepreservationofsoilproperties.Theyarenotconsiderednutrientsperse,butareusedasafertilizercomplement.Ithasbeendemonstratedthat exopolysaccharides from marine algae improve plant growth by enhancing nitrogen assimilation and basalmetabolism.Cyanobacteria,oxygenicphotosyntheticprokaryoticorganisms,representamajorsourceofpolysaccharidesandconstituteaninnovativesourceofbiostimulantcompounds(carbohydrate,lipids,glycolipids,glycoproteins,aminoacids,etc.)thathavebeenreportedtoenhancegrowth,plantphytochemicalsaccumulationandtoleranceagainstbioticandabioticstress.Inthisstudy,weproposetheuseoflyophilizedextractsofArthrospiramaxima,commonlyknownasSpirulina,asaplantbiostimulantinordertoimproveagronomictraitsandstressresponse,sinceitcontainsupto70%ofproteininitsdryweight,aswellasexopolysaccharides,fattyacids,vitamins,minerals,phytohormones,amongothers.Acknowledgments:FinanciamientoICM-MIDECON,ProyectoNC130030,NMBSBSV,FONDECYT-Postdoctorado3150259.

PlenarySessions:Bioticstress

COOPERATION THROUGH COMPETITION - DYNAMICS AND MICROECONOMICS OF A MINIMAL NUTRIENT TRADESYSTEMINARBUSCULARMYCORRHIZALSYMBIOSIS

DreyerI1,1CentrodeBioinformáticaySimulaciónMolecular(CBSM)UniversidaddeTalca.

[email protected]

Inarbuscularmycorrhizal(AM)symbiosis,fungiandplantsexchangenutrients(sugarsandphosphate,forinstance)forreciprocalbenefit.Untilnowitisnotclearhowthisnutrientexchangesystemworks.Here,weusedcomputationalcellbiologytosimulatethedynamicsofanetworkofprotonpumpsandproton-coupledtransportersthatareupregulatedduringAMformation.Weshowthatthisminimalnetworkissufficienttodescribeaccuratelyandrealisticallythenutrienttradesystem.Byapplyingbasicprinciplesofmicroeconomics,welinkthebiophysicsoftransmembranenutrienttransportwiththeecologyoforganismicinteractionsandstraightforwardlyexplainmacroscopicscenariosoftherelationsbetweenplantandAMfungus.Thiscomputationalcellbiologystudyallowsdrawingfarreachinghypothesesaboutthemechanismandtheregulationofnutrientexchangeandproposesthatthe‘cooperation’betweenplantandfunguscanbeinfacttheresult of a competition between both for the same resources in the tiny periarbuscular space. The minimal modelpresentedheremayserveasbenchmarktoevaluateinfuturetheperformanceofmorecomplexmodelsofAMnutrientexchange.Asafirststeptowardsthisgoal,weincludedSWEETsugartransportersinthemodelandshowthattheirco-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membraneproposingthattwodifferentpathwaysforthesamesubstrateshouldnotbeactiveatthesametime.Acknowledgments:FondecytGrantN°1150054OfTheComisiónNacionalCientíficaYTecnológicaOfChile.)

Page 26: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

25

MOLECULAR CHARACTERIZATION OF VITIS VINIFERA RESISTANCE TO FUNGAL PATHOGENS BOTRYTISCINEREAANDERYSIPHENECATOR

Armijo G1, Agurto M1, Meyer C1, Nuñez C1, Solano I1, Schlechter R1, Arce-Johnson P1, 1Departamento de GenéticaMolecularyMicrobiología,FacultaddeCienciasBiológicas,PontificiaUniversidadCatólicaDeChile.

[email protected]

Grapevine(VitisviniferaL.)isgreatlyaffectedbyalargenumberofpathogensthatcausediseasesinpre-andpost-harvestperiods.ThisplantishighlysusceptibletoBotrytiscinerea,anecrotrophicfungusthatobtainsnutrientsfromdeadtissue,and Erysiphe necator, abiotrophic fungus that feeds on nutrients obtained from living tissue. Due to the agronomicimportanceofV.vinifera,isessentialtointrogressresistanttraitsagainstthesepathogensandtounderstandhowplantrespondtotheinfection.TheaimofthisworkistogenerateV.viniferaplantswithgreaterresistancetoB.cinereaorE.necatorbytraditionalbreedingandtocharacterizeatthemolecularlevelthedefenseresponsesagainsteachpathogen.Forthis,experimentalcrossesweremadeusingresistantandsusceptibleplants.Thus,varietieswithlowersusceptibilitytoinfectionbyB.cinereaorresistancetoE.necatorwereselectedbyphenotypicanalysis.Theseplantswereevaluatedthroughbiochemicalandhistologicalanalysisinordertogodeeplyintothedefenseresponseinducedbyeachpathogen.ThepreliminaryresultsindicatethatresistanceagainstB.cinereaismainlyduetomechanicalbarriers,whileresistancetoE. necator is related to an effector trigged immunity (ETI) response. Thisworkwill contribute to the study of plant-pathogeninteractionsatmolecularlevelinagronomicalimportantcrops.Acknowledgments:FONDECYT-POSTDOCTORADO3140324;ProyectoNúcleoMilenioNC130030.

PECTINSTRUCTUREANDCOMPOSITIONDYNAMICSDURINGEARLYANDLATEPLANT-APHIDINTERACTION

Silva-SanzanaC1,Saez-AguayoS1,SalinasH1,ChorbadjianR2,Blanco-HerreraF1,1CentrodeBiotecnologiaVegetal,CienciasBiologicas,UniversidadAndrésBello.2DepartamentodeCienciasVegetales,FacultaddeAgronomíaeIngenieríaForestal,PontificiaUniversidadCatólicaDeChile.

[email protected]

Feedingstrategyemployedbyaphidsrepresentsaparticularchallengeforplantsintermsofdefenseactivationduetothelowtissuedamagecausedbytheseinsects.Aphidspossessaspecializedmouthpartwithinwhichaslenderstructurecalledstyletallowsthemtopenetratethedifferenttissuelayersofplantorgansuntilasinglesieveelementisreached.Aphidscarryoutseveralprobingeventsduringearlystagesofinteractionwithplantsinordertochoicethemostsuitablehostforcolonysettle.Duringaphidprobing,cellwalland intercellularmatrixaremechanicallyandenzymaticallydisruptedbystyletprogressiontowardphloem.Despitethatprobingpathwaysareknown,littleattentionhasbeenpaidtotheseplantstructures.Sincepectinsrepresents30to35%oftotalpolysaccharidesthatbuildupcellwallandintercellularpolymers,the present study focuses on the analysis of pectin matrix dynamics duringMyzus persicae infestation process inArabidopsisthaliana.Ourresultsrevealssignificantchangesinpectinrelatedenzymesandpolymersat6and72hoursofaphid–plantinteraction.Globalactivityofpectinmethylesterases(PMEs)significantlyincreasedat6and72hoursinlocalinfestedtissue.Inaccordancewiththeseresults,methylesterscontentdecreaseat6and72hoursinlocalinfestedtissue.Additionally, LM19 and LM20 immunohistochemistry reveals that Homogalacturonan chainswere demethylesterifiedduringaphidattackinlocalinfestedtissues.Ourresultssuggestthatpectinmodificationsobservedatearly(6hours)andlate(72hours)stagescouldrepresentakeystepduringaphidhostselectionandcolonization.Therefore,pectinpolymersandassociatedmodifyingenzymescouldbeconsideredassuitablemoleculartargetsforbiotechnologyandagronomicstudiesthatpointstoreducethedetrimentalimpactofaphidsincommercialcrops.Acknowledgments:ProyectoNucleoUNABNºDI-590-14/N.

Page 27: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

26

PHB3INTERACTSWITHICS1ANDREGULATESTHESA-MEDIATEDDEFENSERESPONSECONTROLLINGTHELEVELSOFICS1INARABIDOPSISTHALIANA.

SeguelA1,JelenskaJ2,HerreraA1,GreenbergJ2,WildermuthM3andHoluigueL1,1DepartamentodeGenéticaMoleculary Microbiología, Pontificia Univesidad Católica de Chile. 2Department of Molecular Genetics and Cell Biology, TheUniversityofChicago.3DepartmentofPlantandMicrobialpathology,UniversityofCalifornia,Berkeley.

[email protected]

Salicylicacid(SA)isaphytohormonewidelyknownforitsroleintheregulationofplantdefenseresponses.Itaccumulatesin plant tissues during a variety of biotic and abiotic stress conditions including pathogen infections and UV-C lightexposure. InArabidopsis thaliana, themain source of SA biosynthesis under such stress conditions is a chloroplasticpathwayfromchorismate, inwhich isochorismatesynthase1 (ICS1) is,so far, theonlyenzymeknowntobe involved.However,itisknownthatinsomebacteriaICS1formsacomplexwithotherproteinsinordertoproduceSA.Therefore,wehypothesizedthatICS1couldworkinasimilarwayinplants.Totestthispossibility,weperformedimmunoprecipitationof ICS1andusedmassspectrometryto identify ICS1-interactingproteins. Inthisanalysis,wefounda largenumberofpeptidesfromaproteinfamilythatwaspreviouslydescribedasmitochondria-localized,calledProhibitins(PHBs).Hereweconfirm the interaction between PHB3 and ICS1 and report that PHB3, like ICS1, localizes into the chloroplasts.Weevaluated the defense response ofphb3-3mutant plants subjected to treatmentswithUV-C and avirulent strains ofPseudomonassyringaeDC3000(Pst).Underbothstressconditions,wedetectedareducedincreaseintheSAlevels inphb3-3mutantcomparedtoWTplants.Furthermore,accumulationofPR-1proteinafterthesestressconditionswasalsoreducedinthemutantcomparedtoWTplants.Accordingly,thephb3-3mutantplantsalsoshowhighersusceptibilitytoavirulentstrainsofPst.UsinganantibodyagainstICS1wefoundthattheabsenceofPHB3geneproduceadecreaseonthelevelsofICS1proteincomparedtoWTplants.Allthesephenotypeswererevertedinphb3-3plantscomplementedwith pUBQ10:PHB3-V5 gene. This evidence shows that PHB3 is involved in the regulation of SA biosynthesis in thechloroplastsandisthereforerequiredforproperSA-mediateddefenseresponsestostressinArabidopsisthalianaSupportedbyFONDECYT(1141202)andMilleniumNucleusCenterforPlantSystemsandSyntheticBiology(NC130030)

PlenarySessions:Abioticstress

TRAITSANDGENESFORDROUGHTTOLERANCE:STUDIESINGERMPLASMCOLLECTIONOFLOTUSSPP,TOMATOESANDWHEAT.

TapiaG1,InostrozaL2,DelPozoA3,VegaMV3,MendezJ3,YañezA3,ArreyO2,CortezD2,1RecursosGeneticosInstitutodeInvestigaciones Agropecuarias. 2Unidad de Recursos Genéticos Vegetales Instituto de Investigaciones Agropecuarias.3DepartamentodeproducciónagrícolaUniversidadDeTalca.

[email protected]

Droughtstress isthemost limitingfactor inplantdevelopmentaffectingdirectlycropproductivityandyield.Dramaticreductionofwateravailabilityhasbeenevidencedbytheclimaticchangeinseveralregionoftheworld,whereourcountryisincluded.Therainfallreductionaswellasotherwaterresourcerestrictionsshowthattheimprovementofthewateruseefficiencythroughtheutilizationofdroughttolerantcrops,urgetodevelopinzonesaffectedbywaterscarcity.Ourresearchisfocusedinanintegralvisionofdroughtstresstolerancefromthepointofviewofmorphology,physiology,biochemistry,andmolecularbiology linkedtospecifictraitsthatconferdroughttolerance inthreemainplantgroups:cereals,wildandcultivatedtomatoesandforagelegumes.Wehave screened germplasm collectionsofLotus spp.,Solanum spp. andwheat for the identificationof contrastingrelevant traits associated with drought tolerance. Additionally, for specific genotypes of tomatowe have developedRNAseqstudiesandidentifiedenrichedGOcategoriesinoverexpressedandrepressedgroupsofgenesbetweencultivated

Page 28: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

27

tomato andwild species for “transcription factor activity”, “photosynthesis” and “enzyme inhibitor activity” betweenothers.InLotusspp.wehaveidentifiedQTLsassociatedwithimportantphysiologicaltraitssuchasosmoticpotentialorcropwaterstressindex.Additionally,otherresearcheshavebeendirectedtocharacterizetheroleofgenescodingforlipidtransferproteinsincuticleformationoftomatoasmuchasLotusjaponicus.Studies inwheat have been conducted to reveal the role of sugar accumulation andmobilization during grain fillingmediated by terminal drought stress. The involving of genes that coding for fructansmetabolism enzymes has beenevaluated.Acknowlegments:FontagroFTG-8071/08,SubsecretariaAgricultura501453-70.

METATRANSCRIPTOMICAPPROACHREVEALSCONSERVEDADAPTIVEPROCESSESINATACAMADESERTPLANTS

SotoD1, Varala K2, Araus V1, Carrasco-PugaG1, Díaz F1,Nilo-PoyancoR1, CoruzziG3,Gutiérrez R1, 1Departamento deGenéticaMolecularPontificiaUniversidadCatólicaDeChile.2DepartmentofBiologyNewYorkUniversity.3BiologyNewYorkUniversity.

[email protected]

AtacamaDesertistheoldestanddriestdesert,andrepresentsoneoftheharshestenvironmentsonEarth.IthasbeenestimatedthatAtacamaDeserthasremainedextremelyhyperaridforatleastthepasteightmillionyears,asufficientlylongtimeforplantstoadaptandcolonizethisenvironment.ToexploitthegenomesoftheseplantsadaptedtothriveinmarginalsoilsinthearidChileanAndesdesert,wesequencedanddenovoassembledthetranscriptomeof32selectedspecies,coveringawiderangeofplantfamiliespresentinthestudysite.Toidentifycandidategenesandprocessesthathavehadaroleintheadaptationoftheseextremophileplants,weusedauniquephylogenomicapproach.Thisstrategyrebuilds the evolutionary divergenceby comparing the sequences ofAtacamaDesert plantswith 32phylogeneticallyrelatedspeciesand6modelspecies.KeygenesinvolvedinthedivergenceofAtacamaandnon-Atacamaspecieswereidentifiedandanalyzed,revealingdiscriminativemolecularmechanismsunderlyingAtacamaDesertplantsadaptability.Acknowlegments: Center For Genome Regulation, Howard HughesMedical Institute, Conicyt, Department Of EnergyUnitedStatesOfAmerica,EuropeanComission.

TRANSCRIPTIONFACTORSFROMTHETGACLASSIIFAMILYCONTROLTHEANTIOXIDANTRESPONSEAGAINSTABIOTICSTRESSINARABIDOPSIS

Herrera-VásquezA1,FonsecaA1,UgaldeJ1,SeguelA1,VidalE2,MoyanoT1,GutierrezR1,HoluigueL1,1GenéticaMoleculary Microbiología, Ciencias Biologicas, Pontificia Universidad Católica De Chile.2Centro de Genómica y BioinformáticaUniversidadMayor.

[email protected]

TheTGAfamilyoftranscriptionfactorsinArabidopsisiscomposedof10membersgroupedin5classes.TGAclassIIfactors,which include TGA2, TGA5 and TGA6 proteins, have a redundant function in the regulation of some defense genes.Nevertheless,theirroleinconstrainingoxidativestresshasnotbeenstudiedyet.InthisworkweassesstheimportanceofTGA2/5/6factorsintheplanttoleranceresponsetostresstreatmentswithmethylviologenandUV-Bradiation,usingatriplemutantline(tga256).Wefoundthattga256mutantplantsaremoresusceptibletothedifferentabioticstressesthanwildtype(WT)plants,showingahigheraccumulationofreactiveoxygenspecies. InordertoevaluatethegenescontrolledbyTGA2/5/6,atranscriptomicanalysiswasperformed.Forthis,WTandtga256mutantplantswereirradiatedwith UV-B light. Non-irradiated plants were used as control. We found 717 genes regulated by both genotype andtreatment. In this group of genes, two types of induction profiles are particularly interesting. 1st. Genes controlledpositivelybyTGAsinthestresscondition.Thebiologicalprocessover-representedinthisgroupistoxicmetabolicprocess

Page 29: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

28

and includesgenescoding forglutathioneS-transferases (GSTs).2nd.GenescontrollednegativelybyTGA in thestresscondition.Thisgroupdon’tshowGOoverrepresentedterms,neverthelessgenesinvolvedinsalicylicacidbiosynthesisareincluded.Theseresults indicateakeyroleofTGA2/5/6asanodeforredoxregulation inresponsetoabioticstress inplants.Acknowledgements:FONDECYT1141202AndScientificMilleniumInitiativePSSBNC130030.

STEM CARBOHYDRATE DYNAMICS AND EXPRESSION OF GENES INVOLVED IN FRUCTAN ACCUMULATION ANDREMOBILIZATION DURING GRAIN GROWTH INWHEAT (TRITICUM AESTIVUM L.) GENOTYPESWITH CONTRASTINGTOLERANCETOWATERSTRESS

YáñezM1,DelPozoA2,TapiaG3,GuerraF4,1CienciasAgrariasyForestalesUniversidadCatólicaDelMaule.2CentrodeMejoramientoGenéticoyFenómicaVegetal,CienciasAgrarias,UniversidadDeTalca.3RecursosGenéticos InstitutodeinvestigacionesAgropecuarias.4InstitutodeCienciasbiológicasUniversidadDeTalca.

[email protected]

Thegeneticandphysiologicalmechanismsunderlyingtherelationshipbetweenwatersolublecarbohydrates(WSCs)andwaterstresstolerancearescarcelyknown.ThisstudyaimedtoevaluatethemainWSCsinstems,andtheexpressionofgenes involved in fructanmetabolism inwheat genotypes growing in a glasshousewithwater stress (WS; 50% fieldcapacity from heading) and full irrigation (FI; 100% field capacity). Eight wheat genotypes (five tolerant and threesusceptibletowaterstress)wereevaluatedinitially(experiment1)andthetwomostcontrastinggenotypesintermsofWSCaccumulationwereevaluatedinasubsequentexperiment(experiment2).MaximumaccumulationofWSCsoccurred10-20days after anthesis.UnderWS, the stress-tolerant genotype exhibitedhigher concentrations ofWSCs, glucose,fructoseandfructaninthestems,comparedtoFI.Inaddition,thestress-tolerantgenotypeexhibitedhigherup-regulationofthefructan1-fructosyltransferaseB(1-FFTB)andfructan1-exohydrolasew2(1-FEHw2)genes,whereasthesusceptiblecultivarpresentedanup-regulationofthefructan6-fructosyltransferase(6-SFT)andfructan1-exohydrolasew3(1-FEHw3)genes.OurresultsindicatedcleardifferencesinthepatternofWSCaccumulationandtheexpressionofgenesregulatingfructanmetabolismbetweenthetolerantandsusceptiblegenotypes,underWS.Acknowledgments:ProyectoFondecytN°1150353.

PlenarySession:Phenomicsandecophysiology

PHENOMICS,ANDTHENEWCHALLENGESINPLANTSCIENCES

Pinto M1, Correa J2, Hinrichsen P3, 1Laboratorio de Fisiología Vegetal Instituto de Investigaciones Agropecuarias.2PhenotypingCentre,PlantScience,JülichInstitute.3MejoramientoGenéticoyBiotecnologíaInstitutodeInvestigacionesAgropecuarias.

[email protected]

Understandingthelinkbetweengenotypeandphenotypeisatpresentoneofthemajorchallengesinplantbreedinginorder to improve traits of agriculture importance related to high yield, fruit quality, disease resistance and theplantcapacity to grow in unfavourable environmental conditions. In this work we analyzed the phenotype-genotyperelationshipsinasegregatingprogenyofacrossofRuby×Sultaninagrapevinecultivarsbyphenotypingforberryqualityandclusterarchitecturetraits.TheQTLsdetectedindicatedthatthesetraitshaveacleargeneticbasisandthattheyaregoodcandidatestodeterminephenotypictraitsofinterestforgrapevinebreeding.Wealsoanalyzedtherollthatrootsplayindeterminingtheadaptabilityofplantstowaterstress.Phenotypingrootarchitecturaltraitsinaquinoapopulation,correlationsanddifferencesamongecotypesforallthetraitsanalyzedwerefound.Inouranalysisweemphasizethatthe

Page 30: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

29

main goal of a quantitative phenotyping approach is to link the genotype and the environment to morphological,functional,andyieldcharacteristicsofplants.

DROUGHTEFFECTONLEAFGASEXCHANGEANDCHLOROPHYLLSCONTENTSOFFOURCEREALSGROWNINGREENHOUSE

Mendez-EspinozaA1,GarrigaM1,RomeroS1,EstradaF1,EscobarA1,LobosG1,DelPozoA1,1DepartamentodeProducciónAgrícola,CentrodeMejoramientoGenéticoyFenómicaVegetal,FacultaddeCienciasAgrarias,UniversidadDeTalca.

[email protected]

Oneofthemost immediateplantresponsestowaterdeficit istheprogressiveclosureofthestomata, limitingcarbonassimilationandplantgrowth.Stomatalconductance(gs)respondsveryquicklyandsustainablytochangesinsoilwaterpotential, so it couldbeconsideredasan indicatorofplant response towaterdeficit.The impactofdroughtoncropperformancedependsontheintensityofthestressandplantspeciesandcultivars.Acomparativestudybetweensmallgrainscereals,breadwheat,durumwheat,triticaleandbarleyunderwaterstress(WS)andfullirrigated(FI)conditionswas conducted in a greenhouse. The measurements were performed every seven days for four weeks since barleyanthesis.UnderWStriticaleexhibitedthehighestgsandleafphotosynthesis(An).BarleypresentedthelowestxilematicwaterpotentialandleafgasexchangeunderWS.TherelationshipbetweengsandAnshowedaclearseparationbetweendurumwheatandbarley.Itcanbeconcludedthatbarleywasmoresensitivitytosoilwaterdeficit.Acknowledgments:ThePostdoc-ConicytProject2016/3160687AndTheProjectFondecyt1150353.

HIGHTHROUGHPUTPHENOTYPINGINANINIAWHEATBREEDINGPROGRAMFORDROUGHTTOLERANCESELECTION

Romero-BravoS1,Méndez-EspinozaAM1,GarrigaM1,EstradaF1,EscobarA1,DelPozoA1,GustavoL1,1DepartamentodeHorticulturaUniversidadDeTalca.

[email protected]

InMediterranean environments water deficit is themost common factor producing abiotic stress in plants, causingreducedyields.Thiseffectisevengreaterwhenstresseventsoccurduringfloweringandgrainfilling,commonlycalledlatestress.Plantbreedingfocusedonwaterstresstolerance isacomplexmatterduetothe lackof fastandaccurateevaluationmethodologies.Differenttechniquesexistformonitoringthewaterstatusofplants,suchasthemodulatedchlorophyllafluorescence,gasexchange,andleafwaterpotentialamongothers.However,thesemethodsarenotfeasible(technically and economically) to use due to the high number of genotypes to evaluatewithin a breeding program.Currently, there is equipment, techniques and forms of non-destructive analysis,which have proved to be helpful inphenotypingorientedtoplantbreeding(phenomics).Wehaveusedhyperspectralreflectancetogeneratemathematicalmodelsforpredictinginafastandnon-destructiveway,physiologicalandagronomicaltraitscloselyrelatedwithdroughttolerance.Forthat,acollectionof368advancedlinesandcultivarsofspringwheatwereevaluatedunderthreedifferentwaterregimes(severewaterstress,mildwaterstressandfull irrigated).Traitsevaluatedweregrainyield(GY),carbonisotope discrimination (∆13C), LAI, spectral reflectance, among others. Spectral indices and 4mathematicalmodellingtechnicsweretested(PCR,PLS,RIDGEandSVR).GY,LAIand∆13CwerethetraitsbestcorrelatedwithSRIandthemodels,particularlywhenthereweremeasuredduringgrainfillingstage.

CHILE,AHOTSPOTFORPLANTPHENOMIC

Page 31: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

30

LobosGA,anddelPozoA.,CentrodeMejoramientoGenéticoyFenómicaVegetal,FacultaddeCienciasAgrarias,PIEIAdaptacióndelaAgriculturaalCambioClimático(A2C2),UniversidaddeTalca,Talca,Chile.

[email protected]

Thesuccessofbreedingprogramsisreflectedinthenumberofindividualsreleasedattheendoftheselectionprocess.Breedersmustgeneratethousandsofhybridsannuallyandevaluatethemforanumberofyears.Becauseofthelargenumberofgenotypes,deepphenotypiccharacterizationsofthematerialoftenbecomesimpracticalduetothetimeandcostsinvolved.Forthisreason,conventionalbreedinggenerallyfocusesondifferentvisualcharacteristicsandafewthatrequire measurements of average complexity. To effectively develop cultivars well adapted to fluctuations inenvironmentalstresses,breederswillhavetoevaluateanumberofmorpho-physiologicalandphysicochemicaltraits.Theonlyreasonablewaytofulfillalltheseneedsisthroughacquisitionofhigh-dimensionalphenotypicdata(high-throughputfieldphenotyping)or‘Phenomics’.ThePlantBreedingandPhenomicCenter(UniversityofTalca–Chile)havefocuseditseffortsonthepredictionofthesetraits(e.g.gasexchange,modulatedchlorophyllfluorescence,pigmentsconcentration,stemwaterpotential,hydricandosmoticcellpotential,cellmembranestability,lipidperoxidation,prolinecontent,CandOisotopiccomposition)byspectrometryandthermographyonseveralbreedingprograms(wheat,blueberries,alfalfa,strawberries,andquinoa)orientedtoabioticstresses(salt,waterdeficitandhightemperature).Wehavealsodevelopedasoftwareforexploratoryanalysisofhigh-resolutionspectralreflectancedataonplantbreeding.Lastyear,ourinstitutionalsoorganizedFirstLatinAmericanConferenceonPlantPhenotypingandPhenomicsforPlantBreedingandsetuptheLatinAmericanPlantPhenomicsNetwork(LatPPN).

PlenarySession:GeneticResourcesandPlantBreeding

MOLECULARTOOLSFORPRUNUSSP.(L.)IMPROVEMENTSagredoB1,DonosoJ1,LemusGr1,AlmadaR2,PerezJ1,BastiasA1,RojasPa1,MartinC1,CorreaF1,1Biotecnologíayrecursosnaturales,INIA-Rayentué.2Genómica,Centrodeestudiosavanzadosenfruticultura. [email protected]

UsuallyabreedingstrategyforPrunussp.(L.)treefruitstartswithcreationofdesirablegeneticcombinationsbycrossingplantswithdesiredtraits,thenitisfollowedbyalongprocessofselectionamongprogeniesforindividualspredictedtohavetherequiredgeneticcomponentsofsuperiorperformancetobecomepotentialcultivars.Thereby,dependenttoaconsiderableextentonsubjectiveevaluationandempiricalselection,thedevelopmentofanewvarietyusuallytakes10–15yearsormore.TheDNAmarkertechnology,derivedfromresearchinmoleculargeneticsandgenomics,offersgreatpromiseforplantbreeding.Basedongeneticlinkage,theDNAmarkers(DM)canbeusedtodetectthepresenceofallelicvariationinthegenesunderlyingthesetraits.SincethefirstpublishedgeneticmapofPeachby1994usingisoenzymesandRAPD,alargenumberofgeneticmapsforPrunusspp.havebeendevelopedtoidentifyDMassociatedtodifferentdesiredbreedingtraits.Despiteofgreattechnologicaladvances,suchasthedevelopingofnewhigh-throughputmarkersandgenomesequencingcapacities,theuseofDMinPrunusbreedingstilllow.AdvantagesandlimitationsofmolecularassistedselectionmethodinPrunusbreedingprogramscarriedoutbyINIAwillbediscussed.FONDECYT1161377;INNOVA-CORFO:09PMG-7243

POLYPHENOL PROFILING IN A JAPANESE PLUM (PRUNUS SALICINA L.) SMALL CULTIVAR COLLECTION: TOWARDSGENETICDISSECTIONOFFUNCTIONALCOMPOUNDCONTENTTRAIT

Pacheco I1, Salazar J2, SilvaC1, ShinyaP2,MoralesH3,PeñaA3, InfanteR2, 1LaboratoriodeBioinformáticayExpresiónGénica,InstitutodeNutriciónyTecnologíadelosAlimentos(INTA),UniversidadDeChile.2DepartamentodeProducción

Page 32: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

31

Agrícola,FacultaddeCienciasAgronómicas,UniversidadDeChile.3DepartamentodeAgroindustriayEnología,FacultaddeCienciasAgronómicas,UniversidadDeChile.

[email protected] in the fruitproduction inChile,beingan interesting target for fruitqualityandfunctional-foodvalueimprovement.Relatedwiththelatteraspect,oneoftheobjectivesofUniversityofChileJapaneseplum-breeding program is to develop new selections with enhanced fruit functional compound content. A suitablestrategytoimprovetheefficiencyofselectionprocess(aslowandexpensiverelativelylonggenerationaltimeandthepresence of self-incompatibility in the species) is the use of molecular markers genetically associated to mutationsresponsible for phenotypic variation. In the year 2015,we started to explore the phenotypic variability of plum fruitpolyphenolcontentasafirststepinthecharacterizationofthegeneticmechanismsunderlyingthiscomplextrait.Forthisaim,we are analyzing the anthocyanin and low-molecularweight phenols (LMWP) profile in a small collection of 12Japaneseplumcommercialvarieties.Foreachcultivar,skinandfleshtissuesoffruitssampledattwodifferentripeningconditions(E1andE2),weresubjectedtomethanolicmacerationandorganicextractiontoobtainextractsenrichedinanthocyanins and LMWP, respectively.HPLC-DADanalysis of theextracts is revealing thepresenceof 8 anthocyanin-relatedand16LMWP-relatedpeaks.Intheformer,andemployingHPLC-qTOF-MS2qualitativeanalysis,wehavedetectedthepresenceof cyanidin3-rutinoside,aswell as3-monoglucosidesof cyanidin,petunidin,peonidin,pelargonidinanddelphinidin.Peaksputativelyassociatedtocyanidin3-glucoseandcyanidin3-rutinosideshowthehighestconcentrationinallred-skinnedcultivars.Asexpected,thecompounddistributionacrossfruittissuesandripeningconditionsisstronglydependentonthecultivar.Correlationofphenoliccompoundsandphenologicalandfruitqualitytraits(determinedonthe same analyzed fruits) is also shown. These preliminary data confirm a genotype-dependent phenolic content,suggestingthatbreedingforhealth-promotingfruitsisacompletelyfeasibleactivity.Acknowledgments:FONDECYTInicioNo.11150662andInserciónEnLaAcademiaNo.79140020(PAI,CONICYT).

USE AND IMPACT OF BIOTECHNOLOGY IN PLANT BREEDING IN CHILE: EXPERIENCE OF THE POTATO BREEDINGPROGRAMOFINIA

MuñozM1,FolchC1,KalazichJ1,1CentroRegionalExperimentalRemehueInstitutodeInvestigacionesAgropecuariasINIA.

manuel.munozd@@inia.cl

Thenationalpotatobreedingprogramof InstitutodeInvestigacionesAgropecuarias(INIA)Chilehasdevelopedelevenvarieties.Itisestimatedthatthesevarietieshave50%oftheChileanpotatomarketandarebeingevaluatedin7foreigncountries. The program has incorporated biotechnology techniques at different stages of breeding and initial seedproductionforoutputtomarket.TheaimofthisworkistosummarizethecurrentimportanceandscopeofbiotechnologyinbreedinginChile,bypresentingaprogramthathasgeneratedwidespreadmaterialamongfarmersandconsumers.Thebiotechnologicaltechniquesusedintheprogramarepresented.Moreover,wecovertheprocessesofbreedingassistedbybiotechnology,improvedcharacteristicsinvolvingbiotechnology,numberofpotatovarietiesdevelopedandreleasedto market with the assistance of biotechnology techniques. The program has implemented six biotechnologicaltechniques,theseareapplied inthestagesofcharacterizationofthegenebank,selectionofparents,markerassistedselection, characterizationofvarieties,andpropagationofmaterial for seedproduction.Onehundredpercentof thevarieties have been released involving biotechnology, especially by the use of in vitro culture techniques to producepathogen free material for initial stages of seed production of advanced lines. Biotechnological techniques haveparticipatedintheimprovementof2ofthe13maincharacteristicsassociatedwiththeprogramobjectives.Twoofthe11varietieswerecharacterizedbymolecularfingerprintatthetimeoftheirrelease.Biotechnologicaltechniquessuchasinvitroculture,molecularfingerprint,andmoleculardiagnosisofdiseasesareusedtoproduceprimarymultiplicationofreproductivematerialfor100%ofthevarietiescurrentlyonthemarket.Acknowledgments:SubsecretaríaDeAgricultura.ProyectoINNOVACORFOBienesPúblicos14BPC4-28525.

Page 33: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

32

ECOLOGICALRISKSANDBENEFITSFROMTHENOVELOILSEEDCROPCAMELINA

AuerC1,RizzitelloR1,ChangC1,1PlantScienceUniversityofConnecticut.

[email protected]

Camelina(CamelinasativaL.) isaBrassicaoilseedcropfromEuropethathasbeengeneticallyengineered(GE)fortheproductionofbiofuels,dietarysupplements,andindustrialproducts. WithlittlehistoryofcultivationintheAmericas,therearequestionsaboutitspotentialecologicalrisksandbenefits.Likerapeseed,camelinamightbeabletoescapefromcultivation,ortransfertransgenesandtraitstonativeplantsorweeds.OurresearchprojectsinConnecticut(USA)arefocusingoncamelinageneflow,insect-cropinteractions,andweediness.Camelinagrownunderlow-inputfieldconditionsproducedyieldsof531-1096kg/ha(2014-2016)consistentwithotherpublishedfieldtrials.In2015,lowrainfallandhightemperatures after seeding reduced seed germination and caused crop failure. Various experiments showed thatcamelinaplantswerecompetitivewithagriculturalweeds,andvolunteer seedlingswereobservedafterharvest. Theopening of camelina flowers coincided with the visitation of many insect pollinators from the orders Hymenoptera,Diptera,Lepidoptera,andColeoptera.Hymenopteracollectedinthefieldincludedhoneybees,miningbees,sweatbees,bumble bees, and leaf cutter bees. Overall, the pollinator population was 33% honey bees and 25-33% syrphidflies.Camelinaclearlyprovidedpollenandnectarresourcesforbothnativeinsectsandhoneybees.Theseexperimentswillhelpgovernmentregulators,farmers,andcompaniesmakedecisionsregardingthefutureuseofGEcamelina.Acknowledgments:BiotechnologyRiskAssessmentProgramGrantfromtheUSDepartmentofAgriculture.

Postersession

PS1

QUANTITATIVEPHOSPHOPROTEOMEANALYSISOFTHEPRIMARYNITRATERESPONSE

VegaA1,OBrienJ2,Fredes I2,Álvarez J2,GutiérrezR2, 1DepartamentodeCienciasVegetales,FacultaddeAgronomíaeIngeniería Forestal, Pontificia Universidad Católica De Chile.2Departamento de Genética Molecular y Microbiología,FacultaddeCienciasBiológicas,PontificiaUniversidadCatólicaDeChile.

[email protected]

Nitrogen(N)isoneofthemainlimitingnutrientsforplantgrowthandcropyield.Despiteitsroleasanutrient,nitratecanalsoactasasignalingmoleculethatmodulatesgeneexpressionofawiderangeofplantprocesses.Itiswelldocumentedthatchangesinnitrateavailability,themainNsourcefoundinagriculturalsoils, influencesamyriadofdevelopmentalprogramsandprocessesincludingplantdefenseresponses.Althoughtranscriptionalresponsesinresponsetonitratehavebeencharacterizedbyanumberofgroups,thenitrate-signalingpathwayisyettobediscovered.Mostsignalingpathwaysinvolvedpost-translationalmodificationsofkeycomponents.Amongthese,proteinphosphorylationisoneofthemostabundant,affectingprotein-proteininteractionsandthusprovidingaframeworkforsignalingnetworks.Asafirststeptoidentifypotentialregulatoryfactorsinvolvedinearlysignalingeventsinresponsetonitratetreatments,weperformedquantitative time-course analyses of the Arabidopsis root phosphoproteome in response to nitrate by liquidchromatographywithtandemmassspectrometrydetection(LCMS/MS).Thislarge-scaleapproachallowedustoidentifypeptideswithchangesintheirphosphorylationlevelafternitratetreatments.Thenatureoftheproteinsidentifiesdiffersignificantly from genes implicated in transcriptome studies. The new proteins found implicated in nitrate responsesincludemainlysignaling-associatedproteins,kinases,transcriptionfactorsandtransporters.OurdataprovidenewinsightsintothephosphoproteomeofArabidopsisrootsandidentifyputativenovelcomponentsofthenitrate-signalingpathway.(SponsoredbySponsoredByNucleoMilenioBSSVNC130030,FondapCRG15090007,HowardHughesMedicalInstitute,Fondecyt-11110095,Fondecyt-1141097).

Page 34: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

33

PS2

EVALUATIONOFRESISTANCETOCAVITATIONOFINTER-SPECIFICPOPLAR(POPULUS)HYBRIDSUNDERWATERSTRESS

BravoG1,GutiérrezA1,FumanalB2,GuerraF1,1InstitutodeCienciasBiológicasUniversidadDeTalca.2DépartementdeBiologieUniversité[email protected] thedecreaseofwater in the soil and the increaseof temperature, change the evapotranspirationbreaking thecontinuityofthewaterflowthroughthexylem.Ithasassociatedthegenerationofnegativepressurehydraulicandthealterationinwatermetastability,producingachangefromliquidtoair(nucleation)withinxylemcells.Theaccumulationofairinthosecellsaffectsthenormalflowofwater,inaphenomenonknownascavitation.Poplars(Populusspp)areoneofthewoodyplantspeciesproposedasamodelofstudytorevertthecavitation.Theaimofthisworkwastoanalyzetheresponseofhybridpoplarstowaterdeficitstress.Westudiedasetofinter-specificpoplarhybrids,andselectedtwowithcontrasting tolerance to water stress. For this purpose, ten different hybrids were grown in pots, in a nursery, andsubjectedtowaterstress.Thefollowingphysiologicalparameterswereanalyzed:netphotosynthesis,evapotranspiration,andstomatalconductance.Thetreatmentconsisted;control(irrigationevery2days(500mL)),moderate(irrigationevery2days (250mL)) and severe (unirrigated).Additionally, stemswere sampledafter treatment,beforebud flushingandanalyzed for embolism resistance, at INRA, Clermont-Ferrand, France. Results indicated that [P. Trichocarpa x P.Deltoides]xP.Deltoides hybrids did not show a significant decrease in physiological parameters evaluated under anyconditions. Furthermore, they showed a higher resistance to cavitation. While hybrids most affected by stressfulconditions were P. trichocarpa x P. deltoid. We concluded that these contrasting hybrids will allow us know themechanismsinvolvedintolerancetowaterstress.Acknowledgments:AuthorsThankTo-InstitutoDeInnovaciónBasadoEnCiencias(UniversidadDeTalca),FONDEF(GrantID14I10242), Institut National De La Recherche Agronomique (INRA) And To The Centro Tecnológico Del Álamo(UniversidadDeTalca).

PS3

GENOME-WIDEIDENTIFICATION,CHARACTERIZATIONANDEXPRESSIONANALYSISOFGENESPUTATIVELYINVOLVEDINPOLLENDEVELOPMENTINVitisvinifera

ArreyO1,Ruiz-LaraS1,GonzalezE1,1InstitutodeCienciasBiológicasUniversidaddeTalca.oarrey@utalca.clTheadequatepollendevelopmentand itsgerminationcapacityareessential for reproductivesuccess inVitisvinifera.However,themolecularmechanismsthatregulatethisprocessingraperemainunclear.InArabidopsisthalianathefloralorgansarespecifiedbythecombinatorialactionoftranscriptionfactorsundertheABCmodel.Inwhorl3,theactivityoftheclassBAPETALA3(AP3)andPISTILLATA(PI)togetherwiththeclassCAGAMOUS(AG)homeoticregulatorsarerequiredfor stamen development. Anther cell differentiation and early sporogenesis, is initiated by the activation ofSPOROCYTELESS/NOZZLE (SPL/NZZ) gene by AG and the induction of downstream target genes by the encodedtranscriptionfactor.Theidentificationofhomologuesfortheabovementionedgenesgenesingrapegenomesuggestthatthemolecularmechanismsmaybecommonamongspecies.Inthisstudy,bioinformaticsmethodswereusedtocarryoutgenome-wide analysis of a complete set of candidate genes in grape, including sequence analysis, identification ofconserved domains in encoded proteins and phylogenetic analysis. Homologues for 13 genes involved in the pollendevelopmentregulatorynetworkinArabidopsis,havebeenfoundinthegrapegenome.However,homologuesforBAM2,DUO1andNOZZgeneswerenotidentified,suggestingthatothergenesmayberegulatingthisprocessingrapevine.Theexpressiontimingforthe identifiedgenesaswellasforfloralorgan identitygenesalongthe inflorescenceandflowerdevelopmentwasscreenedbyqRT-PCR,providingaframeworkaboutthisgroupofregulatorygenesingrapeforfurthercharacterizationoftheirrolesinpollendevelopment.Acknowledgements:ToCONICYTForADoctoralFellowshipN°21151451ToO.A.SupportedByFondecyt1161273.

PS4

Page 35: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

34

EFFECTS OF SIMULATED REGIONAL CLIMATE CHANGEONNATIVES (COLOBANTHUSQUITENSISAND DESCHAMPSIAANTARCTICA)ANDNON-NATIVES(POAANNUAANDJUNCUSBUFONIUS)ANTARTICPLANTS

ContrerasP,VásquezD,NavarreteE,RiveraC,Cuba-DíazM,DepartamentodeCienciasyTecnologíaVegetal,EscueladeCieciasyTecnologías,UniversidadDeConcepción.paolcontreras@udec.clTheAntarcticcontinenthasextremeweatherconditionssuchasfreezingtemperature,highsolarradiation,strongwindsand low nutrient availability. This has contributed at low colonization of species and the simplicity of the terrestrialecosystemintheRegion.Howeverduetoregionalclimatechangecausedbyglobalwarming,factorssuchastemperatureincreasingandwateravailabilityhavebeenmodifying.TheeffectofthesefactorsoverthesurvivalandexpansionofthespecieslivinginAntarcticneedstobeevaluated.Thenativespecies(ColobanthusquitensisandDeschampsiaantarctica)and the non-native (Poa annua and Juncus bufonius) were maintain in controlled conditions at 6ºC and then weresubjected to two irrigation regimes, field capacity (H2O) and increased irrigating (+H2O) during 74 days, a period ofdehydrationbetweendays30thand44thwasmade inorder to simulateperiodsofdehydrationcausedby freezing inAntarctica.Variablessuchasleavesandrootlength,leavesnumberandFv/Fmwereevaluated.Nativespecieswereabletorecoverfollowingdryingperiod,whatwasmostsignificantinD.antarcticainincreasedirrigationtreatment.Non-nativespeciesshowedasustainedgrowthinbothirrigatingregimes;however,J.bufoniuswassignificantlyaffectedafterdryingperiodonfieldcapacityirrigationtreatment.Allspecies(nativeandnon-native)growingindividuallyseemfavoredbytheclimatechangesregardingwateravailabilitybutitisimperativetoevaluatethebehaviorwhentheyaregrowingtogether(Competencyanalysis).Acknowledgments:ProjectsINACHRG_02-13AndFondecyt1140441.

PS5

CHARACTERIZATIONOFTHESILENCINGMECHANISMSINVOLVEDINTRANSGENICPLUMPOXVIRUS(PPV)-RESISTANTHERBACEOUS (NICOTIANA BENTHAMIANA) AND WOODY (JAPANESE PLUM) HOSTS: A LARGE-SCALE SMALL RNASEQUENCINGAPPROACH.

MadridG1,SánchezE1,BarbaP1,QuirozD1,MicconoMDLA1,AndradeP1,PrietoH1,1BiotechnologyLaboratoryINIA,LaPlatina.

[email protected]

Gene silencing is an important technique used in the development of pathogen resistance strategies for Plum poxvirus(PPV),ahighimpactdiseaseofPrunusspp.Inaddition,theavailabilityoflarge-scalesmallRNAanalysisfacilitatesstudiesthataimtoelucidatetheprocessofRNAinterference(RNAi).Inthisstudy,thepPPViRNAsilencingvector,whichharborstworegionsofthePPVcoatprotein(CP)genethatarepredictedtoberichinsilencingmotifs,wasevaluatedintransgenicNicotianabenthamiana(NB)andPrunussalicina(Japaneseplum)(JP)plants.Fromthegeneratedtransgenicpopulations,resistantNBandJPindividualswereselectedandtheRNAiprocessfurtheranalyzed.Large-scalesmallRNAsequencingwitha focusonmoleculeswithknownactivity (i.e., 21- to24-nt small interferingRNAs; siRNAs) revealedimportant differences between control and resistantNB and JP plants. In controls, the observed siRNAswere nearlyexclusively21-and22-ntsiRNAsthattargetedthewholePPVgenome.Importantly,24-ntsiRNAswereabsentintheseindividuals.Incontrast,challengedresistant-NBandJPplants,accumulateda“fullset”of21-to24-ntsiRNAs,whichalltargetedtheCPgenesegmentsusedintheconstruct.Sequencesimilaritiesbetween21-ntsiRNAsandthe22-,23-,and24-nt RNAmolecules generated by these plantswere also analyzed using BLAST to identify 22- to 24-nt siRNAs thatincludedfullorpartial21-ntsiRNAcoresequences.Theresultsdemonstratedthatinsusceptiblelines,the22-ntsiRNAsandtherare23-and24-ntmoleculesgeneratedduringPPVinfectionwerelargelyassociatedwith21-ntmolecules; inresistant plants, both NB and JP,most of the observed 22-, 23- and 24-nt siRNAs contained these 21-nt siRNA coresequences.Theseresultsstronglysuggest that21-ntsiRNAspeciesplaya role in thebiogenesisof22- to24-ntsiRNAduringRNAiinplants.Acknowledgments:TheBiofrutalesS.A.ConsortiumAndCorfo-ChileGrant13CTI-21520-SP7.

PS6

Page 36: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

35

EFFECT OF THE WATER STRESS IN THE PHOTOSYNTHETIC ACTIVITY OF SOLANUM PERUVIANUM AND SOLANUMLYCOPERSICUM

CortesD1,TapiaG2,MéndezJ2,VegaM2,1DepartamentodeSilviculturaUniversidadDeConcepción.2INIA-QuilamapuInstitutodeInvestigacionesAgropecuarias.

[email protected]

Changesinenvironmentalconditionsassociatedtolowwateravailabilityaffectnegativelycropyieldintheentireworld.Here,thechallengeisthegenerationofvarietieswithimprovedtraitsfortoleratedrought.Ontheotherhand,cultivatedtomatoatdifferencethatanywildrelativeissensitivetoseveralabioticandbioticstressesincludingwaterdeficit.Thedroughtaffectshardlytheyield,whichisprimarilymediatedbytheinhibitionofphotosynthesis.WildrelativestotomatosuchasSolanumperuvianumarecapabletomaintainahightstemgrowthrateundermoderatedroughtstress.Aprocessofacclimationtowaterdeficitmediatesthis.Theaimofthisresearchwasevaluatethebehabiourofphotosynthesisandelectrontransportchain(ETC)inSolanumlycopersicumvarMoneymaker(MM)andaccesionQUI957fromS.peruvianum,comparingtwolevelsofwatersupplyandapreviouslyperiodofacclimationtodrought.TheresultsshowsthatacclimatedplantsofS.lycopersicumandS.peruvianumsufferedanimportantreductionintheelectronstransportrate(ETR)andtheopeningofreactioncenterspercentage(ql),bothunderwaterdeficit.Intheotherhand,MMshowedhigherNPQthanQUI957inallthecomparisons.Additionally,onlyinacclimatedplantstheNPQwashigherduringRWcomparedwithWW.ThenetassimilationofCO2(A)at400uMofreferentialCO2hadasignificantreductioninacclimatedandnon-acclimatedplantsofS. lycopersicum inRWbutnotinS.peruvianum.TheresultssuggestthatS.peruvianumpresentanimprovedabilitytomaintainahigherphotosynthesisunderWWandRWconditionsandacclimationprocessisrequiredforactivatecertaindefensemechanismsinbothspecies.Acknowledgment:SubsecretariadeAgricultura,projectNº:501453-70.

PS7

INTERACTIONBETWEENARABIDOPSIS THALIANA AND SINORHIZOBIUMMELILOTI FOR IMPROVED PLANTGROWTHANDNITROGENNUTRITION

Kraiser T2,GrasD2, ZuñigaA2,O´Brien J2,MedinaM1,GonzalezB2,GutierrezR2, 1Genéticamolecular ymicrobiologíaPontificiaUniversidadCatólicaDeChile.2Genéticamolecularymicrobiología,CienciasBiológicas,PontificiaUniversidadCatólicaDeChile.

[email protected]

Nitrogen(N) isanessentialmacronutrientandamajorfactor limitingplantgrowthinnaturalaswellas inagriculturalenvironments. Plants acquire N directly from the soil and in a few cases N can be provided by N-fixing bacteria.Plant:bacteriainteractionsassociatedwithN-nutritionarewelldescribedinlegumes,butarealsoobservedinsomenon-legumeplantspecies.WefoundArabidopsisthalianagrowthunderN-limitingconditionsisenhancedbySinorhizobiummeliloti RMP110. This growth enhancement is in part mediated by bacterial N-fixation. Dilution of 15N labelingwhenArabidopsis plantswere grownwith S.meliloti indicated Arabidopsis plants indirectly acquired atmosphericN,where14Nisotopepredominates.Arabidopsishomologsofkeyregulatorygenesinvolvedinlegume:rhizobiuminteractionsare required for Arabidopsis growth promotion mediated by S. meliloti. Our results suggest conserved molecularmechanismsexistinplantstointeractwithN-fixingbacteriaforimprovedgrowthunderN-limitingconditions.Acknowledgments: International Early Career Scientist Program From Howard Hughes Medical Institute, Fondo DeDesarrolloDeAreasPrioritarias(FONDAP)CenterForGenomeRegulation,MillenniumNucleusCenterForPlantSystemsAndSyntheticBiology,FondoNacional.

PS8

VALIDATIONOFREFERENCEGENESFORREALTIMEQRT-PCRNORMALIZATIONINROOTTISSUEDURINGWATERSTRESSINGENOTYPESEUCALYPTUSGLOBULUSTOANALYZETHEGENEEXPRESSIONOFWRKYTRANSCRIPTIONFACTORS

Page 37: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

36

DomkeN1,MedinaD2,UlloaJL2,LagosC2,FernandezM2,ValenzuelaS2,1LaboratoriodeGenómicaForestalUniversidadDeConcepción.2CentrodeBiotecnologíaUniversidadDeConcepción.ndomke@udec.clTheexpansionofeucalyptusplantationsislimitedtoregionswithfavorableclimaticconditions,wheredroughtisoneofthemostimportantfactorslimitinggrowthandforestproduction.Transcriptionfactorsregulatetheresponseoftheplantagainstchangingenvironmentalconditions,affectingpositivelyornegativelytheexpressionoftheireffectorgenes.WRKYtranscriptionfactorshavebeenlinkedtotheresponseoftheplantagainstbioticandabioticstress,beinginducedbywaterand osmotic stress, regulating stomatal movement. Housekeeping genes with stable expression are required forquantitative Real-time RT-PCR.Measurements of photosynthetic rate, stomatal conductivity, transpiration andwaterpotentialinthexylemfortwogenotypesofEucalyptusglobulusundercontrolanddroughtconditionswereperformed.Inthisworkthegeneexpressionstabilityofsixhousekeepinggenes(PP2Aa,H2B,SAND,UBC-2010,UBC9andEF1-a)andtheexpressionofWRKYgenesinroottissueofEucalyptusglobulussubjectedtodroughtstressfor5weekswereevaluated.Accordingtotheexpressionanalysis,theEF1-aandPP2Aagenesarethemoststablegenes.TheexpressionoftranscriptionfactorsWRKYisinducedbywaterstressinroottissuesofE.globulus,showingdifferencesbetweenthetwogenotypesevaluated,theseresultsarecorrelatedtothephysiologicalanalysisperformedduringtheexperiment.Acknowledgments:SponsoredbyFondecyt1161063,GenómicaForestalS.A.YBioforestS.A.

PS9WHOLE-TRANSCRIPTOMEANDGENETICANALYSISREVEALSTHATSEEDANDBERRYDEVELOPMENTINGRAPEVINEARECONTROLLEDPRINCIPALLYBYGIBBERELLINSSUPERPATHWAYS,CELLWALLMETABOLISMANDCYTOSKELETONGENES,ANDSPECIFICDEVELOPMENTALTRANSCRIPTIONFACTORS

Ocarez N1, Jiménez N1, Núñez R1, Morales I1, Mejía N1, 1Mejoramiento y Biotecnología, Laboratorio de Fisiología yGenómicayPostcosecha,CentroRegionaldeInvestigaciónLaPlatina,INIA.

Seedlessvarietiesarepreferredamongcostumersforfreshconsumptionandthusoneofthemaintargetsforbreeding.However,undernaturalconditionsseedlessberriesaresmallerandrequiretheapplicationofgrowthregulators,mainlyGA3. It is believed that endogenous gibberellins are themain responsible for differences in berry size.An integrativeapproach, that included transcriptome analysis using RNAseq during seed and berry development over seedless andseededgenotypesthatdifferinberrysize,andafinemappingQTLexperimentbasedintheanalysisofaF1biparentalpopulationthatsegregatesforthesetraits,wasperformed.Basedintwostatisticaltests(EDGEandBaggerleywithaFDRp-value<0.05and2-foldcutoff)toidentifydifferentiallyexpressedgenesinRNAseqresultsfromanIlluminaHiSeq2000sequencingexperiment,weidentified376and675genesupanddown-regulatedrespectivelyinseedlessgenotypes.Themostsignificantlyalteredpathwaysarerelatedto thesuperpathwayofgibberellinbiosynthesis,mostgenes fromthispathway were significantly down regulated confirming a possible role during early berry growth. Several families oftranscription factors related todevelopmentalprocessesaswellasgenes related tohormonesbiosynthesisand theirsignaltransductionwerealsodifferentiallyexpressed.Cytoskeleton,cell-wall-modificationandregulationofwaterintakegenesweregenerallydown-regulated.QTLmappingexperimentsforberrysize(berryweightandecuatorialdiameter)identifiedupto15QTLsthatexplainbetween1.0and26.6%ofphenotypicvariation,withintheirboundariesmostoftheidentifiedCandidateGenesare related togrowth regulatorbiosynthesis and signal transduction, transcription factorsrelated to flower, and fruit development, cellwall organization,modification andbiogenesis. Search for differentiallyexpressed genes within QTLs allowed the identification of better Positional Candidate Genes to understand berrydevelopmentintheseedlessnesscontext.Acknowledgments:FONDEFG09i1007AndBiofrutalesConsortium.

PS10JASMONATEMEDIATEDDOWNREGULATIONOFABSCISICACIDGENEEXPRESSIONRESPONSELEADSTOTHESLOW-DOWNOFTHECELLELONGATIONRECOVERYPHASEDURINGSALTSTRESSINARABIDOPSISROOT

Vergara-BarrosP1,ValenzuelaC2,FigueroaC2,FigueroaP2,1EscueladeBiotecnología,FacultaddeCiencias,UniversidadSantoTomás.2PhytohormoneResearchLab,InstitutodeCienciasBioló[email protected]

Page 38: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

37

Soilsalinityisarelevantproblemlimitingcropproductionworldwide.Plantshavedevelopedresponsemechanismsagainstsaltstress,beingabscisicacid(ABA)amajorplayer.Recently,wehavereportedthatjasmonate(JA)signalingpathwayisactivatedbysaltstress,leadingtocellelongationinhibitioninArabidopsisprimaryroot.ToobtaininsightsintohowJAregulatesrootgrowthinhibition,westudiedthechangesinroottranscriptomebetweencoi1-2JA-signalingmutantandWTduringsalt-stressresponsebyRNA-Seq.WefoundthatsaltstressandABAresponsivegeneswereupregulatedincoi1-2rootswithrespecttoWTonesafter150mMNaCltreatmentfor3h.AcontrastinggeneexpressionprofilebetweenJA-andABA-responsegeneswasfound,suggestinganegativerelationshipfromJAtoABAatatranscriptionallevelduringsaltstressfor3hinroots.Finally,theattenuationofcellelongationinhibitionobservedinJA-relatedmutants(e.g.aos,coi1-2and jai3-1)comparedtoWTundersaltstresswas impairedbyfluridone,an inhibitorofABAbiosynthesis, thussupporting the idea of an antagonistic JA/ABA crosstalk at a phenotypic level in roots. Together, these results are inagreementwithaJA-mediateddownregulationofABApathway,leadingtotheslow-downofthecellelongationrecoveryphaseduringsaltstressrootgrowthinhibitioninArabidopsis.FurtherstudieswillbenecessarytounderpinmechanisticaspectsrelatedtotheJA/ABAcrosstalkataspatio-temporalbasisinroots.Acknowledgments:FONDECYT1120086.

PS11

ARABINOGALACTANPROTEINDIFFERENTIALLYEXPRESSEDGENESINTILTYOUNGSEEDLINGSOFRADIATAPINEBYRNA-SEQANALYSIS

MendezT1,GalleguillosC1,StappungY1,RamosP1,HerreraR1,1LaboratoriodeFisiologíaVegetalyGenéticaMolecular,InstitutodeCienciasBiológicas,UniversidadDeTalca.

[email protected]

Arabinogalactan-proteins(AGPs)areaclassofproteinslikelytobeinvolvedinthedevelopmentofwood.AGPsarewidelydistributedthroughouttheplantkingdomandresidepredominantlyintheplasmamembrane,cellwallandextracellularmatrix,whichmaybeinvolvedincellinteractions,celladhesionandcellwallbiosynthesis.AGPsareabundantandspecificinxylemdifferentiation.Woodislargelycomposedoftracheids,anditspropertiesdependprimarilyonthecompositionandmorphologyoftracheidcellwalls.RNA-Seqstrategywasusedtoidentifygenesdifferentiallyexpressedinresponsetoinclination,where4differentgenesshowedidentitytoAGP.AcontignamedPrAGP1wasfoundwith98%identitytoPtaAGP6,withhigherFPKMvaluesafter10hofinclinationinthelowerstemside.Similarly,PrAGP2showedhighFPKMvalueafter10hofinclinationand99%identitytop14A9arabinogalactan-likeprotein.Ontheotherhand,PrAGP3with98%identitytop3H6/CDM8showedavariableFPKMlike,similarlytowhatisobservedforPrAGP4.ThephylogeneticanalysisrevealsthatAGPsequencesfrompinegroupedinsub-categoryoffasciclin-likeproteins.ThisproteiniscategorizedinA-B-C-andD,accordingtothenumberofFASdomain,thenumberofAGP-likedomain,andthepresenceorabsenceofGPIanchorsignalintheC-terminal.Acknowledgments:Fondecyt1150964ForFinancialSupport.TMThanksUniversidadDeTalcaForPh.D.Studentship.

PS12

EXPRESSIONOFGSTU7ANDGSTU24GENESCODIGNFORGLUTATHIONES–TRANSFERASES IS IMPORTANTFORTHECONTENTIONOFTHEOXIDATIVEDAMAGEPRODUCEDUNDERSTRESSCONDITIONSINARABIDOPSISTHALIANA

LamigL1,UgaldeJ1,HoluigueL1,1DepartamentodeGenéticaMolecularyMicrobiología,FacultaddeCienciasBiológicas,PontificiaUniversidadCató[email protected](SA)isaphytohormoneinvolvedintheestablishmentofdefenseresponsesagainstbioticandabioticstress,responses thataredeveloped throughcontrolling theexpressionofahighnumberofgenes.Understressconditions,plantsaccumulatereactiveoxygenspecies(ROS)andSA,signalsthatplayafeedforwardloopgeneratinganoxidativeburst that is essential for thedefense response.However,uncontrolledaccumulationofROS isdangerous forplants.EvidencesuggeststhatSAhasalsoanantioxidanteffectthatconstrainstheoxidativeburstandpreventstheconsequencesoftheaccumulationofROS.ItisstillunclearhowSAmediatesthiseffect.Weperformedanextensiveanalysisofavailable

Page 39: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

38

microarraydatalookingforSA-induciblegeneswithantioxidantfunctionsthatwerealsoinducedunderstressconditions,andthatcouldberesponsiblefortheROScontentionmediatedbySA.TwogenescodingfortheenzymesGLUTATHIONES-TRANFERASES TAU 7 and 24 (GSTU7 and GSTU24) were found. We hypothesize that GSTU7 and GSTU24 genesexpressionisimportantfortheSA-mediatedcontentionoftheoxidativeburstproducedunderstressconditions.Hereweshowthatknockoutmutantsinthesegenesareimpairedintheircapacitytoresisttreatmentswiththeherbicidemethylviologen (MV),which induces superoxideaccumulation in thechloroplasts.Wealso showthatover-expressor lines inthesegenesimprovedtheircapacitytoresisttheoxidativestresscausedbyMV.TheseresultsindicatethatGSTU7andGSTU24genesareimportantforthecontentionoftheoxidativedamagecausedbyMV.Acknowledgments: FONDECYT (1141202) And Millennium Nucleus Center For Plant Systems And Synthetic Biology(NC130030).

PS13

NITRATE-DEPENDENTTRANSCRIPTIONALREGULATIONOFTHEARABIDOPSISNRT2.1NITRATETRANSPORTER

OBrienJ1,AlvarezJ2,ArausV2,FredesI2,VegaA3,MedinaJ4,LejayL5,GutierrezR2,1DepartamentodeGenéticaMoleculary Microbiología, Departamento de Fruticultura y Enología, Facultad de Ciencias Biológicas, Facultad de Agronomía,PontificiaUniversidad CatólicaDe Chile. 2Departamento deGenéticaMolecular yMicrobiología, Facultad de CienciasBiológicas,PontificiaUniversidadCatólicaDeChile.3DepartamentodeCienciasVegetales,FacultaddeAgronomíaeIng.Forestal, Pontificia Universidad Católica De Chile. 4Departamento de Biotecnología INIA Centro de Biotecnología yGenómicadePlantas.5LaboratoiredeBiochimieetPhysiologieMoléculairedesPlantesInstitutdeBiologieIntégrativedesPlantesClaudeGrignon.jobrien@bio.puc.clNitrateisoneofthemostimportantnitrogensourcesforplants.Nitrateactsasasignalingmoleculethatmodulatestheexpressionofawiderangeofgenes,withanimpactinplantphysiology,metabolism,growthanddevelopment.Thenitrateresponse startswith nitrate sensingwhich triggers a transcriptional responsemediatedby a number of transcriptionfactors. Although some transcription factors induced by or regulating nitrate responses have been comprehensivelydescribed,therearestillnitrate-signalingcomponentsandpathwaysyettobeidentified.ThemodulationoftheexpressionlevelsofnitratetransporterssuchasNRT2.1iskeyfortheregulationofnitrateuptake.Furthermore,theNRT2.1genehasa150bpcis-actingelementinitspromoterthatconfersitsresponsetonitrate.Asafirststeptoidentifycomponentsinvolvedinnitratesignaling,weperformedalarge-scaleY1Hscreentoidentifytranscriptionfactorsbindingtothis150bpregulatoryelement.Weidentified35transcriptionfactorsbindingtothiselement.Thesebelongtothemaintranscriptionfactor families that include Zinc-finger (ZFs), ethylene response factors (ERFs), basic leucine-zipper (bZIP), No ApicalMeristem (NAC),WRKY andMYB among others.We further characterized the role in nitrate response of one of thetranscriptionfactorsandproposedaworkingmechanism.Ourdataprovidenewinsightsintothetranscriptionalresponseunderlyingnitrateuptakeinplants.Acknowledgments:J.A.O.WasSupportedByFONDECYTPostdoctoralGrant(Nº3140374).RAGWasFundedByHowardHughesM.I.(55007421),FONDAP(15090007),MillenniumNucleus(NC130030),FONDECYT1141097).

PS14

IDENTIFICATIONANDEVALUATIONOFPUTATIVEWRKYGENESINVOLVEDINCOLDSTRESSRESPONSEINE.globulus

MedinaD1,DomkeN2,PeñalozaA2,LagosC2,FernandezM2,ValenzuelaS2,1Laboratoriodegenómicaybiologíamolecular,CentrodeBiotecnología.UniversidaddeConcepción.2CentrodeBiotecnologíaUniversidadDeConcepción.diemedina@udec.clEucalyptusspp.isanimportantgenusintheforestindustryatglobalandnationallevel.Eucalyptusglobubusisoneofthemostimportantspeciesduetoitsrapidgrowthandexcellentqualityforkraftpulpproduction.However,E.globulus issusceptibletosomeabioticstresses,mainlytofreezingstressconditions.Theregulationatthetranscriptionallevelisanimportantmechanismintheresponsetoabioticstressinplants.Severaltranscriptionfactors(TFs)havebeeninvolvedinthe response to abiotic stress.WRKY FTs, areoneof the largest families of TFs inplants, that havebeenextensivelyinvestigatedinrecentdecadesandassociatedtocoldstressresponsebutcurrentlythereisnoinformationinEucalyptusspecies.PreviouslyinourlaboratoryleaftissuetranscriptomeofE.globulussubjectedtoaprofileofcoldacclimatizationwasobtainedinwhichsomeE.globulusWRKY(EuglWRKY)geneswerefound,however,theyhavenotbeenstudiedin

Page 40: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

39

theirroleincoldstressresponse.InthisworkweidentifiedputativeEuglWRKYgenesandassessedtheexpressionlevelsofEuglWRKY33andEuglWRKY57 inleavesfromcontrastingE.globulusgenotypes(resistant/intermediate/susceptible)submittedtocoldstress.Quantitativereal-timePCR(qRT-PCR)analysisshowedthatthesegeneswereup-regulatedintheplantsmaterial studiedwhensubmitted tocoldstress in theresistantand intermediategenotypes. Inotherhand,novariationswereobservedinthetreatmentofcoldinthesusceptiblegenotype.Thesedatawascorrelatedwiththelethaltemperature50(LT50)valueandsurvivalanddamagerateoftheplants.Therefore,thesetwoputativeEuglWRKYgenescouldbeinvolvedintheresponsetocoldstresstoleranceinE.globulus.(SponsoredbyFONDECYT1161063,GenómicaForestalS.A.AndBioforestS.A.)

PS15

THEGRAPEVINEVvPSZ3GENEANDITSHOMOLOGUEAtZAT4FROMARABIDOPSISTHALIANA,ENCODEFORZINC-FINGERC2H2-TYPETRANSCRIPTIONFACTORSINVOLVEDINPOLLENANDSEEDDEVELOPMENT

PuentesA1,CarisC1,Ruíz-LaraS1,GonzálezE1,1InstitutodeCienciasBiológicasUniversidadDeTalca.anacaropuentes@gmail.comFruityieldandqualityareessentialforwinemakingandsomegrapevinecultivars(i.e.MerlotandCarménère)exhibithightendencytofruitletabscissionandparthenocarpy,reproductivedisordersseriouslyaffectingthesetraits.Sincestructuralabnormalitiesinpollengrainsthatreducestheirgerminationcapability,seemstobeonethecausesofthesephenomena,thepollendevelopmentalprocessanditsregulationisofgreatimportanceforabetterunderstandingofthesedisorders.Inmodelsspecies,pollendevelopmentisregulatedbyacomplexregulatorynetworkinvolvingtheparticipationofseveraltypesoftranscriptionfactors,whicharesequentiallyexpressedalongthisprocess.Amongthem,keyrolesareplayedbyzinc-fingerC2H2-typetranscriptionfactorsandagenecodingforarepresentativeof this family.VvPSZ3 (VitisviniferaPollen and Seed Zinc Finger 3) has been identified and characterized in grapevine. The encoded protein shows highstructuralsimilaritywithAtZAT4,azinc-fingerproteinwithunknownfunctioninArabidopsisthaliana.Todetermineifbothproteinsalsohavefunctionalsimilitude,promotersofbothgeneswerecomparedbyfusiontoGUSreportergeneandexpression analysis in tobacco transgenic plants. Similar tissue-specific and hormone-regulated (ABA and GA) GUSexpressionpatternwasdrivenbyVvPSZ3andAtZAT4promoters.Also,anArabidopsislinedefectiveinAtZAT4expressionandshowinga reduction in theseed/siliqueratiowassuccessfullycomplementedbyoverexpressionof thegrapevineVVPSZ3gene,indicatingthatbothencodedtranscriptionfactorsregulatesimilartargetgenes.Acknowledgments:ToCONICYTDoctoralFellowshipToA.C.P.R.SupportedByFONDECYT1161273.

PS16

EXPRESSIONANALYSISOFTHEGENESINVOLVEDINFRUCTANBIOSYNTHESISANDDEGRADATIONINTHEPEDUNCLEOFBARLEYRECOMBINANTCHROMOSOMESUBSTITUTIONLINESUNDERLONG-TERMMILDDROUGHTSTRESS

Mendez-Espinoza A1,4, Del Pozo A2,3, Martinez-Carrasco R4,5, Perez P, Morcuende R, 1Departamento de ProducciónAgrícola, CentrodeMejoramientoGenetico y FenomicaVegetal, FacultaddeCienciasAgrarias,UniversidadDeTalca.2FacultaddeCienciasAgrarias,departamentodeProducciónAgrícola,FacultaddeCienciasAgrarias,UniversidadDeTalca.3FacultaddeCienciasAgrarias, departamentodeProducciónAgrícolaUniversidadDe Talca. 4Departamentode estresabióticoInstitutodeRecursosNaturalesyAgrobiologíadeSalamancaCSIC.5DepartamentodeestresabióticoInstitutodeRecursosNaturalesyAgrobiologíadeSalamancaCSIC.amendezes@gmail.comWater-solublecarbohydratesstoredinthestemcanmakeasignificantcontributiontofinalgrainyieldandgrainweightunderdroughtconditions. Incereals, themaincarbonstorage form in thestem is fructan.Carbohydratecontentandexpressionofgenes involved infructanmetabolismweredetermined inthepeduncleofthemainstemofthreeRCSLbarleylinesandtheparentalHarringtonunderlong-termmilddroughtstressatthebeginningofthegraingrowthstageand latemilk stage.Atbothdevelopmental stages,drought stressdecreased the levelof fructans in associationwithincreasedtranscriptsfor1-FEHanddecreasedthosefor6-SFT,butincreasedthesucrosecontent.FructancontentwashigherinRCSL-89thanintheothergenotypes,andincv.HarringtonandRCSL-8higherthaninRCSL-76.Atthebeginningofthegraingrowthstage,droughtstressincreasedtranscriptsfor1-FFTinRCSL-89and,inlesserextent,1-SSTand6-SFT,indicativeofaninductionoffructanbiosynthesis.Thepatternofchangesdescribedfortheexpressionofgeneslinkedtofructanbiosynthesisinline89disappearedatlatemilkstage.Numberofgrainsandgrainweightperearweredecreased

Page 41: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

40

by drought. RCSL-89 showed the highest grainweight of all the genotypes but lower grain yield per plant. It can beconcludedthatenhancedcapabilityoffructanstoragemighthelpintothestressconditions.Acknowledgments:JAE-preDoctoral09-02196GrantAndThePostdoc-ConicytProject2016/3160687.

PS17

REDOX REGULATION OF TRANSCRIPTION FACTOR TGA2 AND ITS INFLUENCE IN SALICYLIC ACID-MEDIATED GENEEXPRESSION

UrzúaT1,Herrera-VásquezA1,HoluigueL1,1GenéticaMolecularyMicrobiología,CienciasBiológicas,PontificiaUniversidadCató[email protected](SA)isanessentialphytohormoneintheestablishmentofimmuneresponsesagainstbiotrophicpathogens.SAaccumulationbystressconditionsresultsinchangesinthecellularredoxstateandintheinductionofasetofgenesinvolved in defense responses. The transcription factors TGA2, TGA5 and TGA6 play an important role in SA-mediated transcriptional responses. Plants of the tga256 triplemutant line showhigher susceptibility to infection bybiotrophicpathogenscompared towild typeplants.These factorshavebeendescribedas regulatorsofan importantgroupofgenes,actingdownstreamofSAproduction.InArabidopsis,theTGAfamilyoftranscriptionfactorsiscomposedof10members.Twoofthem,TGA1andTGA8,havebeendescribedasredox-regulatedproteins.Ontheotherhand,TGA2proteininteractswiththeglutaredoxinsGRXC9andGRXS13,suggestingthatGRXscouldcatalyzetheredoxmodificationofTGA2.Toassessthishypothesis,wegeneratedplantsthatconstitutivelyexpressdewild-typeTGA2protein,oramutantversionintheuniquecysteine-TGA2(C186S)-,inthetga256mutantbackground.TheSA-mediatedinductionoftheTGA-regulatedgenes(PR1,GRXC9)wasevaluatedintheseplants.Inordertoevaluatethepossiblepost-translationalredoxmodificationofTGA2,weexpressed,purifiedanddetermined theglutathionylationof a recombinantwild-typeTGA2proteinandtheTGA2(C186S)mutantversion.ThisworkallowsustodeterminetheimportanceofredoxmodificationsofTGA2fortranscriptionalregulation.Acknowledgments: FONDECYT N°1141202 And Millenium Nucleus Center For Plant Systems And Synthetic BiologyNC130030.

PS18

ANTIOXIDANTSYSTEMANDGROWTHRESPONSESOFWHEATCULTIVARSSUBJECTEDTOMnEXCESSUNDERACIDICCONDITIONS

MillaleoR1,Diaz-CortezA2,Parra-AlmunaL3,1,MoraGilMDLL1,4,1CenterofPlant-SoilInteractionandNaturalResourceBiotechnologyScientificandTechnologicalBioresourceNucleus(BIOREN-UFRO)UniversidadDeLaFrontera.2ScientificandTechnologicalBioresourceNucleus (BIOREN-UFRO)UniversidadDeLaFrontera. 3DoctorateProgram inScienceofNaturalResourcesUniversidadDeLaFrontera.4DepartmentofChemicalSciencesandNaturalResourcesUniversidadDeLaFrontera.rayenmillaleo@gmail.comManganese (Mn2+) isanavailable ionandessentialmicronutrient forplants.However,underacidicsoilconditions,asAndisols,anexcessofMn2+cancausenegativeeffectsincropsaswheat,animportantcerealcultivatedincentralandsouthofChile.Thus,anexcessofMn2+canbeanimportantlimitingfactorforcerealproductioninChile.Damageoxidative(lipidperoxidation,LP)anddecreaseofactivitysuperoxidedismutase(SOD)enzyme,relativegrowthrate(RGR)andplantbiomassaresomenegativeeffectsthatcanproduceMnexcess.Inthisexperiment,weevaluatedtheeffecttoMnexcessonLP,SODactivityandRGRandbiomassofsixwheatcultivars(Dollinco,Rupanco,Fritz,Bakan,Maxwell,Paleta)mostlygrowninsouth-centralChile.IncreasingMntreatments(asMnCl2):control(2.4),150,350,750and1500µMMnwereapplied,innutrientsolutionbysevendays,adjustingtopH=4.8.ResultsshowedthatDollincodecreasedRGRandbiomassboth shoots as roots with the highest Mn treatment (1500 µM) compared with control. On the other hand, Bakanenhanced thesegrowthparameters,mainly in shoots.With respect toantioxidant system,Dollincohad increasing LPvalueswithallMntreatmentsinshootsanduntilthe750µMMninroots,whereasthatBakanandFritzwerenoalteredor decrease the oxidative damage with increasingMn treatments. The results suggest that according the evaluated

Page 42: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

41

parameters and conditionsused in this study,wheat cultivarBakan and Fritzwerehigher tolerant toMnexcess andDollinco,themostsensitiveone.Acknowledgments:FONDECYTPOSTDOCTORALN°3160799.

PS19

TRANSCRIPTOMICANALYSISBYRNA-SEQDURINGFRUITDEVELOPMENT INAVOCADO (PerseaamericanaMill.) CV.HASS

Vergara C1, Campos-Vargas R1, González-Agüero M2, Meneses C1,3, Defilippi B2, 1Centro de Biotecnología VegetalUniversidad Andrés Bello.2Laboratorio de Postcosecha Instituto de Investigaciones Agropecuarias (INIA).3Center [email protected] americana is a basal angiosperm from the Lauraceae family. This species possess a diploid genome with anapproximatedsizeof~920Mpbandproducesaclimactericandfleshyfruit.Avocadofruithaveahighcontentofvegetableoils(mainlymono-saturatedfattyacids)thatarebeneficialforhumanhealthandtheyareusedasharvestindex.Thefruitdevelopmentisaparticularlylongprocess,havingabloomingstageforabout2monthsandafruitdevelopmentof8-12months.Thus,thelongbloomprocessproducesfruitswithsignificantdifferencesinphysiologicalageswithinthesametree.Theobjectiveofthisworkistoidentifycandidategenesassociatedwithfruitdevelopmentthatcouldbeusedasbiomarkersinordertoestimatethephysiologicalageofthefruits.Forthis,weproposedtocarryoutaRNA-Seqapproachduring4 stagesof fruitdevelopment;150daysafter flowering (DAF),240DAF,300DAF (harvest)and390DAF (late-harvest).Theavocadodenovotranscriptomecontains62,203contigs(x=̅988bp,N50=1,050bp).Wefoundontheavocadodenovotranscriptomeover99%(CEGMA)and85%(BUSCO)ultra-conservatedgenesineukaryoteandplantaedatabase.Annotationwas performedwith BLASTx and Trinotate resulting in a 58% of annotated contigs (90% of differentiallyexpressedgenes(DEGs)wereannotated).DEGsanalysis (FDR≤0.01)found7,650genesduringalldevelopmentstages.Finally,wehaveassembledahighqualitytranscriptomeandthisisthefirststeptoexploreanddiscovergenesassociatedtofruitdevelopment.Acknowledgments:FONDECYT1130107.

PS20SUBCELLULARLOCALIZATIONOFAQUAPORINSMALLINTRINSICPROTEINFROMPRUNUSROOTSTOCK(PcxPmSIP10591)Mujica J1, Salvatierra A2, Solis S1, Almada R2, Pimentel P1, 1Fisiología del Estrés Centro de Estudios Avanzados enFruticultura.2GenómicaFuncionalCentrodeEstudiosAvanzadosenFruticultura.jmujica@ceaf.clPrunusrootstocksareclassifiedashypoxia-sensitive,althoughtolerancedegreesamonggenotypeshavebeenreported.Waterlogginglimitsthewaterabsorptionthusleadingtoaninternalwaterdeficit.Thewaterflowismodulatedbyproteinscalledaquaporins,proteinsbelongingtothemembraneintrinsicproteins(MIP)family,whichfacilitatesthetransportofwaterthroughthecell.Thesetransmembraneproteinscanbeclassifiedindifferentsubfamilies:PIP,TIP,NIP,SIP,XIPandLIP. Ithasbeenshownthatthesehaveadifferentialexpressionagainstabioticstress.Recentstudies intheSIP(SmallIntrinsicProtein)subfamilyproteinsfoundthatitsN-terminaltailissmallerthanintheothersubfamiliesofaquaporins.WestudythesubcelullarlocalizationoftheaquaporinPcxPmSIP10591identifiedfromtheroothypoxia-tolerantPrunusrootstock(Mariana2624).InourapproachweusedavectorcontainingthecodingsequenceofthisgenefusedtoGFPandavectorwithamarkerofendoplasmicreticulum(ER)co-transfectingtheheterologoussystem,Nicotianabenthamianainatransienttransformationassay.MicroscopyanalysisshowedanERlocalizationofPcxPmSIP10591,specificallyinthecorticalERandplasmodesmata.TheseresultsprovidenewinformationofthisaquaporinsubfamilyandthissuggestsapossiblerelationshipbetweenaquaporinPcxPmSIP10591activityandwatertransportviasymplast.Acknowledgments: This work was funded by grants from FONDECYT N°1150853 and CONICYT-REGIONAL/GOREO´HIGGINS/CEAF/R08I1001.ThevectorER-rkCD3-959waskindlyprovidedbyDra.FranciscaBlanco.

Page 43: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

42

PS21

MARCHANTIAPOLYMORPHAASAMODELSYSTEMTODISSECTTHENITROGENSIGNALINGPATHWAYINPLANTS

ZapataV1,GutiérrezR1,1GenéticaMolecularyMicrobiologíaPontificiaUniversidadCató[email protected]

Marchantiapolymorphaisahepaticthatrapidlygainadeptsinbiologytobecomethenextplantmodelsystem.Itbelongsto the bryophyte taxa, the first land plants, characterized by absence of vasculature, haploid genetic, low geneticredundancyandbothasexualandsexualreproduction.Allthesecharacteristicstogetherwiththerecentsequencingofitswhole genome and easy of transformation, makesMarchantia an attractive model system to address fundamentalquestionsinplantbiology.Nitrogen(N)isanessentialmacronutrientforplantgrowthanddevelopment.Nisastructuralcomponent of biomolecules and different N metabolites/nutrients are known to have signaling functions. Despiteenormouseffortsinrecentyears,theNsignalingpathwayisstillnotclearlyunderstoodinplants.HereweevaluateM.polymorphaasamodelsystemtodissecttheNsignalingpathwayinplants.Wecharacterizedphenotypicandmolecularcharacteristics of this plant in response to various N treatments, using different sources and regimes. Using existingtransformationprotocolsandCRISPR/CAS9technology,wegeneratedKOmutantsinthemainknowngenesimplicatedinNresponsesinplants.Inarelativelyshortamountoftime,wewereabletorecapitulateyearsofresearchinhigherplants.WebelieveMarchantiapolymorphaisanidealmodelsystemthatshouldacceleratetherateofdiscoveriesintheplantNfield.Acknowledgments:PlantSystemBiologyLab.FONDAPCenterForGenomeRegulation.MillenniumNucleusCenterForPlantSystemsAndSyntheticBiology.

PS22

STUDYING ATA6PR1 AND ATA6PR2, PUTATIVE ALDOSE-6-PHOSPHATE REDUCTASES, UNDER ABIOTIC STRESSCONDITIONSINARABIDOPSISTHALIANA

RojasB1,OlivosK1,CabedoP1,StangeC1,HandfordM1,1CentrodeBiologíaMolecularVegetal,Ciencias,UniversidadDeChile.karina.olivos@ug.uchile.clSorbitolisthemainphloem-translocatedphotosynthateinmanyspeciesoftheRosaceaefamily.Thekeyregulatorystepinthesynthesisofthisacyclicpolyoliscatalysedbyaldose-6-phosphate-reductase(A6PR)insourceorgans,whichreducesglucose-6-phosphate.Theresultingsorbitol-6-phosphateisthenhydrolysedtoformsorbitol,viasorbitol-6-phosphatase.Insinkorgans(likerootsandfruits),NAD+-dependentsorbitoldehydrogenase(SDH)oxidisessorbitoltofructose.Polyoltranslocationhasseveraladvantagesincludingmoreefficientcarbonuse,osmoprotectioninabioticstress(cold,osmotic,salt), and phloem-remobilisation of boron in boron-deficiency conditions. Interestingly, even though A. thaliana(Brassicaceae)isanon-sorbitoltranslocatingspecies,wehaveneverthelessidentifiedbioinformaticallytwoproteinswithstructuralcharacteristicsand~70%aminoacididentitywithknownA6PRsfromplantswheresorbitol isaprimaryendproduct of photosynthesis.We call these two proteins AtA6PR1 and AtA6PR2. Unlike in Rosaceae, our studies havedemonstratedthatAtA6PR1andAtA6PR2areubiquitously-,butdifferentially-expressedundernormalgrowthconditions.Inordertoestablishtheirphysiologicalroleinthisnon-sorbitoltranslocatingspecies,wearenowstudyingtherelativeexpression of both genes inwild-type plants grown under diverse abiotic stresses (cold, salinity, osmotic, and borondeprivation),stressesknowntoinduceexpressioninRosaceaespecies.Wearealsoperformingexperimentstodeterminetheeffectofover-accumulationofAtA6PR1insdh1-1plantsinthedistributionandallocationofcarbon,withtheoverallaimofanalysingtheconsequencesthatapotentialmis-balanceinsorbitolmetabolismhasontheplant.Additionally,wehave recently obtained Arabidopsis sdh1-1 mutants transformed with AtA6PR2 as a tool for complementing thesestudies.Acknowledgments:Fondecyt1140527(MH),CONICYTMasterScholarship(22160896ToKO).

PS23

Page 44: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

43

EFFECTOFEXOGENOUSABSCISICACID(ABA)ANDMETHYLJASMONATE(MEJA)APPLICATIONSONGROWTHANDQUALITYPARAMETERSOFSWEETCHERRYFRUITS(CV.BING)

GutiérrezC1,MoyaV2,GarcíaC3,EspinozaB3,BalbontínC4,1Postgrado,Facultaddecienciasdelasaludylosalimentos,UniversidadDelBío-bío.2CentrodeBiotecnología,Facultaddecienciasforestales,UniversidadDeConcepción.3Producciónvegetal,Facultaddeagronomía,UniversidadDeConcepción.4Producció[email protected](PrunusaviumL.)isanon-climactericfruitwithhighcommercialvalue.Fruitqualityisadeterminantfactorinconsumeracceptance,whichdependsonfruitsize,ripening indexand integrity.Then,theaimofthisresearchwasdeterminetheeffectofexogenousapplicationsofabscisicacid(ABA)andmethyljasmonate(MeJA)ongrowthandqualityparametersofsweetcherryfruits(cv.Bing).TheapplicationsintwodosesofthesehormonesABA,MeJAandABA+MeJA;wereevaluatedduringthethreestagesofdevelopmentofsweetcherryfruit(I:fruitset,II:pithardeningandIII:ripening).Theeffectongrowthfruitsize,solublesolidscontent(SSC),titratableacidity(%malicacid)andsusceptibilitytocrackingwasexamined.Theresultsshowedsignificanteffectsonfruitsizetowardstheendofthefruitdevelopment,regardlessofthedoseapplied.Also,applicationsduringstageI,II,IIIandI+II+III,modifiedsignificantlysomeparametersoffruit,suchasincreasingtheSSCand/or%malicacidduringripening.Finally,whenbothhormoneswereappliedatthethreestages(togetherorseparately)anincreaseincrackingsusceptibilityinsweetcherryfruitswasobserved.Acknowledgments:Fondecyt11100149,PostgradoIngenieríaEnAlimentosUniversidadDelBío-bío.

PS24

EVALUATIONOFTWOINTERESPECIFICHYBRIDSROOTSTOCKSOFTHEGENUSPRUNUSINTHERESPONSEOFTOLERANCETOWATERDEFICITCONDITIONS

Opazo I1, Toro G1, Solis S1, Franck N2, Pimentel P1, 1Fisiología del Estrés Centro de Estudios Avanzados enFruticultura.2CentrodeEstudiosdeZonasÁ[email protected] isasevereenvironmentalstressforfruitproduction.TheclimatechangewilldecreaseprecipitationandincreasetemperatureinthecentralzoneofChile,themainproductionzoneofstonefruits.Rootstockstoleranttowaterdeficitcanbeaninterestingalternativetodealwiththisscenario,butitscontributionmuststillbeevaluated.Inthisstudy,twocommercialinterspecifichybridsrootstocks(ROOTPAC®40[(P.dulcisMillerxP.persica(L.)Batsch)x(P.dulcisxP.persica)]andROOTPAC®20(P.besseyiBailey×P.cerasiferaEhrh))wereevaluated.Rootstockswerekept30daysunderdeficitirrigationandthen7daysofrecovery.ItwasobservedthatROOTPAC®40(almondxpeachhybridgenotype)wasthemosttolerantgenotypebeinglessaffectedinitsbiomassproductionandshowinggreaterwateruseefficiencyatthewhole-plantlevel.Incomparison,ROOTPAC®20(sensitivegenotype)declinedearliertheirleafrelativewatercontentandthestomatalconductance(gs).Inaddition,gsfailedtorecovertothelevelofthecontrolplantsintherecoveryperiod.Besides,biomassproductiondecreasedtolessthanhalfinroots,stemsandleafcomparedtowell-wateredplants.PIPaquaporins geneexpressionwas analyzed in the rootsduring themost stressedperiod and itwasobserved that thesensitivegenotypedecreasedtheexpressionoftwoofthesegenes.Thefuturechallengeistodeterminehowmanyoftheseresponsesarekeptwhencommercialvarietiesaregraftedonthesehybridrootstocks.Acknowledgments:FONDECYTN°1150853AndCONICYT-REGIONAL/GOREO´HIGGINS/CEAF/R08I1001.

PS25

IDENTIFICATIONANDMOLECULARCHARACTERIZATIONOFTHREENACGENES(NAM,ATAF,CUC)TRANSCRIPTIONFACTORDURINGFRAGARIACHILOENSISRIPENING

CarrascoC1,RamosP1,HerreraR1,1InstitutoCienciasBioló[email protected]

Page 45: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

44

Fragariachiloensisfruithasbeencharacterizedsincepossessdifferentorganolepticattributesasintenseflavor,attractivecolorandpleasantaroma.Nevertheless,fastfruitsofteningisoneofthemainproblem.WehaveidentifiedthedifferentialexpressionofthreefruitspecificNACgenes(FcNAC1,FcNAC2andFcNAC3)andwehaveobtainedtheircompleteaminoacid sequences from fruitsRNA-seq libraries.Allof thesesequencescontain thehighlyconservedNACdomainand issubdivided into 5 subdomains (A to E). Phylogenetic analyzes showed high evolutionary proximity with others NACtranscripction factors realted to secondary wall formation (FcNAC1), related to NAC-regulated seed morphology 1(FcNAC2)andrelated toCUC2andFcNAC3was332,346and551, respectively.The latter showeda transmembraneregionintheN-terminalpreditedbyTMHMMservertools.Theanalysisoftranscriptionprofileatdifferentfruitstagesofmaturation(C1,C2,C3andC4)showedapeakoftranscriptsrateatfruitripeningstageC3.Ontheotherhand,FcNAC1gene showshigh transcript levels in flowers and FcNAC2. FcNAC3 showedhigh transcripts levels in roots, steamandrunnersbutlowleveloftranscriptwasaccumulatedinflowersandleaves.Confocalmicroscopyanalysisshowednuclearlocalization of FcNAC1 in thansient transformation system in young leaves of Nicotiana benthamiana. Finally, theinvolvementofNACgenesduringfruitsofteningandsenescenceisstillunknown,andthesedataallowustounderstandabiologicalprocessofparticularinterest.Acknowledgments: Cristian C. Thanks Conicyt For Doctoral Fellowship. ResearchWas Supported By Anillo ACT-1110Project.

PS26

EFFECT OF WATER STRESS ON BUD CARBON RESERVES, YIELD COMPONENTS AND FRUIT MINERAL STATUS INGRAPEVINES(VITISVINIFERAL.)

PalaciosC1,MuñozM2,VillalobosL,PastenesC,1ProducciónAgrícolaUniversidadDeChile.2ProducciónAgrícola,CienciasAgronómicas,[email protected]

Waterstressinplantsreducesphotosynthesisaffectingthecapacityforcarbongainandstorage.Also,watershortageslimitthecapacityofplantstoincorporateminerals.Littleisknown,however,ifgrapevinesunderlimitedwatersupplywillaffectthecarbonreservesatthebudsites,inturnreducingyieldonthefollowingseason,andiftheeventualreductionsinwatersupplywillaffectthenitrogenstatusofberries. Inthepresentstudywehaveassessedtheeffectofdifferentirrigation levels, from30%ofpotentialevapotranspiration (ET0) to90%ET0 startingonveraisonuntilharvest inVitisviniferaL.cvsCabernetsauvignon,CarmenereandSyrah,onthestarchcontentindormantbuds,theimpactonyieldofnextseason,andthenitrogenconcentrationinberriesatharvest.Despitethedifferenceinirrigationandphotosyntheticcapacitybetweenirrigationregimes,nodifferenceswerefoundinstarchconcentrationinbuds,budfertilityandflowerabscissioninanyofthevarieties.ButforSyrah,differencesinyieldcomponentswerefound,affectingyielduponwaterstress.Ontheotherhand,nodifferencesinnitrogenconcentrationasforweightbasiswerefoundbetweentreatments.Weconcludethatwaterstressdoesnotaffectbudreservesinwinter.Syrahisaffectedinnextseasonyield,however,duetoyieldcomponentsattheclusterslevel.Othermineralsinberriesarebeinganalysed,suchascalcium,whicharedirectedstraightforwardintoberries,unlikenitrogen,whichispartlyremobilizedfromotherplantparts.Acknowledgments:ProjectsfundedbyFondecyt1140880.

PS27

MORPHOLOGYANDGENEEXPRESSIONCHANGESINTABLEGRAPEBERRYPEDICELSFROMCONTRASTINGPHENOTYPESINBERRYDROP

GarcíaM1,OviedoK1,MenesesM2,LeónG3,Campos-VargasR3,DefilippiB1,González-AgüeroM1,HinrichsenP4,1UnidaddePostcosechaInstitutodeInvestigacionesAgropecuarias,CRILaPlatina.2FacultaddeAgronomíaUniversidadDeChile.3CentrodeBiotecnologíaVegetalUniversidadAndrésBello.4BiotecnologíaInstitutodeInvestigacionesAgropecuarias,[email protected]

Page 46: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

45

Mostseedlesstablegrapes(VitisviniferaL.)requiregibberellicacid(GA3)applicationstoobtainanadequateberrysizeinordertosatisfymarketrequirements.However,theGA3treatmentalsoproducessevereberrydropinsomecultivars,occurringmainlyafteracoldstorageperiodafterharvest.BerrydropcausedbyGA3hasbeenrelatedtothehardeningandthickeningofberrypedicel,whichproduceacelluloseaccumulation,andlignificationofthistissue.Thegoalofthisworkistostudythemorphologyandgeneexpressionchange(s)inpedicelsamplesfromcontrastingphenotypesinberrydrop susceptibility: i.e. ‘Thompson Seedless’, that usually exhibits a low incidence of berry drop, and the line P23,belongingtotheINIA´sbreedingprogram,thathaveshownahighincidenceofthisdisorderatharvestandafterstorage,especiallyinbunchesappliedwithGA3forberrygrowth.Differentparametersforthestudyofthisphenomenonweremeasuredduringfruitgrowthandpostharveststorage,includingfruitdetachmentforce(FDF),hardness,thicknessandberrydrop.Theobservationofpedicelstructuresunderalightmicroscopeshoweddifferencesbetweenbothgenotypesinthesizeofcellsandaccumulationoflignininthecortexzone,insamplestreatedwithGA3,duringberrydevelopmentand harvest. Gene expression analyses by qPCR are currently underway, focused in the genes related to cell wallmetabolism(mainlynewgenesassociatedwithligninbiosynthesis)inordertoinferonthepossiblemolecularmechanismsaffectingthehardnessofthepedicel.Theworkwillhelpustounderstandthedevelopmentalmechanismsofberrydrop,whichcouldhaveasignificantimpactintablegrapebreeding.Acknowledgments:FONDEF-GRG(CONICYT),GrantD131-0003.

PS28

DIFFERENTIALRESPONSESOFROOTGROWTHANDOXIDATIVEDAMAGEINRYEGRASSCULTIVARSUNDERALUMINIUMTOXICITY

Parra-AlmunaL1,3,Díaz-CortezA2,MillaleoR3,Mora-GilMDLL3,1DoctoratePrograminSciencesofNaturalResourcesUniversidad De La Frontera. 2Scientific and Technological Bioresource Nucleus (BIOREN) Universidad De La Frontera.3CenterofPlant,SoilInteractionandNaturalResourcesBiotechnology,ScientificandTechnologicalBioresourceNucleus(BIOREN)[email protected] (Al) toxicity in Chilean Andisols is one of themajor limiting factors for pasture species growth, includingryegrass. Inhibition of root elongation and oxidative stress are early symptoms of Al toxicity. Previous studies havedemonstrated a genotypic variation forAl tolerance in ryegrass cultivars.However, researches are scarce in ryegrasscultivarscurrentlyonthemarket.OurexperimentswereconductedtoevaluateAl-toleranceof fourryegrasscultivars(Nui,One50,ExpoandBealey)inanutrientsolution(pH4.8)for7dayswithtwoAlconcentration(0and200µM).Lipidperoxidation (TBARS), radical scavenging activity (RSA), Al content and relative root length (RRLAL)wasmeasured. Ingeneral,allryegrasscultivarsaccumulatedasimilaramountofAlinroottissues(around1400µgPot-1).NuiandOne50weretheleastaffectedbyAl(200µM),accordingtorootgrowthinhibition(2%and17%respectively).Incontrast,ExpoandBealeywerethemostaffectedbyAl,showingrootgrowthinhibitionof31%and21%,respectively.TheleveloflipidperoxidationinrootsofNuiexposedtoAl,issignificantlysmallercomparedwiththeotherthreecultivars.HigherRSAwasfoundinOne50andNuicultivarscomparedwithExpoandBealeycultivars.TheseresultssuggestthatNuiandOne50werethemostAl-tolerantcultivars,whereasExpoandBealeywerethemostsensitiveones.(SponsoredbyFondecyt1141247AndCONICYTScholarship21151320)

PS29

INHIBITIONOFBIOACTIVEJASMONATEBIOSYNTHESISINSTRAWBERRY(FRAGARIAXANANASSA)FRUIT:EFFECTSONANTHOCYANINSANDPROANTHOCYANIDINSACCUMULATION

Delgado L1,3, Figueroa N1, Pastene E2, Garrido-Bigotes A3,1, Figueroa P1, Figueroa C1, 1Phytohormone Research Lab,InstitutodeCienciasBiológicas,UniversidaddeTalca.2LaboratoriodeFarmacognosia,FacultaddeFarmacia,UniversidaddeConcepción.3FacultaddeCienciasForestalesUniversidaddeConcepció[email protected]

Page 47: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

46

Exogenous jasmonate (JA) application increases anthocyanins accumulation in the non-climacteric strawberry (F.x ananassa) fruit. However, the role of the bioactive JA, jasmonoyl-isoleucine (JA-Ile), on anthocyanins andproanthocyanidins (PAs) accumulation in strawberry fruit is not well known. Anthocyanins and PAs accumulation isregulatedat a transcriptional level throughR2R3MYBandbHLH transcription factors (TFs) indifferentplant species.However, the relationship between JA-Ile biosynthesis and the transcriptional regulation of the MYB and bHLH TFsencodinggenesstillremainstobestudiedinstrawberryfruit.Inthiswork,weassessedtheeffectofjarin-1,aspecificinhibitorof JA-Ilebiosynthesis,on theanthocyaninsandPAsaccumulation instrawberry fruit.Weapplied jarin-1andmethyljasmonate(MeJA)toimmaturefruitsusinganinvitroripeningsystemduring48h.Itwasfoundahighera*value(which indicates rednessof strawberry receptacle) andanthocyanin content inMeJA-treated fruits respect to jarin-1-treatedones.Inversely,thePAscontentwashigherinjarin-1-treatedfruitsthaninMeJA-treatedones.Theapplicationofjarin-1 to pretreated MeJA fruits resulted in upregulation of several PAs-related genes (FabHLH33,FaMYB9andFaMYB11)andJA-IleandMeJAbiosyntheticones(FaJAR1andFaJMT).Incontrast,thetranscriptionallevelsofFabHLH3andFaMYB10remainedunalteredinthelattertreatment.WeproposethatPAsbiosynthesis-relatedgenesareupregulatedinanunexpectedwaybybothinhibitionsofJA-IlebiosynthesisorincreaseofJA-Ilelevels.FurtherstudiesarenecessarytoelucidatemechanisticaspectsintohowJA-IleregulatesanthocyaninandPAsbiosynthesisinstrawberryfruit.Acknowledgments:FONDECYT/Regular1140663.

PS30

PhysiologicalandMolecularChangesAssociatedtoDroughtToleranceinTomatoGenotypes

PavezL1,OrtegaM2,OlivaresF2,1DireccióndeInvestigaciónUniversidadDeLasAméricas.2LaboratoriodeBiotecnologíaInstitutodeInvestigacionesAgropecuarias.leopavez@gmail.comDrought stress is oneof themain causes that limit plantmetabolismandgrowth, causing a reduction in crop yields.Numerous biochemical reactions havebeendescribed to be sensitive to drought.While it is difficult to estimate themagnitudeofthelossinproductionduetodroughtstress,itisconsideredthatwaterdeficiencyisthemainabioticstressinagriculture,whichcanaffectupto50%oftheworldproduction.Thisstudyanalysesthephysiologicalandmolecularresponseofsixcommercialtomatovarietiestomoderateandstrongdroughtstress.Ourresultsindicatedthatthereexistsapositivecorrelationaphysiologicallevelbetweendroughttoleranceandleafwaterrelativecontent,relativegrowthrateandstomatalconductance;ontheotherhand,atamolecularleveltheplantdroughttoleranceiscorrelatedwithanincreaseinmetabolitesofphenylpropanoidpathway,up-regulationingenesthatencodetoproteinsinvolvedinprolineandABAbiosynthesis,andanincreaseinactivityofantioxidantenzymes,indicatingtheimportanceofROSmetabolismindroughttoleranceintomatogenotypes.Acknowledgments:FondecytPostdoctoral#3130660.

PS31IDENTIFICATION AND EXPRESSION ANALYSIS OF CELL WALL-RELATED GENES POSSIBLY INVOLVED IN TEXTURALCHANGESDURINGPOSTHARVESTOFHIGHBUSHBLUEBERRIES(VACCINIUMCORYMBOSUML.)CV.‘BRIGITTA’OviedoK2,RiveraS2,Campos-VargasR1,DefilippiB2,Gonzalez-AgüeroM2,1CentrodeBiotecnologíaVegetalUniversidadAndrésBello.2UnidaddePostcosechaInstitutodeInvestigacionesAgropecuarias.maugonzalez@inia.clBlueberry(VacciniumcorymbosumL.)isaclimactericfruitcharacterizedbyaveryshortpostharvestlife,highlydependentonripeningstageandstorageconditions,withacharacteristiclossoffirmnessasoneofthemainfactorslimitingforitsstorage, transport andmarketability. Ripening-associated softeningof fleshy fruit is adirect consequenceofenzyme-mediatedcellwallandmiddlelamelladegradation,wherepectinsolubilizationisconsideredtobeoneofthemainfactorsimplicatedinfruitsoftening.Togaininsightintoblueberryfirmnessandtexture,ourgoalistostudycellwallmetabolism

Page 48: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

47

inblueberry,itschangesatmolecularandstructurallevelsandtheirrelationshipwithtexturechangesduringpostharvestunderdifferentstorageconditions. In thisworkexperimentswereperformedusingHighbushblueberriescv. ‘Brigitta’collectedfromanorchardin‘LosLagos’Regionandstoredunderregularairandmodifiedatmosphereupto45daysat0°C. Samples fruitswere analyzed for quality parameters (texture, freshweight loss and soft fruits incidence), pectincontentbyAIR(AlcoholInsolubleResidue)andgeneexpression.Todate,weidentifiedandcharacterizedseveralgenesencodingputativeproteinsrelatedtocellwallmetabolism(andputativehousekeepinggenes),byusingESTssequencesfromV.corymbosumavailableinNCBIandBBGD(Towson).Thetranscriptabundanceofeighteencellwall-relatedgenesidentifiedinthisstudywasanalyzedbyqPCRandcorrelatedwithtexturepatternandpectincontentinordertoinferonthe possible molecular mechanisms affecting the blueberries softening during storage at 0°C at two different gascompositionconditions.Thefindingoftranscriptsthatcouldbecorrelatedwithblueberryfirmnessand/ortexturewouldhelptounderstandtexturephenotype.Thiswillprovideastartingpointfortheselectionofabettertechnologytomaintainthequalityofablueberryfruitshippedtodistantmarkets.Acknowlegment:Fondecyt1161106.

PS32

XYLEMMORPHOANATOMYINVINES(VITISVINIFERAL.),UNDERDIFFERENTIRRIGATIONLEVELSANDITSEFFECTONTHEHYDRAULICCONDUCTIVITY

QuintanaC1,VillalobosL1,MuñozM1,PastenesC1,1ProducciónAgrícola,CienciasAgronómicas,UniversidadDeChile.Thexylemnetworkdeterminesthecapacityofplantstosupplywaterfromthesoiltotheevaporativesitesinleavesandispermanentlyundervariabletensionforcesalongthedayandseasons.Thecapacityofthexylemtoefficientlyconductwater,butalsotoavoidhydraulicfailure,dependsonitsmorphoanatomicalpropertiesandmustbecoupledtostomatalfunction.Ingrapevines(VitisviniferaL.),differencesinstomatalresponseshavebeenobserved.CabernetSauvignonandCarmenereareknownasisohydricandSyrahasanisohydric.Inordertoinvestigatepossiblemorphologicalandfunctionalcharacteristicsofxylemvesselstostomatalbehaviour,anditsplasticityuponwaterstress,wehaveassessedtheeffectofdifferentirrigationlevels,startingonveraisonuntilharvest, inVitisviniferaL.cvsCabernetSauvignon,CarmenereandSyrah,onthevulnerabilitytocavitationandxylemanatomyinfruitbearingshoots.Thenumberofxylemvesselsandthefrequencydistributionofthesizeofxylemvesselperunitsectionareawereequalbetweenvarieties.However,theareaof vessel per driving area is higher in Syrah. Furthermore, vulnerability curves show that Syrah is less vulnerable tocavitation (Ψ50 = -2) compared to Cabernet Sauvignon (Ψ50 = -1.25) and Carmenere (Ψ50 = -1.1). This trait could beassociatedtoadifferenceinthespatialdistributionofvesselsinthexylem,whereSyrahcouldpresentalowerpercentageofvesselsisolatedcomparedtotheothertwovarieties.Otheranatomicalcharacteristicsofthexylemandwhethertheyarecorrelatedwiththevulnerabilitytocavitation,willbediscussed.Acknowledgments:Fondecyt1140880.

PS33

EFFECTSOFTHINNINGONSUGARANDORGANICACIDPROFILESOFEARLYANDLATEPRUNUSPERSICA (L.)BATSCHVARIETIESATHARVESTANDSTORAGE

Melet L1, CovarrubiasM1,Campos-VargasR1,ValenzuelaM2,MiyasakaAlmeidaA2, 1CentrodeBiotecnologíaVegetal,Facultad de Ciencias Biológicas, Universidad Andrés Bello. 2Instituto de Ciencias Químicas Aplicadas, Facultad deIngenieria,UniversidadAutónomaDeChile.lore.melet@gmail.comChileisthemainexporterofpeachesandnectarinestotheNorthernhemisphereincounterseason.Sincethemarketsareusuallyoverseasthefruitshouldbetransportedat0°Cforaroundamonth.Intheseconditionssomefruitscanpresentpostharvestdisordersafterprolongedcoldexposureevidencedasmealinessandfleshbrowningmainly.Webelievethatagronomichandlingsuchasthinningcouldaffectthefinalfruitsizeandfleshcomposition.Therefore,theaimofthisworkwastoanalyzetheeffectofthinningtreatmentsinfruitqualityatharvestandcoldstorageinanearly(Magique)andlate(Red Pearl) variety. The treatments were commercial thinning (34 leaves/fruit) and control without thinning (10

Page 49: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

48

leaves/fruit).Thefruitwereharvestedwithsimilarfleshfirmness(12lbf)andkeptat0°Cfor21daysand0°Cfor21daysplus5daysat20°C.Thefruitfromthinnedtreesofbothvarietiespresentedincreasedsizeandhigheramountofsolublesolidscomparedtofruitfromunthinnedcontroltrees.ThinningalsoadvancedRedPearlfruitdevelopment.Sugarandorganicacid contentswereanalyzedbyHPLCpulsedamperometricanddiodearraydetection respectively.RedPearlpresented significant variations in the concentration ofmetabolites due to thinningmainly sugars and organic acids.Magiquewas not affected by thinning in these parameters, suggesting that the changes inmetabolites in flesh fruitinducedbythinningarevarietydependent.Acknowledgments:SponsoredbyFONDECYT1130197,ViverosElTambo.

PS34

EXPRESSIONANALYSISOFCRUCIALFRUCTANGENES(1-SST,6G-FFTAND1-FFT)INALOEVERAPLANTSSUBJECTEDTOWATERSTRESSANDAPOSSIBLEREGULATIONOFTHESEGENESBYABA

SalinasC1,CaamañoN1,2,CardemilL1,1DepartamentodeBiología,Ciencias,UniversidadDeChile.2InstitutodeQuímica,Ciencias,PontificiaUniversidadCatólicaDeValparaí[email protected]

ThemonocotCAMplantAloebarbadensisMiller,alsoknownasAloevera,iswelladaptedtoliveinaridenvironments.Xerophytic plantshavedevelopeddiverse responsemechanisms to copewith the abiotic stressesproducedby theseenvironments.Thesynthesisandaccumulationofdifferentpolysaccharidese.g.,fructans, inplantshasbeenshowntoprotecttheintegrityandfunctionofcellmembranesandproteinsduringdehydrationcausedbywaterstress.PreviousresultsfromourgrouphaveshownthatAloeveraplantssubjectedtomoderate(50%fieldcapacity(FC)irrigation)andseverewaterdeficit(25%FCirrigation)havehigherconcentrationsoffructans.GlycosidiclinkageanalysisindicatedthatfructansfromwaterstressedAloeplantsincreasedinahighlybranchedsub-typeoffructans,neo-fructans.Wealsofoundasignificantincreaseinthedegreeofpolymerizationinfructansfrom25%FCplants.InourcurrentstudywehaveanalyzedtheexpressionofthreecrucialgenesinvolvedinfructanbiosynthesisinAloevera;1-sst,sucrose:sucrose1-fructosyltransferasewhichsynthesizesthetrisaccharide1-kestose;6G-fft,fructan:fructan6G-fructosyltransferasethatproducesthetrisaccharideneo-kestoseand1-fft,fructan:fructan1-fructosyltransferasewhichelongatesthefructanpolymer.ByRT-qPCRwedeterminedtheeffectofwaterstressandtheplantstresshormoneABAhaveontheexpressionofthesegenesinAloevera.Thepresenceofallthreefructangenes(1-sst,6G-fftand1-fft)inAloeveraplantshasbeenconfirmedbypreliminaryPCRresults.RT-qPCRanalysissofarhasindicatedasignificantincreaseinexpressionforboth1-sstand6G-fftgenesinwaterstressedplants.Meanwhilewehaveobservedasignificanteffectin1-sstexpressioninducedbyanexternalABAsolution.Acknowledgments:FONDECYT1130025.

PS35

HETEROLOGOUS EXPRESSION AND ENZYMATIC ACTIVITY OF A RHAMNOGALACTURONAN ENDOLYASE ENZYME OFFRAGARIACHILOENSIS

Mendez-YanezA1,GonzálezM1,HerreraR1,Moya-LeonMA1,1InstitutodeCienciasBiologicas,LaboratoriodeFisiologíaVegetalyGenéticaMolecular,[email protected] endolyase (RG-lyase; PL4 family; EC number 4.2.2.23) is an enzymewith catalytic β-eliminationmechanismactingontheα-1,4-glycosidicbondbetweenrhamnose(Rha)andgalacturonicacid(GalA)thatexistsinthemainbackboneofrhamnogalacturonan-I(RG-I).RG-Iisatypeofpectinpresentinthecellwalloffruittissues,whichissubjected todisassemblingduring softeningofFragaria chiloensis fruit.FcRGL4was isolated fromF. chiloensiswithalengthof2028basepairs;theproteinsequencehas676aminoacidsandamolecularweightof~75,5kDawithoutpost-translational modifications. Relative expression analyses indicate the increase in the level of transcripts of FcRGL4

Page 50: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

49

throughout the ripening of F. chiloensis fruit, withmaximum values at the turning and ripe fruit stages. The codingsequencewasheterologousexpressedinthemethylotrophicyeastPichiapastoris.Therecombinantproteinwaspurifiedthrough cation exchange (CMC) and affinity (His-tag) consecutive chromatographies. Enzymatic activity assays wereperformedwithRG-Ifrompotatoassubstrate,detectingtheformationofadoublebondinGalAat235nm.Furthermore,therecombinantRG-lyaseenzymeisabletobreakdownthemucilageofA.thalianagerminatingseeds,whichisrichinslightlybranchedRG-I.TheroleofFcRGL4isdiscussedintermsofitsparticipationduringsofteningofF.chiloensisfruit.Acknowledgmentss:AnilloACT-1110AndCONICYT-DoctoralFellowshipNº21130658.

PS36

PHYSIOLOGICALIMPACTOFSALTSTRESSINPRUNUSROOTSTOCKS

Salvatierra A1, Toro G2, Bravo M2, Pimentel P2, 1Genómica Funcional Centro de Estudios Avanzados en FruticulturaCEAF.2FisiologíadelEstrésCentrodeEstudiosAvanzadosenFruticultura.asalvatierra@ceaf.clFruitproductionisoneoftheagriculturalitemswithgreaterdynamismandgrowthinChileandoneoftheenginesoftheexportindustry.Inthiscontext,stonefruittreeorchardsareoneofthemostimportantfruitproducersrepresentinga25%ofthetotalareaplantedwithfruittrees.However,environmentalproblemsimposedbytheactualglobalclimatescenariocouldrestrictthecultivationofthesespecies.Salinityisanimportantenvironmentalstressandsalinizationofagriculturalsoilsisacriticalissuethatmustbefacedinfrontofaworldfooddemandsteadilyrising.InanIRGA-basedphysiologicalmeasurement, the plant response to saline conditionwas characterized on ninePrunus rootstocks.Weselectedtworootstockswithcontrastingtolerancetosaltstressfordeepeningourstudyoftheirsaltadaptiveresponse.MarianaM2624(P.cerasiferaxP.munsoniana),thesalt-tolerantgenotype,whenexposedtosalineirrigationshowedanearlydropinitsCO2assimilation(A)andstomatalconductance(gs)values,buttheyreachedsteadylevelswhichwerekepttilltheendoftheassay(day30).Incontrast,MazzardF12/1plants(P.avium)undersalineconditionshowedAandgsvaluesclosertocontrollevelsinearliersamplingtimes.However,thissalt-sensitivegenotypeevidencedaverysharpdeclineinthesevaluesafterday14and5,respectively.Theseinterchangegasparametersareinconsonancewithbiomassproductionregisteredforbothgenotypesundercontrolandsaltstressconditions.Acknowledgements: Fondecyt Iniciacio en Investigación 11150393, Fondecyt Regular 1150853 And CONICYT-REGIONAL/GOREO´HIGGINS/CEAF/R08I1001.

PS37

RELATIONSHIP BETWEEN CELL WALL CHANGES AND CRACKING INDEX DURING DEVELOPMENT AND RIPENING OFSWEETCHERRY(PRUNUSAVIUM)FRUIT

FigueroaN1,ZúñigaP1,BalbontínC2,FigueroaC1,1PhytohormoneResearchLab,InstitutodeCienciasBiológicas,UniversidaddeTalca,Chile.2CentroRegionaldeInvestigaciónQuilamapuInstitutodeInvestigacionesAgropecuarias(INIA),Chillán,Chile.

[email protected]

Crackinginsweetcherry(Prunusavium)fruitcanbeinducedbyrainduringfruitripeningorbyanabruptincrementoffruitsize.Developmentofsweetcherryfruitfollowsadoublesigmoidpatternwithtwopeaksofmaximumgrowth,whichcoincidewiththeonsetoffruitsetandfruitcolorchange.Inthesestagesthefruitcellwallextensibilitymightplayanimportantrole,allowingtheelongationunderperiodsoftensileforce.Previousstudiesindevelopingsweetcherryfruitshavesuggestedthatprimarycausesoffruitcrackingcouldberelatedwiththeincreaseinfruitsurfaceareaduringfruitdevelopment.Inordertounderstandtherelationshipbetweencherryfruitcrackingandcellwallmetabolismduringfruitdevelopmentandripening,wecarriedoutachemicalsequentialfractionationoffruitcellwallofthevarieties'Kordia'and'Bing',which are tolerant and susceptible to cracking, respectively. During early stages of fruit development, 'Kordia'showedgreateruronicacid(UA)andneutralsugars(NS)contentsintheCDTA-soluble(CSF),Na2CO3-soluble(NSF)andKOH-soluble(KSF) fractionsthanthoseobserved in 'Bing'.ThisobservationalongwiththatatripestagenosignificantdifferenceswereobservedbetweenmostoftheUAandNScontentsinthedifferentfractionsbetweenbothvarieties,

Page 51: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

50

suggeststhatdifferencesincellwallpolymerscontentsatearlyfruitdevelopmentcouldberelatedwithcrackingindex.WeconcludedthatgreaterUAandNScontentsintheCSF,NSFandKSFfractionsatimmaturestagescouldberelatedwithalowercrackingindexatripestageofsweetcherryfruit.Acknowledgment:FONDECYT/Regular1150764.

PS38

INVOLVEMENTOFSCHGDI1FROMSOLANUMCHILENSEINVESICULARTRAFFICKINGANDTOLERANCETOSALTSTRESSINARABIDOPSISTHALIANA

SanMartin-DavisonA1, Soto F1, PerezR1,González E1,Norambuena L2, Pizarro L2, Ruiz-Lara S1, 1Genómica FuncionalUniversidad De Talca, Instituto de Ciencias Biologicas.2Centro de Biología Molecular Vegetal , Facultad de Ciencias,UniversidaddeChile.Plantadaptationtoabioticstressmayinvolverearrangementofmoleculesfromvariouscellularcompartments.Transportofmaterialtoandfromthespecificcompartmentsiscarriedoutbyanintracellularvesicletraffickingsystem,regulatedbymembersofthelargesuperfamilyofsmallGTPases.RabGTPasesdeterminedtheintracellularmembranetraffickinginthesecretoryandendocyticpathwaysandoperateasamolecularswitchthatcyclebetween“active”and“inactive”state.GDPdissociationinhibitor(GDI)proteiniskeyintheregulationofthecycleoftheRabsastheywouldberesponsiblefortheirextraction,recyclingandmaintainingacytosolicreservoirofRabproteinstobedeliveredtomembranes.Solanumchilenseisconsideredtoleranttosaltanddroughtstress.TheSolanumchilensegeneSchGDI1codifiedaproteinwithhighhomologytoaRabGDIandisstronglyinducedbysaltanddroughtstress.InordertoevaluatetheroleofSchGDI1insaltstress, plants ofArabidopsis thaliana (Col-0) were transformedwith p35S::SchGDI1 and then stressed under in vitroconditionswith[50,75and100mM]NaCl.Ourresultsshowedthatthegerminationrate,endocyticrateandfreshweightwerehigherintransgenicthanwildtypeArabidopsisplants.IncontrastROScontentwassignificantlyhigherinthewildtypeArabidopsisthanintransgenicplants.Therefore,theoverexpressionofSchGDI1 increasesthevesiculartraffickingandsalttoleranceinArabidopsisthaliana.(SponsoredbyFondecyt1140636,ConicytAndUniversidadDeTalcaFellowship.)

PS39ANALYSISOFTHEINTERACTIONDFR-DIHYDROFLAVONOLSBYMOLECULARDYNAMICSSIMULATIONS

Parra-Palma C1,2, Ramos P1, Moya-LeónMA1, 1Instituto de Ciencias Biológicas, Universidad de Talca. 2Programa deDoctoradoenCienciasMenciónIng.GenéticaVegetal,Univ.deTalca.

[email protected]

Dihydroflavonol4-reductase(DFR)isapivotalenzymeintheflavonoidbiosynthesispathwaycatalyzingthelastcommonstep that leads to anthocyanins and proanthocyanidins. DFR promotes the reduction of three dihydroflavonols:dihydrokaempferol(DHK),dihydroquercetin(DHQ)anddihydromyricetin(DHM)toleucoanthocyanidins.ThesesubstratesdifferonlyinthenumberofhydroxylgroupsontheBphenylring:DHKonlyone,DHQtwo,DHMthree.Recently,anewvariantofDFR(DFR1),whichshowedanunusualpreferenceforonlyDHKwasidentifiedinstrawberry,meanwhileDFR2can convert any of the three dihydroflavonols. A region of 26 amino acid residues could be relevant to identify thesubstrates,proposedasthebindingpocketofBphenylringofdihydroflavonols,whereanasparagineresiduecouldbecritical.We analyzed FcDFR1 and FcDFR2 isolated from the Chileanwhite strawberry (F. chiloensis spp. chiloensis) atsequenceandstructuralleveltoidentifydifferencesinsubstratebinding(DHKandDHQ).PhylogeneticanalysesgroupedFcDFR1andFcDFR2intoseparateclades.FcDFR1andFcDFR2sequencesconsistof341and350aminoacidresiduesrespectively,andshare78.6%sequenceidentity.Themostimportantdifferenceswerefoundin the region that is important for substrate identification. FcDFR1 and FcDFR2 structures were obtained throughcomparativemodeling,showingaRMSDof2.39Å.Regardingprotein-ligandinteractions,inFcDFR2astrongandstableinteractionbetweenAsn133andthe3'-OHgrouponringBofDHQwasdeterminedbymoleculardynamicssimulations,butnotinFcDFR1,wheretheequivalentresidueisAla135.Incontrast,DHKwithout3'-OHgroupcouldbetransformedbybothenzymesasstableinteractionsweredetermined.ThedataprovidesanexplanationofwhyDFR1couldinteractwithDHKandnotwithDHQ.Acknowledgments:C.P.-P.thankstoCONICYTforherdoctoralscholarship21140812.AnilloACT-1110.

PS40

Page 52: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

51

EFFECTSOFEXOGENOUSAPPLICATIONOFABAANDWATERLOGGINGONAQUAPORINGENEEXPRESSIONINPRUNUSROOTSTOCKS

SolisS1,ToroG1,MujicaJ1,SalvatierraA2,AlmadaR2,PimentelP1,1FisiologíadelEstrésCentrodeEstudiosAvanzadosenFruticultura.2GenómicaCentrodeEstudiosAvanzadosenFruticultura.ssolis@ceaf.clSeveralspeciesofthePrunusgenususedasrootstocksareparticularlyaffectedbywaterloggingstress.Aquaporinsplayakey role in root water uptake capacity, which would provide amolecular basis for fast and reversible regulation oftransmembranewatertransport.ABAisoneofthemostimportanthormonesinvolvedintheplantsignalingandresponsesunderseveralabioticstresses,butisnotclearlyelucidateditsroleonwaterloggingstress.Inroots,themRNAexpressionofmostaquaporinsgenesisaffectedunderwaterloggingstressandaputativelinkwithABAregulationispresumed.ToevaluatetheroleofABAontheresponsesofPrunusrootstockstowaterloggingstress,exogenousapplicationsofABAandABAbiosynthesisinhibitor(NGDA)wereperformed.Thesetreatmentswereappliedtowholerootsthreehoursbeforewaterloggingstress.Rootssampleswerecollectedat3,6,24and72hoursandphysiologicalparametersweremeasuredat 3, 24 and 72 hours after waterlogging stress. Differences in photosynthesis and stomata conductance betweentreatmentsand rootstockswereobserved.GeneexpressionofPIPsaquaporins in responses to these treatmentswasassessedbyquantitativePCR(qPCR).qPCRresultsshoweddifferencesinthegeneexpressionofPIPsaquaporinssubfamily.ABAroleinPrunusrootstocksunderwaterloggingstressarediscussed.Acknowledgments:FONDECYT1150853AndCONICYT-REGIONAL/GOREO´HIGGINS/CEAF/R08I1001.

PS41

BIOINFORMATICSANDMOLECULARANALYSISOFFACTORSINVOLVEDINDEVELOPMENTALANDCRACKINGTOLERANCEINDIFFERENTVARIETIESOFSWEETCHERRY

MaldonadoJ1,PobleteG1,LeónR1,CarrascoB2,SilvaH1,1LaboratoriodeGenómicaFuncional&Bioinformática,Facultadde Ciencias Agronómicas, Universidad De Chile.2Facultad de Agronomía e Ingeniería Forestal Pontificia UniversidadCatólicaDeChile.jomaldon@gmail.comChileisthemainexporterofsweetcherries(Prunusavium)fromthesouthhemisphere.Unfortunatelythesefruitssufferaseriesofsuperficialproblemssuchascrackingthatisoneofthemajorreasonsoflossesintheworldwideproduction.Thedamageisproducedwhenthefruitbecameincontactwithrainfall.Wehypothesizethatsusceptibilitytocrackinginthesefruitscouldberelatedtostructuralcomponentsofexocarpanddifferentialexpressionofgenesassociatedwiththisphysiopathology.Fivevarietiesofsweetcherry(Bing,Kordia,Lapins,RainierandRegina)werecomparedintermsoftheirRNAseqprofileinunripeandripefruitaswellasripenfruitoftwovarieties(BingandRegina)whensubjectedtocrackingassays in vitro. Previous analysis by GC–MS enabled identification and quantification of n-alkanes. Varieties withsignificantlyhigherconcentrationsofnonacosane(Kordia,ReginaandLapins)weremoretoleranttocrackingcomparedtovarietieswithloweramounts(BingandRainier).Thetranscriptomeanalysisallowedtheassemblyof47,524and76,185contigsforripeandunripefruit,were75%ofthemhadfunctionalannotation.Ourresultsshowthatripefruitofthesefivecherryvarietiesexpressacoreof20,256genes(42.6%)andunripefruitexpressacoreof18,721genes(24.6%).WealsoperformedadifferentialexpressionanalysisfrominvitrocrackedfruitswereweobservethatBing(lesstolerant)have271genesupregulatedand933genesdownregulatedunderthestress,meanwhileRegina(moretolerant)have5,060genes upregulated and 3,165 down regulated. Enrichment analysis of functional annotation allowed us to identifymetabolicpathwaysandgenesinvolvedinvarietyspecificityandripeningprocessesandtoexplorecorrelationsbetweendifferencesinalkaneconcentrationandgeneexpression.Candidategenesarebeingtestedforthesefivecherryvarietiesfromdifferentlocations,seasons,developmentalstagesandtreatments.Acknowledgments:CONICYT,FONDECYT/RegularNº1120261AndNº1160600.

PS42

Page 53: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

52

HETEROLOGOUSEXPRESSIONOFRabG3eANDGDI1OFSolanumchilenseHAVEASYNERGICEFFECT INSALTSTRESSTOLERANCEINARABIDOPSISTHALIANA.

SotoF1,SanMartínA1,Pérez-DíazR1,GonzálezE1,Ruiz-LaraS1,1LaboratoriodeGenómicaFuncionalUniversidaddeTalca,InstitutodeCienciasBioló[email protected] under environmental stresses activate differentmechanism to restore homeostasis and to protect and repairdamagedproteinsandmembranes,whichrequireremovalofexistingmoleculesfromvariouscellularcompartmentsandreplacementwithnewerones.ThisrecyclinganddepositionofmacromoleculesiscarriedoutbyacomplexintracellularvesicletraffickingsystemthatisregulatedbyRabGTPases.Toperformtheiraction,RabGTPasescyclebetweeninactiveGDP-boundstatesandactiveGTP-boundstates.InthiscycleotheraccessoryproteinsareinvolvedasGDI,GAPandGEF.RabGDIareresponsibleforremovingRabGTPasesmembraneproteinsonceoccurredGTPhydrolysis,lettingRabGTPasesfreetostartanewcycle.TheinvolvementofRabGTPasesinsaltstresshasbeenstudied,relatingtheoverexpressionofthesegenestosalttoleranceinplants.PreviousstudiesinourlaboratoryshowthatSchRabG3eandRabGDI1expressionis induced in Solanum chilense when subjected to salt stress. Furthermore, we have demonstrated that SchGDI1overexpression inArabidopsis thaliana conferssalt tolerance.Considering thatseparately thesegeneshaveapositiveeffectonsaltstresstolerance,asynergisticeffectwouldbeexpectedwhenbothgenesareexpressedtogether.ForthiswegeneratedtransgenicplantsoverexpressingSchRabG3eandSchGDI1andsubmittedthemtodifferentconcentrationsofNaCl.Toevaluatetheperformanceofthesedoubletransgenicplantswemeasuredifferentphysiologicalparameters,comparing Arabidopsis thaliana plants expressing these genes separately and together. The results show that theoverexpressionsof SchRabG3eandSchGDI1 togetherhavea synergic effect in theplant growanddevelopment. Thedoubletransgenicplantsarestronger,sinceundersaltstressconditionstheyhaveabettergerminationratesandlongerandrobustrootsthanthesingletransformantplants.Acknowledgments:Fondecyt1140636,UniversidadDeTalcaAndConicytFellowship.

PS43

ANALYSISOFFLAVORDETERMINANTSINTABLEGRAPEANDTHEIRIMPACTOVERQUALITYTHROUGHGENETICANDMETABOLICCHARACTERIZATION

Morales I1, Dupré G1, Ocarez N1, Jiménez N1, Núñez-Salazar R1, Vargas V1, González-AgüeroM1, Ubeda C2, Peña A2,DefilippiB1,MejíaN1,1MejoramientoGenéticoyBiotecnologíaINIACRILaPlatina.2AgroinsdustriayEnología,Agronomía,[email protected],flavorandaromahavebeenwidelystudiedfortheirroleinthewinemakingprocesses;nevertheless,flavordeterminedbyvolatilemonoterpenesintablegrapeshasnotbeengeneticallycharacterized.Theacceptedhypothesisstatesthatthepresenceofflavor intablegrapevine leadstophysiologicaldisorderssuchasbrowningornon-uniformcoloration in berry skin; however, this apparent correlation remains unstudied. Muscat flavor production is mainlycontrolledbyaSNPmutationintheVvDXSgene,whichleadstoanincreasedaccumulationofGPP,themainsubstrateformonoterpene synthesis. In order to elucidate the complex nature of flavor in grapevines; metabolic, genetic andexpressionanalysesofbothanexperimentalprogenyderivedfromthecrossofMuscatofAlexandriaandCrimsonSeedlessandcommonMuscatvarietiesusedfordistillationofpisco,revealedthatMuscatflavorisdetectableinabsenceoftheaforementionedmutation;andthatonlyhalfoftheindividualsbearingthemutationareabletoproduceMuscatflavor;suggesting the existence of additional genetic determinants involved in the process. mQTL analysis based on thequantificationofvolatilecompoundsinapopulation(~200individuals)bearingthemutationallowedustoidentifyatleastfourminorQTLsforthemainvolatilemonoterpeneinMuscatflavorcomposition,linalool,thatcombinedexplain52,76%ofthephenotypicvariation.Finally,anegativecorrelationofmorethan30%wasdiscoveredbetweenlinaloolcontentandcolorvariationinpresenceoftheVvDXSmutation,suggestingthepossibilitytodevelopflavorinabsenceofthemutationanditssecondaryeffects,duetotheenhancedexpressionofgenesdifferentofVvDXSinvolvedintheaccumulationofvolatilemonoterpenes.

Page 54: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

53

Acknowledgments:FONDEFG09i1007AndBiofrutalesS.A.

PS44

INDUCTIONOFEXPRESIONOFNSLTPGENES INFRUITANDDROUGHTSTRESS INLEAVESSUGGESTADUALROLE INTOMATO

VegaM1,TapiaG1,MoralesC1,1LaboratoriodeRecursosGenéticos(RRGG)[email protected]

Theplant cuticle is anextracellularhydrophobic layer that covers theaerialepidermisofplants,providingprotectionagainstdesiccationandexternalenvironmentalstresses.Thepastdecadehasseenconsiderableprogressinassemblingmodels for the biosynthesis of its twomajor components, the polymer cutin and cuticular waxes, and the complexregulatory networks that control cuticle synthesis, assembly and transport. Plant non-specific lipid-transfer proteins(nsLTPs)aresmall,basicproteinspresentinabundanceinhigherplants,theyhavetheabilitytobindortransferseveraltypesofhydrophobicmolecules(fattyacids,fattyacyl-CoA,phospholipids,glycolipids,andcutinmonomers).InordertodeterminatethespecificfunctionoftheseproteinsintomatodroughttoleranceweanalyzedtheexpressionofseveralgenescodingfornsLTPs.InitiallyweusedRNAseqdatasetgeneratedfromleavesofS.peruvianum(Sp),andS.lycopersicumvar.MoneyMaker(Sl)undermoderate(MD)andseveredrought(SD)treatments.From117genescodingfornsLTPsinthetomatogenome,33weredifferentiallyregulatedandsignificantlyinthefourcombinations(Sp-MD,Sp-SD,Sl-MD,Sl-SD)comparedwithwellwateredplants.Weanalyzedtheexpressionoffiveofthem,wherethree(TomLTP1,TomLTP2andTomLTP5)werepreviouslydescribedforustobeinducedduringfruitdevelopment.TomLTP1wasinducedinbothspeciesunderMD,whileTomLTP2andTomLTP5wereinducedinSlbutnotinSp.Theothertwo genes TomLTP70 and TomLTP50 were induced in both species, although under different drought severities.Additionally,werelatedtheeffectofacclimationtodroughtandcuticlepermeabilitytotheexpressionofthegenesforsuggestsaputativefunctionincuticleformation.The results suggest that someof these nsLTPs can be implicated inmore than one function in tomato, such as fruitmorphogenesisanddroughtstresstolerance.

PS45

COMPUTATIONALSTUDYOFFCEG1,ANENDOGLUCANASEINVOLVEDINFRUITSOFTENINGOFFRAGARIACHILOENSIS

JaraK1,Valenzuela-RiffoF1,Morales-QuintanaL1,1LaboratoriodeFisiologíaVegetalyGenéticaMolecular, InstitutodeCienciasBiológicas,[email protected]β-1,4-glucanasesbelongingtotheglycosylhydrolasefamily9(GH9)haverolesincellwallsynthesis,remodelinganddegradation.Theseenzymesareassociated to severalprocesses including fruit ripening. Inourgroup, changes in thecellulose-hemicellulosic fractionhavebeenpreviously reportedduring ripening,andmatchwith softeningofFragariachiloensis fruit. A full-length sequence was obtained for FcEG1, and using qRT-PCR, transcript accumulation wasdeterminedduringfruitripening.PhylogeneticanalysessuggestthatFcEG1belongstoαgroupofGH9familywithotherproteinspreviouslydescribedwithrolesinelongation,ripening,andabscission.Togaininsightabouttheproteinstructureof FcEG1 and itsmechanism of action at themolecular level, the structure of the proteinwas built by comparativemodelingmethodology, andwas validated and refined throughmolecular dynamics simulation. Themodel obtaineddisplayaβ-barrel–typestructurethat istypicalofGH9enzymefamilythatcomprises12α-helix,2310helicesand6β-sheets; and an open groove in the center of the enzyme where the catalytic residues is oriented to the solvent.Additionally,theinteractionofFcEG1withasetofputativesubstratessuchasxyloglucans(XGs)andcellulosewasexplored

Page 55: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

54

usingmoleculardockingsimulations.TheresultsoftheinteractionbetweenFcEG1proteinwiththesepotentialsubstratessuggest that stable conformational complexes are formed, with favourable affinity energies for the binding ofhemicellulose. The data is congruent with a probable role of FcEG1 protein in the dissembling of the cellulose-hemicellylosicfractionduringripeningofstrawberryfruit.Acknowledgments:FONDECYTNº11150543AndPAI/Academia#79140027ProjectsSupportedThisWork.

PS46

WATERTRANSPORTRESPONSESOFISO-ANDANISOHYDRICGRAPEVINEVARIETIES:IMPLICATIONSFORTHESAFETYINTHECARBONGAINTOWATERLOSSTRADEOFF

MuñozM1, Villalobos L2, Pastenes C2, 1Departamento de Producción Agrícola, Ciencias Agronómicas, Universidad deChile.2ProducciónAgrícola,CienciasAgronómicas,UniversidaddeChile.mariana.munoz.a@gmail.comThehydraulicsystemofplantshasevolvedincreasingthecapacitytosupplywatertoevaporativeleaves,butincorporatingresistancestoavoidhydraulicfailureuponwatershortagesand/or increasedevaporativedemand.Atthestemto leafcontinuum,majorresistancesarestomatalconductance(gs)withtwodivergentbehaviours:iso-(safe)andanisohydrism(risky);and leafhydraulicconductance(kleaf),stronglydeterminedbyveindensity,a long-termadaptation. Inordertoevaluateiso-andanisohydricgrapevinesresponsestowaterlimitationinacommercialvineyard,wehaveassessedgasexchangeresponsesandwaterpotentialstatustowateravailabilityontheisohydricgrapevinesCabernetSauvignon(CS)andCarmenere(C)andtheanisohydricSyrah(S).Acrossthe3varieties,Sshowedahigherstemtoleafwaterpotentialgradient(ΔΨstem-leaf), independentofthesoilwatercontent.Also,allthevarietiesshowedanegativeΔΨstem-leaftoΨleafcorrelationbutSrespondinguptoahigherextent.Moreover,thestrongerreductionsinkleafupondecreasesinΨleaf,wasobserved inS.On thecontrary,C is capableof simultaneous reductionsofkleafandgs implyingplasticity in thewatertransportsystemattheleaflevel,differentfromveindensityadaptationsand/orembolism.ThetightcontrolofgsinCledtohigherassimilationrates(AN)atalowertranspirationrates(E)comparedtoCSandS,suggestingahigherwateruseefficiency,eventhoughthethreevarietieshadthesameANtogsratio.Theseresultswillbediscussedinrelationtoxylemmorphology,veinsandstomataldensityandthesusceptibilitytoembolism,fromobservationsmadeinthesameplants.Acknowledgments:Fondecyt1140880.

PS47

DOESSUGARMATTER?THEROLEOFGLUCOSEINGRAPEBERRYRIPENING

Serrano A1, Contreras R2, Zúñiga G2, Gutierrez R1, Arce-Johnson P1, 1Genética Molecular y Microbiología PontificiaUniversidadCatólicaDeChile.2BiologíaUniversidadDeSantiagoDeChile.

[email protected]

Grapevine fruitdevelopmentcanbedivided into three stages: the formation stage, the lagphase (veraison),and theripening stage; during which physiological and biochemical changes occur that allow cell differentiation and theaccumulationofdifferentsolutes.Interestingly,duringveraison,afastglucoseandfructoseaccumulationbeginstogetherwithanthocyaninbiosynthesisallowingthecolorchangeofberries,whichremainsduringthewholeripeningprocess.Theanthocyanin accumulation together with other processes like size increase, turgor, acidity decrease and hormonalvariations,allowthefullberrydevelopment.Despite there is widespread knowledge about berry grape development, the nature of the signal that initiates andfacilitatesthecoordinationoftheripeningprocessstillremainsunknown.Sugarshavebeenstudiednotonlyasanenergysource,butalsoasasignalingmoleculeabletocontrolgeneexpression.Ithasbeendemonstratedthatglucoseandfructoseinduceanthocyaninbiosynthesisincellculturesofgrape.So,inordertodeterminewhichisthesignalthatinitiatesandregulatestheripeningingrapeberry,thisworkismainlyfocusedon

Page 56: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

55

understandingtheroleofglucoseandfructoseduringberrydevelopment,duetotheincrementofthesemoleculesinthebeginningofthisstage.Geneticandphenotypicanalysiswasusedinordertodeterminethedegreeofripeningoftheberry.Theresultsofthisworkallowedustodemonstratetheimportanceofglucoseintheregulationofthebeginningofripening,becausepre-veraisonberriestreatedexogenouslywithglucosematured20daysearlierthanfruittreatedwithwater.Moreover,sugartreatment incellculturesofgrapeshowedthattheexpressionoftheMybA1gene,which isessential foranthocyaninbiosynthesis,isinducedinresponsetoglucose.Acknowledgments:PostdoctoralProjectFONDECYT3150608;FONDECYT1150220;MillenniumNucleusNC130030.

PS48

KINETICSOFSILICONANDALUMINIUMUPTAKEINBARLEYPLANTS

VegaI1,2,UlloaM2,1,CartesP2,3,1DoctoradoenCienciasdeRecursosNaturalesUniversidaddeLaFrontera.2CenterofPlant,SoilInteractionandNaturalResourcesBiotechnology,ScientificandTechnologicalBioresourceNucleusUniversidaddeLaFrontera.3DepartamentodeCienciasQuímicasyRecursosNaturalesUniversidaddeLaFrontera.marlys.ulloa.p@gmail.comBarley(Hordeumvulgare)ishighlyconsumedduetoenergeticandnutritionalcontent.However,theacidicconditionsofsoils and the presence of toxic aluminum (Al) are important growth-limiting factors for barley plants. It has beendemonstratedthatsilicon(Si)attenuatesAlphytotoxicity,aswellasitpromotestheproductionofphenoliccompoundswithantioxidantorstructural(e.g. lignin)function.TheaimofthisresearchwastoevaluateSiandAluptake,phenolsconcentrationandantioxidantcapacityofbarleyplantscultivatedunderAlstressconditions.Ahydroponicexperimentwasconductedbyusingtwobarleycultivars(ScarletandSebastian),whichweretreatedwithAl(0or0.2mMAl)andSi(0or2mM)atdifferentharvesttimes(2,4,8,12,24,48hours).Atharvest,SiandAlconcentration,totalphenols, lipidperoxidationandligninaccumulationweredeterminedinplants.TheconcentrationsofSiandAlincreasedforthetwocultivarswhen2mMSior0.2mMAlwasapplied,respectively.AluminiumconcentrationdecreasedatallharvesttimeswhenAlwassuppliedincombinationwithSi.Thehighestconcentrationofsolublephenolswasfoundat2mMSiand0.2mMAl addition after 8 hours in both cultivars. Lipid peroxidation decreased in Si-treated plants at all harvest timescomparedwithnon-treatedplants.Finally,increasedligninaccumulationwasfoundwhenSiwasappliedincombinationwithAl.Acknowledgements:FONDECYTProject1161326AndDirecciónDeInvestigaciónDeLaUniversidadDeLaFrontera.

PS49

ENZYMATICPROPERTIESOFPRXTH1ENZYME,AXYLOGLUCANENDO-TRANSGLYCOSIDASE/HYDROLASEINVOLVEDINTHEMOLECULARRESPONSETOINCLINATIONOFRADIATAPINE

BeltránD1,Carrasco-Orellana,C2,RamosP2,Moya-LeónMA2,Morales-QuintanaL2,HerreraR2,1LaboratoriodeFisiologíaVegetalyGenéticaMolecularUniversidadDeTalca.2LaboratoriodeFisiologíaVegetalyGenéticaMolecular,InstitutodeCienciasBiológicas,InstitutodeCienciaBiológicas,[email protected]

Severalenzymesrelatedtoinclinationresponsehavebeenidentifiedinradiatapine,andpreviousstudiessuggestthatxyloglucan endotransglycosidases/ hydrolases (XTH)might play a key role in themolecular response to inclination ofradiatapine.XTHsmayhavetwoactivities:transglycosidase(XET)andhydrolase(XEH).Thefull-lengthcomplementaryDNAofPrXTH1wasisolatedandcharacterizedfromradiatapine.PhylogeneticandgenestructureanalysessuggestthatPrXTH1belongstogroupIofXTHswithputativeXETactivity.TheaimofthisworkwastostudytheenzymaticpropertiesofPrXTH1.Firstly;PrXTH1wasclonedandheterologousexpressedinP.pastoris.Thepurifiedrecombinantproteinisactive

Page 57: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

56

andthisactivityhasonlyXETactivitywith37.86[a.u./mgprotein].TheoptimalpHwas6.0andoptimaltemperaturewas37ºC.AKmvalueof29.5µMwasdeterminedforXGO(xyloglucanoligomer).TogaininsightsthemechanismofactionofPrXTH1enzymeatthemolecularlevel,comparativemodelingmethodologywasusedtobuildthestructure.Themodelobtaineddisplayaβ-jellyroll–typestructurethatistypicalofGH16enzymefamilythatcomprises2α-helix,4310α-helixand15β-sheets;andacurvaturegeneratedby8antiparallelβ-sheetsholds thecatalyticExDxEmotif that isorientedtowardsthecentralcavityoftheprotein.Theinteractionofasetofputativesubstrateswiththeproteinwasexploredusingmoleculardynamicssimulations,findingabetterinteractionwithxyloglucansthancellulose.ThedataprovidedallowustoproposethatPrXTH1mightbehydrolaseinvolvedinthemolecularresponsetoinclinationofradiatapine.Acknowledgments:FONDECYTNº1150964AndPAI/Academia#79140027ProjectsSupportedThisWork.

PS50

TRANSCRIPTIONALCHARACTERIZATIONOFMYBTRANSCRIPTIONFACTORSINVOLVEDINTHEMOLECULARRESPONSETOINCLINATIONANDPUTATIVEREGULATIONOFFLAVONOIDTRANSPORTERTARGETGENES

GonzalezJ1,HerreraR1,RamosP1,1InstitutodeCienciasBiológicasUniversidadDeTalca.

[email protected]

Ithasbeenproposedthatflavonoidsblockpolarauxintransport.Thismechanismregulatesthedistributionofthephyto-hormoneauxin,whichisresponsibleforthedifferentialstemgrowthduringgravitropicresponse.Flavonoidbiosynthesis,performedinthecytosolistranscriptionallyregulatedbyMYBtranscriptionfactors.Tomaintainthecytosolicflavonoidhomeostasis,vacuolarcompartmentalizationofthesecompounds isneeded,which iscarriedoutbyspecific flavonoidtransporters.TranscriptionalcharacterizationofMYBtranscriptionfactorsinresponsetoinclinationwasstudiedinordertodeterminetheirparticipationinthebiosynthesisofflavonoidsandtheirtransport,Tothisaim,RNA-Seqlibrariesofplantsexposedtodifferenttimesofinclinationwereanalyzed.ElevenR2R3-MYBfull-lengthsequences,withadifferentialexpressionprofileaccordingtotheirFPKMvalues,werefound.Multiplesequencealignmentandphylogeneticanalysiswereperformed.ExpressionanalysisofPrMYB2,PrMYB5,PrMYB6,andPrMYB8,byqPCRassays,showedaninductioninresponseto inclination intheupperhalfat10hoursof inclination.Finally,promoterregionsofflavonoidstransporterMATEandABCCgeneswereisolateandsequencedby"Genome-Walker"technique,revealingthepresenceofseveralMYB-relatedcis-actingelements.ResultssuggestthatPrMYBTFsmayberegulatingflavonoidbiosynthesisand,ontheotherhand,beputativegeneexpressionregulatorsofflavonoidtransportersMATEandABCCtomodulatedtheflavonoidhomeostasisinradiatapineseedlingsunderinclinationstimuli.Acknowledgments:FONDECYT11121170And1150964.

PS51

ROLEOFUDP-URONICACIDSTRANSPORTERSINTHEBIOSYNTHESISOFNON-CELLULOSICPOLYSACCHARIDESINARABIDOPSISTHALIANA

TempleH1,2,Celiz-Balboa J1,2, Saez-Aguayo S1,2, Parra J1,2, Dupree P3,OrellanaA1,2, 1Centro deBiotecnologíaVegetal,Facultad de Ciencias Biologicas, Universidad Andrés Bello. 2FONDAP Center for Genome Regulation. 3Department ofBiochemistryUniversityofCambridge.j.celiz10@gmail.comThesynthesisofcellwallmatrixpolysaccharidesoccursintheGolgiapparatusthroughtheconcertedactionofhundredsof glycosyltransferases. The activity of these enzymes depends, in turn upon nucleotide-sugarsynthesizing/interconvertingenzymesinthecytosol,andalsoofthenucleotide-sugartransporters(NSTs)necessaryforsugartransportintothelumenofGolgi.UDP-Glucuronicacid(UDP-GlcA)isakeymoleculeinvolvedinthisprocesssinceitservesasprecursorforthesynthesisofseveralpolysaccharidesofthecellwall.Todate,noUDP-GlcAtransporterhasbeen

Page 58: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

57

identifiedsotheirroleinnon-cellulosicpolysaccharidesremainsunclear.InthisworkweidentifiedafamilyofUDP-GlcAtransporters (UUATs) located inGolgiapparatus.Todetermine theircontribution tonon-polysaccharidesynthesis,westudiedUUATs familymembers and determined their expression pattern using RT-qPCR experiments.We confirmedUUATs are Golgi localized proteins and analyzed their contribution to non-cellulosic polysaccharides biosynthesis,analyzingthecellwallcompositionofplantspresentingalteredexpressionlevelsofUUATsgenesbyHighPerformanceAnionExchangeChromatography(HPAEC)andweanalyzedxylanstructureandcompositionbyPolysaccharidesAnalysisbyCarbohydratesElectrophoresis(PACE).OverallresultssuggestUUATsparticipateinpectinpolysaccharidesbiosynthesisratherthanhemicellulosebiosynthesis.Acknowledgments:Fondecyt1151335,Fondecyt3140415,FONDAPCRG15070009AndBasalPFB-16.

PS52

SILICONAMELIORATESALUMINUMSTRESSBYREGULATINGALUMINIUMUPTAKEANDANTIOXIDANTRESPONSESINRYEGRASSPLANTS

PontigoS1,2,SepúlvedaT3,CartesP1,3,1CenterofPlant,SoilInteractionandNaturalResourcesBiotechnology,Scientificand Technological Bioresource Nucleus Universidad de La Frontera. 2Doctorado en Ciencias de Recursos NaturalesUniversidaddeLaFrontera.3DepartamentodeCienciasQuímicasyRecursosNaturalesUniversidaddeLaFrontera.t.sepulveda02@ufromail.clAluminium(Al) toxicity limits cropproduction inacidic soils,and there isevidence that silicon (Si) canameliorate thenegativeeffectsofAl insomeplantspecies.Nevertheless,therearefewreportsabouttheroleofSi inregulatingtheantioxidantsystemofplantsgrowingunderAlstress.WeinvestigatedtheimpactofSiagainstAltoxicityinryegrassbyanalyzingthegrowthresponses,SiandAlconcentrations,lipidperoxidationandantioxidantenzymeactivitiesinplantshydroponicallyculturedwithAl(0or0.2mM)andSi(0,0.5or2.0mM).Aluminumstressreduceddrymatterproductionofrootsbyabout28%,whileappliedSiimprovedthegrowthofshootsandrootsby22%and12%,respectively.AluminumsupplyalsoraisedAlaccumulationmainlyinroots,butAlconcentrationinshootsandrootswasprogressivelyreducedinresponsetoincreasingSidoses.Bycontrast,SiconcentrationofshootandrootsincreasedastheSidoserose,butthisincrementwaslessnoticeablewhenplantsweresimultaneouslysuppliedwithAlandSi.Likewise,Sisupplysignificantlycounteracts (in about 35% in shoots and 28% in roots) the increase of Al-induced lipid peroxidation.Moreover, theactivationofsuperoxidedismutase,catalase,peroxidaseandascorbateperoxidaseenzymeswasfoundasaconsequenceofSiapplicationtoplantssubjectedtoAlstress.Acknowledgements:FONDECYTProject1161326,CONICYTDoctoralScholarship21120704AndDirecciónDeInvestigaciónOfUniversidadDeLaFrontera.

PS53ANALYSISOFTRANSCRIPTIONFACTORSFAMILIESINVOLVEDINSTEMINCLINATIONONP.RADIATAPINES.

GonzalezM1,StappungY2,HerreraR3, 1InstitutodecienciasbiologicasUniversidadDeTalca.2LaboratoriodeFisiologíaVegetal y GenéticaMolecular, Instituto de Ciencias Biológicas, Instituto de Ciencia Biologicas, Universidad De Talca.3LaboratoriodeFisiologíaVegetalyGenéticaMolecular,InstitutodeCienciasBiológicas,InstitutodeCienciaBiologicas,[email protected] importantroleasenvironmentalstimulus,particularlyrespondingto lossofverticality,andtriggeringdifferential cellular responses. Molecular events in response to inclination promote cell wall modifications, such as,synthesis of hormones like Auxins and Ethylene, and gene expression of transcription factors (TFs) asMYB andNACfamilies,whichcontrolligninbiosynthesisduringwoodformation.

Page 59: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

58

Inthisstudy,RNA-seqlibrarywasbuiltfrominclinedPinusradiataD.Don.Samplesweretakenat2.5,10and24hoursafterinclination,keepinguprightstemascontrol.Atotalof101575contigsweredenovoassemblybyTrinity,then,GOannotationwasperformed.ATranscriptionfactorscategorizationwasobtainedusingPlantTFDB.Twenty-sixthousandsfourhundredandtwentyfourdifferentTFsbelongingto47familieswereidentified.Afterfilteringthedata,weused2622TFs; fromwhich27weredifferentially expressed inat leastoneof the conditions. These27genesbelong toonly16transcriptionfactorfamilies,andfinally11geneswereselectedforqRT-PCRanalysis.Subsequently,aregulatorynetworkwasbuiltusing,A.thalianaorthologousgenes,inordertoevaluatetheinteractionbetweenthoseTFs.Interestingly,thetwoWRKYandGRASgenesshowedahigherexpressionintheupperstemhalves,ontheotherhand,bHLH,NACandHDZipgenesinthelowerstemhalves.

PS54

ANTIOXIDANTRESPONSESINWHEAT(TRITICUMAESTIVUM)BAKANCULTIVARUNDERALUMINUMTOXICITY

OportoM1,Ulloa-InostrozaE2,AlberdiM3,4,Reyes-DíazM3,4,1CarreradeBioquímica,DepartamentodeCienciasQuímicayRecursosNaturales,FacultaddeIngenieriayCiencias,UniversidadDeLaFrontera.2ProgramadeDoctoradoenCienciasde Recursos Naturales, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias,UniversidadDeLaFrontera.3DepartamentodeCienciasQuímicasyRecursosNaturales,FacultaddeIngenieríayCiencias,Universidad De La Frontera.4Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific andTechnologicalBioresourceNucleus(BIOREN)UniversidadDeLaFrontera.m.oporto01@ufromail.clAcidsoilsrepresentabout40%ofworldarableland,havinghighavailabilityoftoxicaluminum(Al3+),whichlimitsplantgrowth.Wheatisthemaincropandfoodintheworld,beingthebaseofnutritioninmanypopulations.Theaimofthisworkwastodeterminetheantioxidantresponsesinwheat(Bakancultivar)underaluminumtoxicity.Nineteen-days-oldplantsofwheatBakan(Baer)cultivarweretreatedwithAlasAlCl3(5mM)at4.2pHfor48hingreenhouse.Duringseven-days,plantsweregrowninaHoaglandnutrientsolutionwithandwithout(control)toxicAl.Thereafter, inshootsandrootslipidperoxidation(LP)byTBARSmethod,antioxidantactivity(AA)byDPPHmethod,andtotalphenols(TP)byFolin-Ciocalteumethodweredetermined.ResultsshowedthattheLPdidnotshowstatisticallysignificantdifferencesbetweencontrolandAltreatmentinshootsandroots.However,AAandTPincreasedinshoots(37.7and37.6%,respectively)andinroots(28.1and41.7%,respectively)underAltreatmentcomparedtocontrol.Thus,itisconcludedthatwheatBakancultivarcouldbeanAl-resistantcultivar,dueto its increaseofAA,TPand lowoxidativedamage(LP).However,morestudiesareneededtodeterminethemechanismsinvolvedinthisresistance.Acknowledgments:DI16-2011ProjectFromUniversidadDeLaFrontera,Temuco-ChileAndPhDFellowshipN°21110919CONICYT.WeThankDanielaTapiaForHerAssistanceInTheLaboratory.

PS55

GENETICCONTROLOFIRONLOADINGINARABIDOPSISEMBRYOS

GrantS1,MedinaJ2,Vicente-CarbajosaJ2,C3,RoschzttardtzH1,1GenéticaMolecularyMicrobiología,PontificiaUniversidadCatólicaDeChile.2CentrodeBiotecnologíayGenómicaenPlantasINIA.3Biochimie&PhysiologieMoléculairedesPlantesCNRS-INRA.su.grant.g@gmail.comThemolecularmechanismsthatregulateironallocationinplantseedsarepoorlyunderstood.Ithasbeenshownthatironaccumulatesinendodermis,acelllayerthatsurroundprovasculature,duringArabidopsisembryomaturation.Inordertobetter understand the genetic control of iron accumulation and distribution in seed embryo, we used mutants intranscriptionfactorsknowninvolvedinembryodevelopmentandseedmaturation.WeinitiallyfocusonFUSCA3(FUS3),

Page 60: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

59

ABSCISICACIDINSENSITIVE3(ABI3)andLEAFYCOTYLEDON2(LEC2)mutants.ThesethreeproteinsbelongtoB3domain-containingtranscriptionfactorsfamily.ThankstoPerls/DABstainingwewereabletodeterminethatfus3,lec2andabi3mutantembryoshavedifferent irondistributionpatterningand/oraccumulate less ironthanwild-typeembryos.Also,preliminaryresultsindicatethatironcontentdecreaseinbzip63mutantseeds,amemberofbZIPgroupCtranscriptionfactors.Finally,regardinghormonalcontrol,itisknownthatabscisicacidhasanessentialroleduringseedmaturation,andsofar,therearenotreportsabouthormonalcontrolofironloadinginseed.Ourresultsindicatethatabi3mutantembryoshavelowironcontentsuggestingapossibleroleofabscisicacidinironaccumulationinseeds.Weproposetoanalyze iron distribution and accumulation in abscisic acid biosynthetic pathwaymutants (abamutants), in order tocharacterizethepossibleroleofABAinembryoironloading.ThisisthefirstdescriptionofageneticcontrolinvolvedinironaccumulationanddistributioninArabidopsisembryos.Acknowledgements:FONDECYT1160334FromTheChileanGovernmentAndINTER6809VRIPUC-Chile.

PS56

INCREASE IN WATER USE EFFICIENCY IN CITRUS PLANTS THROUGH STOMATA OVEREXPRESSION OF THETRANSCRIPTIONFACTORMYB61

Romero-Romero J1, Orellana D2, Espinoza C2, Arce-Johnson P2, 1Ciencias Biologicas y Microbiologia, Agronomia eingenieria forestal, Pontificia Universidad Católica De Chile. 2Microbiologia y GeneticaMolecular, Ciencias Biológicas,PontificiaUniversidadCató[email protected] are perennial plants that are known worldwide for its juice and pulp cultivated in tropical, subtropical, andMediterraneanclimates,beingthemostrelevantBrazil,UnitedStates,India,MexicoandSpain.Droughtisthemainabioticstress factor limitingtheyield in fruits.Oneof thefirstplantresponsestodrought is thestomatalclosure inordertopreventdesiccation. Ithasbeenshownthatsometranscriptionfactorsare involved inthisprocess,suchasAtMYB61,whichisrelatedtothestomatalclosureinducedintheabsenceoflight.Consideringthisbackground,wewantedtoassesswhetherover-expressionofthehomologousgeneofAtMYB61incitrus(CsMYB61),underthetranscriptionalcontrolofaspecificstomatalpromoter,increasestheEUAincitrusplantsunderwaterstress.Todothisweidentified,isolatedandsequencedtheCsMYB61codingregion.TheproteinencodedbythissequencehascharacteristicdomainsandmotifsofotherMYB61proteins.Similarly,weisolatedthe1.2kbpromoterregionofthegeneCsMYB15 (pCsMYB15)containingregulatoryelementsforexpressioninguardcells,andotherpossibleABAandlightresponsiveelements. IntransgenicplantsofArabidopsisandcitrus,pCsMYB15directstheexpressionofthereportergeneGUSinstomata.Valenciaorangelinesover-expressingCsMYB61,haveanormalphenotypeunder invitroandgreenhouseconditions.WUEassessmentunderwaterstressiscurrentlyunderevaluation.Acknowledgments: CONICYT Doctoral Scholarship For Foreigners (Number: 63130094), COTEBAL (Number: 1865),MillenniumNucleusForPlantSyntheticBiologyAndSystemsBiologyNC130030.

PS57

IRONDISTRIBUTIONINEMBRYOOFCLOSELYRELATEDARABIDOPSISSPECIES

IbeasMA1,Grant S1, Vargas J1, RoschzttardtzH1, 1GenéticaMolecular yMicrobiología, Ciencias Biológicas, PontificiaUniversidadCató[email protected] isanessentialmicronutrient formost livingorganisms, includingplants.Theroleof iron inseedproduction isanimportantagronomicaltraitbecauseirondeficiencyaffectsplantreproductionandlimitscropsyield.AccordingtotheWorldHealthOrganization,30%ofthepopulationisanemic,andbiofortificationisapossiblealternativetocombatiron

Page 61: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

60

deficiency,andseedswithhighermineralcontentmaycontributetothisgoal.UsingArabidopsisthalianaasmodelplant,it has been described that iron accumulates during embryo maturation in vacuoles of endodermis cell layer. UsingPerls/DABstainingwewereabletofindthatothersseedembryosfromrelativesspeciestoArabidopsis,haveadifferentiron distribution pattern. In those embryos, iron accumulates in two cell layers in hypocotyl. Using epifluorescencemicroscopyweidentifyoneofthesecelllayersasendodermis.ThisisthefirstdescriptionofplantembryoswithdifferentirondistributioncomparedtoArabidopsis.Ourresultsopennewquestionsaboutthemolecularmechanismcontrollingironloadinginseeds.Acknowledgements:FONDECYT1160334FromTheChileanGovernmentAndINTER6809VRIPUC-ChileFundedThisWork.

PS58

EFFECTOFSILICONONANTIXIDANTCAPACITYOFRYEGRASSPLANTSSUBJETEDTOPHOSPHORUSDEFICIENCY

Sepúlveda T1, Pontigo S2,3, Cartes P2,1, 1Departamento de Ciencias Químicas y Recursos Naturales Universidad de LaFrontera.2CenterofPlant,SoilInteractionandNaturalResourcesBiotechnology,ScientificandTechnologicalBioresourceNucleusUniversidaddeLaFrontera.3DoctoradoenCienciasdeRecursosNaturalesUniversidaddeLaFrontera.t.sepulveda02@ufromail.clPhosphorus(P) isanessentialnutrientforplantgrowth.However, inacidicAndisolsofSouthernChile,Pavailability islimited.SomeresearchesindicatethatSicanalleviatePdeficiency,whichishighlydetrimentaltograsslandproduction.ThisstudyaimstoassesstheeffectofSionantioxidantcapacityofryegrasscultivatedunderdifferentPsupply.Apotexperimentwasconductedwithryegrass(LoliumperenneL.)grownonanacidAndisolsuppliedwithSi(0,250,500mgSi/kgsoil),appliedaseithercalciumsilicate(SiCa)orsodiumsilicate(SiNa),andP(0,150and300mgP/kgsoil)usingTriplesuperphosphate.Attheendoftheexperiment,antioxidantactivity,totalphenolsandsuperoxidedismutase(SOD)activitywereevaluatedinshootstissues.PlantsgrowingunderPdeficiencyshowedasignificantdecreaseofantioxidantactivity,whileanincreaseofantioxidantactivitywasobservedinplantstreatedwith150or300mgP/kgsoil,irrespectiveofSitreatments. By contrast, both Si sources raised total phenol production of plants subjected to P deficiency, but nodifferencesintotalphenolsweredetectedunderoptimalPnutrition.AsignificantdecreaseofSODactivityoccurredwhenplantsweregrownatthehighestPdoses,andnochangesinSODactivitywereobservedinplantssuppliedwithSi.Acknowledgements:FONDECYTProject1161326AndDirecciónDeInvestigaciónOfUniversidadDeLaFrontera.

PS59

NEWMASTERREGULATORYFACTORSINNITRATECONTROLOFPOST-EMBRYONICPLANTDEVELOPMENT

MorenoS1,Canales J2,GutierrezR3, 1DepartamentoGenéticaMolecularyMicrobiología,FacultadCienciasBiológicas,PontificiaUniversidadCatólicaDeChile.2InstitutoBioquímicayMicrobiología,FacultaddeCiencias,UniversidadAustralDe Chile. 3Departamento GenéticaMolecular yMicrobiología, Facultad de Ciencias Biológicas, Pontificia UniversidadCató[email protected]

Nitrogenisanessentialmacronutrientforplantdevelopmentandgrowth.SyntheticfertilizersarethemainsourceofNappliedtocrops.Unfortunately,plantsarenotabletousetheentireNdepositedand50to70%islostcontaminatingterrestrialandaquaticsystems.ThemostabundantinorganicNsourceforplantsinagronomicsoilsisnitrate.Beyonditsroleasanutrient,nitratecanactasasignalthatregulatesglobalgeneexpression.However,moststudieshavefocusedinrootorgansandweknowrelativelylittleabouthownitrateregulatesphysiologicalanddevelopmentalprocessesinshoots.Weaimtounderstandofnitratemodulatesvegetativeshootdevelopment.Nitratedeficiencyhasadirectimpactinaerialsurface and shoot fresh weight early in post-embryonic development. Despite a clear growth and developmentalphenotype,nocorrelationisobservedatthelevelofnitratereductaseactivity,suggestingnitrateasasignalingmolecule

Page 62: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

61

modulatesshootvegetativegrowthanddevelopment.DetailedtranscriptomeanalysisusingRNA-seqtechnologyandtranscriptionalnetworkmodelingallowedustoidentifynewtranscriptionfactorsthatarecandidatemasterregulatorsofArabidopsisgrowthanddevelopmentinresponsetonitrate.Tounderstandhowthesemasterregulatorsareregulatedbynitratecouldhelpustoimprovethenitrateusewithdirectinfluencesinamoreefficientandecologicalagriculture.

PS60

GRAINQUALITYOFTWOWHEATSPECIESINRESPONSETOCLIMATECHANGESCENARIO:ASHORTHEATSTRESSONAKEYPHASEOFSEEDSDEVELOPMENT

ArenasA1,GarcíaE1,CalderiniD1,1InstitutodeProducciónySanidadVegetal,FacultaddeCienciasAgrarias,UniversidadAustralDeChile.anitamaribel@gmail.comFortheendofthiscentury,ithasbeenpredictedanaverageincreaseofthesurfaceglobaltemperatureof1.7–4.9ºC.Furthermore, a higher frequencyof short episodesof heat stress is expected as a direct consequenceof the climatechange.Therefore,temperaturewillbeoneofthemainfactorsaffectingthedevelopmentandproductivityofcropsinChileandworldwide.Wheat is themostwidelycultivatedcerealandanessential componentofglobal foodsecurity.Temperatureincreasesduringgrainfillingwillimpactonyieldcomponents,weightandqualityofthefinalgrains.Inthisworkweanalyzetheeffectoftemperatureongrainqualityatthemolecularandphysiologicallevelintwoagronomicalwheatspecies:thehexaploidT.aestivum(breadwheat)andthetetraploidT.durum(pastawheat)exposedfor4daystothehightemperature(32ºCforthetreatmentand24ºCforthecontrolplantsinaverage)atthepost-anthesis(flowering).HeatstressrapidlyinducestheexpressionofHeatShockProteins(HSPs)intheseeds3hoursaftertreatment.However,theexpressionofgluteninsandgliadins(themaincomponentsofthestorageproteinsinwheatendosperm)andseveralstarchsynthesisgenesarenotaltered,at least in the first24hoursofheatstress. Inbothspecies, thethermalstressgeneratedareductionof30-32%ingrainweight,oneofthemaincomponentsofyield.Seedviabilityisnotaffectedbyheatstress.Converselyweobservedadecreaseof35%inseedsize,withanimportanteffectinthegrainwidth.AdrasticreductionofthegrainlengthwasobservedonlyinT.durum.Theseresultssuggesttheexistenceofdifferentmechanismsofresponsetoheatstressinbothwheatspecies.Acknowledgments:FONDECYT-Postdoctorado-3160336;IPSV-UACh;FONDECYT-1141048.

PS61

RELATIONSHIPBETWEENTHEIMPLIEDGENESINVEGETATIVEPHASECHANGEANDTHEIRMETHYLATIONPROFILESONEUCALYPTUSGLOBULUSLABILL

Iturra C1, Olivares S1, Bravo S2, Hasbún R1, 1Laboratorio de Epigenética Vegetal, Facultad de Ciencias Forestales,UniversidadDeConcepción.2CentrodeBiotecnologíaVegetal,FacultaddeCienciasBiológicas,UniversidadAndré[email protected] the life cycleof someplants, theheteroblastyphenomenon isobserved,which consists in amarked transitionofjuvenile-to-adulttraits.Theseplantsallowustostudyvegetativephasechange(VPC)asamodel,whicharecharacterizedbychangesinmorphology,physiologyandbiochemistrythatarespecificforeveryspecies.EucalyptusglobulusLabill.isagoodgeneticmodel tostudyheteroblastybecauseofadelimitedVPC.Themolecularcontrolofheteroblastyremainsunknown,althoughithasbeenshowninArabidopsisthalianaL.thatthereareepigeneticmechanismsinvolved.Amongthesemechanisms, non-coding RNA (ncRNA) has a regulatory role.miR156 inhibits transcription factors SQUAMOSAPROMOTERBINDINGPROTEIN-LIKE(SPL).SPL3andSPL9havearoleinjuvenile-to-adultVPCindifferentplantspecies.TodeterminetherelationshipbetweentheexpressionofsomeregulatorygenesfromVPCanditspossibleepigeneticcontrolonE.globulus,wecontrastedexpressionprofilesfromselectedgeneswiththeirmethylationprofilesbasedongenome-

Page 63: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

62

wide methylation profile (previously published results) comparing adult and juvenile leaves. The results show thatexpressionofmiR156decreasesduringVPC,whichcoincideswiththeincreaseofgenesexpressionfromSPL3andSPL9inadulttissues.ComparingthepatternsofrelativeexpressionfromSPL3andSPL9withmethylationprofilesinadultandjuvenile tissues,we found an apparent relationshipwithmethylation frompromoter regions, inwhich there ismoremethylationonjuveniletissues,coincidingwithalowerexpressionfromthestudiedgenes.InmiR156wedidnotobservedifferencesonmethylationprofiles.TheseresultsprovideaframeworkforfurtherstudiesoftheepigeneticregulationinVPC.Acknowledgments:CONICYTByFellowshipNumber21130202AndFONDECYTProject11110505.

PS62

RESPONSESOFTWOPOPULATIONSOFEmbotriumcoccineumJ.R.etG.Forster(PROTEACEAE)TOTHELIMITATIONANDCO-LIMITATIONOFPHOSPORUSANDNITROGEN

BertinA1,2,3,ValdebenitoF1,MardonesC1,BravoS1,DelgadoM2,3,ÁvilaA2,3,4,Zuñiga-FeestA2,3,1CentrodeBiotecnologíaVegetal,FacultaddeCienciasBiológicas,UniversidadAndrésBello.2LaboratoriodeFisiologíaVegetal,FacultaddeCiencias,Universidad Austral De Chile. 3Centro de Investigación en Suelos VolcánicoUniversidad Austral De Chile. 4Escuela deGraduados,FacultaddeCienciasAgrarias,UniversidadAustralDeChile.arianabertin@gmail.comEmbotriumcoccineum(Notro),isashade-intolerantpioneerspeciethatcolonizefulllightexposedareasandgrowsinsoilswith lownutrientavailability. It ischaracterizedbyaspecial typeof rootadaptationcalledClusterRoots (CRs),whichexudesorganiccompoundsthatimprovetheacquisitionofnutrientsfromthesoil.IthasbeenreportedthattheformationoftheseCRsincreasesinphosphorus(P)deficiency.However,thereisstillnoclarityfortheeffectonCRsformationwithlownitrogen(N)availabilityortheco-limitationforbothPandN.Dueofitswidegeographicaldistribution,wewonderiftheresponsetobothlowPandN(co-limitation)mayshowvariationfromdifferentpopulations.Inordertosearchforthose differences,we comparedmorphological responses of PuertoMontt (PM) and Punta Arenas (PA) populations,maintainedtheseedlingsinhydroponicsgrowingunderdifferentnutritionalconditions.Moreover,weseekgenessuchasAFB3, PHT1andTIR1 amongothers, involved in the assimilation anddeficiencyof bothnutrients. Themorphologicalresponsestonutritionallimitationweredifferentbetweenpopulations:1)BiomassandheightofPAseedlingsweresimilarbetweennutritionaltreatments,unlikePM.2)TheCRsformationinPAwasnegativelycorrelatedwiththeavailabilityofbothPandN,contrarytoPMthatwasconstant.Weconcludethatthereactiontonutritionaltreatmentsvariesaccordingtothepopulation,andweexpectthatthisresearchallowustounderstandthemolecularmechanismsassociatedwiththedifferentialmorphologicalresponses.Acknowledgments:FONDECYTPostdoctoralN°3160551AB;FondecytRegular1130440AZF.

PS63

STUDY OF THE ROLE OF THE UDP-RHAMNOSE/GALACTOSE TRANSPORTERS IN THE SYNTHESIS OFRHAMNOGALACTURONANIINARABIDOPSISSEEDCOATMUCILAGE

ParraJ1,2,Saez-AguayoS1,2,TempleH1,2,CelizJ1,2,OrellanaA1,2,1CentrodeBiotecnologíaVegetal,FacultaddeCienciasBiológicas,UniversidadAndré[email protected] cell wall consists in a complex extracellular matrix composed mainly of polysaccharides. Pectins are importantcomponentofthecellwall.Pectinsareafamilyofcovalentlylinkedgalacturonicacid-richpolysaccharidessubdividedinHomogalacturonan domains (HG), Rhamnogalacturonan I (RG-I) and Rhamnogalacturonan II (RG-II). Pectin synthesisoccursinthelumenoftheGolgiapparatusbytypeIImembraneglycosyltransferases(GTs),theseenzymesuseassubstrate

Page 64: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

63

activatedsugarsinformofnucleotidesugartotransferitontospecificacceptors.UDP-rhamnoseisakeysubstrateforthesynthesisoftheRG-IandRG-II,sincethesynthesisofUDP-rhamnoseoccursinthecytosol;itisessentialthismoleculegetintothelumenoftheGolgiwhererhamnosecontainingpolysaccharidessynthesisoccurs.RecentlywehaveidentifiedandcharacterizedafamilyofsixGolgilocalizedUDP-rhamnose/galactosetransporters(URGT1→6)inArabidopsisthaliana.TostudytheroleofthesetransportersinpectinbiosynthesiswetookadvantageofArabidopsisseedcoatmucilage,sinceitisastructuremainlycomposedoftheunbranchedpectinRG-I.WehaveanalyzedtheexpressionofdifferentmembersofURGTfamilyindevelopingseeds,andwefoundthatURGT2,URGT4andURGT6haveapeakofexpressionduringthestagewhenmassivesynthesisandaccumulationofRG-Ioccurs.Monosaccharidescompositionanalysisand immunolabelingexperiments showthaturgt2,urgt4 andurgt6mutantscontaindecreasedammountsof thepectinRG-Ionseedcoatmucilage. Results suggest that UDP-rhamnose transporters are important players during RG-I synthesis in seed coatmucilage.Acknowledgemets:Fondecyt1151335,Fondecyt3140415,FONDAPCRG15070009AndBasalPFB-16.

PS64EFFECTOFWARMINGONTHERMICACCLIMATIONOFLEAFRESPIRATIONINANTARCTICPLANTS

FuentesF1,CortésD1,SáezP1,CavieresL2,SanhuezaC2,1DepartamentodeSilvicultura,FacultaddeCienciasForestales,UniversidadDeConcepción.2ECOBIOSIS,DepartamentodeBotánica, FacultaddeCienciasNaturales yOceanográficas,UniversidadDeConcepción.franfuentese@udec.clWarmingisanimportantcharacteristicofclimatechangeandtheAntarcticPeninsulaisoneofthemostaffectedregions.It has been predicted that night temperatures will increase rapidly than day temperatures. Antarctic plants havedeveloped a series ofmechanisms that allow them to copewith the hardAntarctic conditions. Plant respiration is aphysiologicalprocesshighlysensitivetotemperatureandforthatwillbethemostaffectedbynocturnalwarming.Totestthis hypothesis, plants ofD. antarcticaandC. quitensis fromKingGeorge Island,were cultured at 5/2°C and 5/5 °C.Temperature response curves of dark Respiration (Rd) during day and nightwere performed. Response curvesweremodeledusingamodifiedArrheniusequation todetermine the sensitivityof respirationundereach treatment.Totalsolublesugarsandstarchwereevaluated.Additionally,someimportantproteinsinrespirationprocess,asCytochromeoxidase(COXII)andPhosphoenolpyruvatecarboxylase(PEPc)wereanalyzed.Weobservedthatundernightwarming,increasestheRdinD.antarctica,however,thischangeisobservedmainlyduringdaywithouteffectonsolublesugarsandstarchconcentrations.COX-IIwashigheratnightwarming,butPEPcdecreased its content.C.quitensis doesn’t showsignificantlydifferencesinRd,sugarsandstarchcontentbutalsointhisspeciesCOX-IIwashigherandPEPcdecreasedthiscontentundernightwarming.OursresultsindicatethatnightwarmingconditionsintheAntarcticprobablywillincreasetherespirationinD.antarcticabutC.quitensisseemstobelessinfluenced.Forbothspecies,theeffectofwarmingwouldberelatedwithanincreaseonrespirationcapacityalelectrontransportchainlevel.Acknowledgments:Fondecyt3150221.

PS65

MANIPULATION OF AUXIN LEVELS IN POLLEN LEADS TO ABNORMAL FLOWER DEVELOPMENT IN ARABIDOPOSISTHALIANA

Salinas-Grenet H1, Gutiérrez L1, Blanco-Herrera F1, León G1, 1Ciencias Biologicas, Centro Biotecnologia Vegetal,UniversidadAndrésBello.h.salinasgrenet@gmail.comThephytohormoneauxinwasthefirsthormonetobedescribedinplantsandisoneofthemostimportantmoleculesinvolvedinplantdevelopment.3-indoleaceticacid(IAA)isthemostimportantauxin,withgreaterpreponderanceinthe

Page 65: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

64

wholeplant.Theroleofthishormonehasbeen largelydescribedduringvegetativedevelopment(cellelongation,celldivisionandcelldifferentiation)butalsohaveanimportantroleinreproductivetissues,particularlyflowerdevelopment.For example, Arabidopsis thaliana mutants defective in auxin biosynthesis and/or perception display abnormalphenotypesaffectingflowermorphology,stamenfilamentelongation,anthermaturationandthecorrectdevelopmentofpollengrains.Strikingly,severalmalesterilemutantplantsdisplaysimilarphenotypestotheonesdescribedforauxinmutants,aslackofstamen,shorterstamenfilamentsanddefectsinantherdevelopmentandmaturation.Altogether,theexistingbibliographicalevidencesuggestthatpollengrainscouldbeinvolvedinflowerdevelopmentand/ormaturationthrough an unknown mechanism that involves auxin signaling. To evaluate this, auxin levels in pollen grains weremanipulated by using the bacterial gene iaaL under the transcriptional control of a pollen specific promoter(pPOLLEN:iaaL).TheiaaLproteincatalyzestheconjugationofauxinwithlysin,renderingthehormoneinactive.Transgenicplantsexpressingthisconstructionpresentphenotypesintheflowers,includingshorterstamenfilaments,lossofshortstamensandabnormalnectarglands.These results suggest thatauxinpresent inpollengrainwouldbe important toregulateflowerdevelopmentandmaturation,suggestinganovelroleforpolleninreproductivedevelopment.

PS66

EFFECTOFTHINNINGONPOLARMETABOLITEPROFILEINFRUITSOF‘BUENLINDO’PEACHVARIETY

Lillo V1, Fuentealba C2, Pedreschi R2, Miyasaka-Almeida A1, 1Centro de Biotecnologia Vegetal, Facultad de CienciasBiológicas,UniversidadAndrésBello.2EscueladeAgronomíaPontificiaUniversidadCatólicaDeValparaí[email protected] isanagronomicalpractice thatconsists in the removalof fruits fromthe tree to improve thegrowthof theremaining ones. The reduction in the number of fruit leads to an increase of sugar assimilates that are translocatedtowardstheremainingfruitimprovingitssizeandsolublesolidcontent.Althoughitwasobservedanincreaseinsolublesolidsinfruitsfromthinnedtrees,stillwhichmetabolitesarealteredandanyimpactontheorganolepticpropertiesremaintobeelucidated.Thepurposeofthisworkwastocomparethepolarmetabolicprofileoffruitfromthinnedandunthinnedtrees during different developmental stages including a postharvest period of an early harvest peach variety. Theaforementioned analysis was carried out through the identification and quantification of sugars, sugars alcohols,aminoacids,andorganicacidsbygaschromatographycoupledtoamassspectrometrydetector(GC-MS).Multivariateanalysis(partialleastsquareregression-discriminantanalysis)revealeddifferencesbetweenfruitsfromunthinnedandthinnedtreesrelatedtorelativeabundanceofsugarssuchasfructose,glucoseandsorbitolandalsotheaminoacidssuchas asparagine, leucine, phenylalanine, and threonine. Furthermore, early developmental stages displayed a clearseparationfromthepostharvestevaluatedstageduetodifferencesintherelativeamountofquinicandoxalicacidsandaminoacids such as valine, serine, alanine and aspartic acid. Our results suggest that tree thinning affects differentphysiologicalaspectsimpactingnotonlyfruitsizebutalsofruitflavor.Someoftheidentifiedmetabolitescouldbeusedasmarkersforearlyfruitqualitysegregation.Acknowledgements:FONDECYT1130197,FONDEQUIPEQM140074,ViverosElTambo.

PS67FcSYP24-like,APUTATIVESYNTAXINFROMTHECHILEANSTRAWBERRY(FRAGARIACHILOENSIS)

ZapataS1,HandfordM1,NorambuenaL1,1CentroBiologíaMolecularVegetal,FacultaddeCiencias,[email protected],Fragariachiloensis,hasa fruitwithuniqueorganolepticcharacteristics.F.chiloensis fruitsarecomprised of numerous achenes (the true fruits) which are embedded in a fleshy structure called the receptacle.Communicationbetweenachenesandreceptacles ismediatedbyvasculartissuethatallowstheflowofnutrientsandhormones. Therefore, during F. chiloensis fruit growth, vascular biogenesis is essential for fruit development. In our

Page 66: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

65

laboratory, we determined that the gene FcSYP24-like is related to group 2 Arabidopsis syntaxins (AtSYP24) and isexpresseddifferentiallyduringstrawberryfruitdevelopment(Espinozaetal,2016).Thegroup2Arabidopsissyntaxinsarerequiredforcorrectvasculartissuedevelopment.OurgoalistoevaluatewhetherthemolecularfunctionofFcSYP24-likeis to act as a group 2 syntaxin, with the longer-term aim of evaluating its role in vascular tissue development.HydrophobicityanalysisindicatesthatFcSYP24-likehasasingletransmembranedomain.Consistently,transientFcSYP24-likeexpressioninNicotianatabacumleavesrevealsplasmamembranelocalization,duetoco-distributionwiththeproteinPIP2a-mCherryandthelipidFM4-64,bothplasmamembranemarkers.InsilicoanalysesshowthatthehomologybetweenAtSYP24andFcSYP24-likeisgivenbyaLateEmbryogenesisAbundant(LEA)domainsharing44%aminoacididentity.Toevaluate themolecular functionality of the strawberry protein,we are currently performing stable transformation ofΔpep12,alossoffunctionsyntaxinmutantofyeast.FcSYP24-like-EGFPlocalisesinendosome-likestructuresinΔpep12andwild-typeyeast.TherescueofspecificgrowthanddevelopmentalphenotypesinΔpep12expressingFcSYP24-likeareunderstudy.Acknowledgments:ACT-1110(CONICYT),Fondecyt1120289(LN)And1140527(MH).

PS68

EFFECTOFROOTSTOCKONGROWTHANDMINERALCONTENTINOLDLIMACHINOTOMATOUNDERGREENHOUSECONDITIONSINTHEREGIONOFVALPARAISO

MartinezJP1,CastroF2,SalinasL3,SalinasL3,SalinasL1,MuenaV1,LuttsS4,1CentroRegionaldeInvestigación-LaCruz-CREASINIA.2MTGAUniversidadTécnicaFedericoSantaMaría.3CentroRegionaldeInvestigación-LaCruzINIA.4GroupedeRechercheenPhysiologieVégétale(GRPV),EarthandLifeInstitute-Agronomy(ELI-A)UniversitécatholiquedeLouvain.jpmartinezcastillo@gmail.comResearchontheeffectsoftomato-rootstockonnutritionandfertilityofhasbeenpoorlydevelopedinChile,particularyinlocalvarieties. Inorder to fill thisgap,ourproposalconsiders the implementationofgraftingmanagement in theOldLimachino Tomato, local specie cultivated in the Valley of Limache, in the region of Valparaíso. Our objective is todeterminetheeffectofthe INIA-rootstockongrowth,productivity,nutrientcontentanduptakeoftheOldLimachinoTomato cultivated under cold greenhouse conditions. To this end, two treatments were made: T1 (self-grafted OldLimachinoTomato)andT2(OldLimachinoTomatograftedontoINIA-rootstock),withastatisticaldesignofsixcompletelyrandomizedblock.Growth,mineralcontentanduptakeweremeasuredacrossfiveharvestsduringfivemonthsatINIA-LaCruz,intheregiónofValparaiso.Noeffectonfreshanddrybiomassgrowthandinmineralcontentinfruit,leaf,orstemwasreported.Ontheotherhand,theeffectoftherootstockonnutrientuptakeshowedasignificantincreaseinN,P,andKinfruit,leaf,andstem,beingtheincreaseinKuptakeinthefruitthemostremakable.AgreateruptakeofCaandMgwasreportedinleafandstemthaninfruit.Inshort,weconcludethatnutrientuptakelevelsingraftedplantsonINIA-rootstockaredifferentfromandsuperiortothoseinauto-graftedplants,whichsuggestsaneedfordifferentfertilizerdosingmanagement.Acknowledgments:TheFoundationForAgricultureInnovation(FIAProjectNºPYT2014-0227)ForFundingThisResearch.

PS69

IDENTIFICATIONOF STAGE-SPECIFICCYTOKININRESPONSIVEGENESDURINGPEACHFRUITDEVELOPMENTREVEALSANOVELSETOFCONSERVEDCYTOKININ-RESPONSIVEGENESBETWEENPRUNUSPERSICAANDARABIDOPSISTHALIANA

MujicaK1,HuertaC1,QuirogaP1,FloresY1,MeiselL1,1GenéticaMolecularVegetal,InstitutodeNutriciónyTecnologíadelosalimentos(INTA),[email protected]

Page 67: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

66

Cytokinin plays a very important role in plant growth and development. The ancient hormone, cytokinin, has beendiversified during land plant evolution performing different functions, including cell division,meristemmaintenance,shoot initiation and growth, vascular development, nutrient uptake, chloroplast differentiation, light perception, leafsenescenceandfruitripening.ThroughatranscriptomicandqPCRanalysesofpeachfruitstreatedexogenouslywithtrans-zeatinatdifferentstagesoffruitsdevelopment,wehavereportedasetofcytokininresponsivegenesexpressedinpeachfruits at three stages of fruit development: Pre-Lignification, Lignification and Post-Lignification of the endocarp.Comparisonanalysesofthesepeachcytokinin-responsivegeneswithpublishedArabidopsismeta-analysesrevealanovelsetof68cytokinin-responsivegenesconservedbetweenthesetwospecies.Acknowledgments:CONICYTFondecyt/RegularN°1121021AndCONICYT-PCHA/DoctoradoNacional/2014-21140426.

PS70

EFFECTOFTHINNINGONSUGARPRODUCTIONANDTRANSPORTINPEACH(Prunuspersica(L).Bastch)

NuñezC1,AndradeD1,AlmeidaMA1,1Centrodebiotecnologíavegetal,FacultaddeCienciasBiológicas,[email protected] a worldwide demanded fruit, being Chile the main exporter in counter season. The properly peach fruitdevelopmentandripeningdependsontheproductionandtranslocationofsugarsfromadultleaves(sourceorgans)andthe partitioning among all sink organs as fruit, meristem, stem, and roots. The source-sink balance is currentlymanipulated through agronomic practices as thinning, which consists on the removal of some fruits favoring thedevelopmentoftheremainingones.Thesugarpartitioninginatreeisdeterminedbytheratioofphotosynthesis,sugarproduction,phloemloadingandunloadingandfinallyitsstorageinfruits.Wepostulatedthatchangingsource-sinkbalancethorough thinningmay affect photosynthesis, hence influencing sugar production and translocation. In thisworkweevaluatednon-destructive physiological parameters in the early harvest peach variety ´Buen Lindo` during thewholeseasonoffruitdevelopment.Moreover,samplesofleaves,petiole,fruitandpedicelwerehistologicalevaluatedandpolarsugars from these same organs were quantified by HPLC. The results showed that unthinned trees have a higherphotosynthetic rate than the thinned trees and that these decrease is related to stomatal limitation. Leaf sugarquantificationshowedanincrementofsorbitolinleavesfromthinnedtreescomparedwiththeunthinnedones.Ontheother hand, fruit from the thinned trees showed significant difference in sucrose levels at the end stage of fruitdevelopment(S3)andglucoseandfructoseinearlystages(S1,S2)comparedwiththeonefromunthinnedtrees.Therewasnodifferenceinthenumbercellsinfruitfromthinnedandunthinnedtrees.Weconcludedthatthinningaffectssugarslevels indifferentorgansofthetreethrougheffects inphotosyntheticactivityandsugartranslocationthroughoutthephloem.Acknowledgements:FONDECYT1130197,ViverosElTambo.

PS71

CLATHRIN-MEDIATEDTRAFFICKINGISREQUIREDFORCENTRALVACUOLECONFIGURATIONINARABIDOPSISTHALIANA

Osorio-NavarroC1,NorambuenaL1,1DepartamentodeBiología,FacultaddeCiencias,UniversidadDeChile.Indifferentiatedplantcells,theCentralVacuole(CV)occupiesabout90%ofthevolume.Thiscompartmentisessentialforhomeostasis,cellgrowthanddevelopment.Inroots,theconfigurationoftheCVbeginsinthemeristematicgrowthzonewheretheimmaturevacuoleisexpandingprogressivelybyincreasingitscontentandmembranetoreachthestateofaCVinthecelldifferentiationzone.InordertostudythecontributionofcellulartraffickinginCVconfiguration,weobservedthevacuolesacrossthecellgrowthgradientinArabidopsisthalianaroots.Weobservedthatsucrosepromotesanearlyvacuoleconfigurationattheroottiprespecttoasucrose-freegrowthcondition.Interestingly,wefoundthatthepresence of sucrose in the growth media positively stimulates plasma membrane (PM)-internalization and Clathrin-mediatedtrafficking.ChemicalinhibitionofPM-internalizationleadstovacuolarconfigurationdefectsmimickingsucrose-

Page 68: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

67

free growth condition. Congruently, impairment of Clathrin light and heavy chains function resulting in lower PM-internalizationleadsvacuolarconfigurationdefectmimickingsucrosefreegrowthcondition.Overallourevidencesshowthat the Clathrin-mediated trafficking is required for CV configuration process. Since the internalization of PMdrivesmembrane trafficking to the vacuole our results strongly point to PM as a lipid-membrane contributor for vacuoleconfiguration.Acknowledgments: FONDECYT 1120289. PAIFAC And VID Of Universidad De Chile. CONICYT-PCHA/MagísterNacional/2014-22140480.

PS72

ESTIMATING AGRONOMIC AND PHYSIOLOGICAL TRAITS IN WHEAT USING SPECTRAL REFLECTANCE INDICES,REGRESSIONANDCLASSIFICATIONMETHODS

Garriga M1, Romero-Bravo S1, Estrada F1, Escobar A1, Matus I2, Del Pozo A1, Astudillo C3, Lobos G1, 1Centro deMejoramientoGenéticoyFenómicaVegetal.FacultaddeCienciasAgrarias.PIEIAdaptacióndelaAgriculturaalCambioClimático (A2C2) Universidad De Talca.2Instituto de Investigaciones Agropecuarias CRI-Quilamapu.3Department ofComputerScience,FacultyofEngineeringUniversidadDeTalca.

Theprojectedincreaseinglobaldemandofwheatandthecurrenteffectsofclimatechangemakesnecessarytoacceleratethebreedingprocessandreleasingofwheatvarieties tolerant towaterdeficit. In thisstudy,384genotypesofwheat(TriticumaestivumL.) weretestedunderfullyirrigated(FI)andwaterstress(WS)conditions.Grainyield(GY),spikespersquaremeter (SM2), kernels per spike (KPS), thousand kernelweight (TKW), chlorophyll content (SPAD), stemwatersoluble carbohydrate concentrationandcontent (WSCandWSCC), carbon isotopediscrimination (∆13C) and leaf areaindex(LAI)wereevaluatedandassessedtroughspectralreflectance.Theperformanceofspectralreflectanceindices(SRI),fourregression(PCR,PLSR,Ridge,andSVR)andthreeclassification(PCA-LDA,kNNandPLS-DA)methodswereassessedforthepredictionofeachtrait.Forclassificationtwoclasseswereestablishedforeachtrait,lowest80%oftraitvariability(Class1)andhighest20%(Class2).Both,SRIandregressionmethodsperformedbetterwhendataofFIandWSwerecombined.ThetraitswithhigherSRI-basedpredictionwereGYand∆13Cwithr2=0.82andr2=0.92.RidgeandSVRregressionmethodsshowedhighpredictionpowerandsimilarperformance.SimilartoSRI-basedprediction,thehigherpredictedtraitswereGY(R2=0.90andR2=0.93)and∆13C(R2=0.92andR2=0.94).ThePLS-DAshowedthebestperformanceamongcategoricalmethods. Unlike SRI and regressionmodels,most traitswere relativelywell classified in a specific hydriccondition(FIorWS);therefore,thismethodisanalternativeforwheatgenotypeevaluationundertheseconditions.Acknowledgments:FONDEFIDEA14I10106,FONDECYTNº1150353And11121350,AndFONDEQUIPIQM130073.

PS73

LATERAL ROOT INITIATION IS REGULATED BY PHOSPHATIDYLINOSITOL 4-KINASE THROUGH THE ENDOCYTICTRAFFICKINGTOTHEVACUOLEINARABIDOPSISTHALIANARubilar-Hernández C1, Norambuena L1, 1Centro de Biología molecular vegetal (CBMV), Departamento de Biología,FacultaddeCiencias,[email protected] roots (LR) increase contact area with the rhizosphere to absorb water and nutrients from the soil. ThetranscriptionalactivationledthroughtheauxincomplexreceptorSCFTIR1/AFBshasbeenproposedasakeycomponentofLR initiation. However, we had described to the endocytic trafficking toward the vacuole as a positive regulator ofSCFTIR1/AFBs-independentLRinitiationinArabidopsisthalianabymeansofthebiomodulatorSortin2.Weproposethatthisprocessimpactsonfoundercellspecification.InordertodeepenthecellularmechanismleadingLRinitiation,wehavestudiedtheroleofphosphatidylinositolsinthisprocess.Wehavefoundthatphosphatidylinositol4-kinase(PI4K)activity

Page 69: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

68

and coherently the enrichment of its product, phosphatidylinositol 4-phosphate, modulate LR initiation triggered bySortin2. Consistently, PI4K is required for endocytic trafficking and it participates in the acceleration of endocytictraffickingtothevacuoleinducedbySortin2.Particularly,thePI4KIIIbproteinfamilyisessentialtopromoteLRinitiationmediated by endocytic trafficking toward the vacuole induced by Sortin2. Based in our evidences, we propose thatPI4KIIIbs impactonLR initiationasnegative regulatorson theendocytic trafficking flow to thevacuole. Furthermore,Sortin2-induced LR initiation also requires extracellular calcium uptake as a downstream event of PI4KIIIb functionsuggestingasignalingpathwayresultingoncellspecification.Overall,ourworksupportsthatendocytictraffickingtothevacuole regulated by PI4K function is involved on the LR initiation promoted by a distinctive SCFTIR1/AFBs-independentmechanisminArabidopsisthaliana.Acknowledgments: CONICYT PhD Research Grant 21120545; FONDECYT 1120289; PAIFAC-VID Enlace Grant2016ENL015/16UniversidadDeChile.

PS74FLUORESCENCEPHENOTYPINGINBLUEBERRYBREEDINGPROGRAMS

EstradaBravoF1,EscobarA1,Romero-BravoS1,González-TaliceJ1,Poblete-EcheverríaC2,CaligariPDS3,LobosGA1,1PlantBreedingandPhenomicsCenter,Cienciasagrarias,UniversidadDeTalca.2CentrodeInvestigaciónyTransferenciaenRiegoyAgroclimatología(CITRA),Cienciasagrarias,UniversidadDeTalca.3InstitutodeCienciasBiológicas,Cienciasagrarias,UniversidadDeTalca.

[email protected]

In Chile, especially in the Maule Region, climate change has led to an increase in temperature and a decrease inprecipitation rates. These factorswould affect the physiology and development of plants, including blueberry plants(Vacciniumspp.).Thus,physiologicaltraitscanbeusedtoselecttolerantcultivarstoenvironmentalstressconditions.Sixcultivarsofhighbush(VacciniumcorymbosumL.)(threeNorthernandthreeSouthern)andtworabbiteye(VacciniumasheiR.)blueberryweresubjected tocombinationsofwateringand temperature treatmentsundergreenhouseconditions.Watertreatmentswere:continuousirrigation(Fullirrigation–FI);andwaterdeficit(onethirdofFIwatervolume,waterdeficit (WD) and temperature treatments were: ambient conditions (At) and heat stress conditions (At+10°C).Measurementsofmodulatedchlorophyll“a”fluorescenceweredoneinblueberrycultivarsunderfourcombinationsofbothenvironmentalconditions.Aprincipalcomponentsanalysiswasmadeusingsixteenfluorescenceparametersandtwophysiological traits (stemwaterpotentialandchlorophylla/b relation).PC1andPC2wascapable todifferentiatecultivarsunderhydricconditionsandPC2andPC4todiscriminateheatstressconditions.Chlorophyll“a”fluorescencecouldbeusedinablueberryplantbreedingprogramfocusedtoselectcultivarsofwellperformanceunderhydricorheatconditions.

Acknowledgments:TheResearchGrant(FONDECYT1110678)AndTheEquipmentGrant(FONDEQUIPIQM130073),BothFromCONICYTChile,AndTheResearchProgramAdaptationOfAgricultureToClimateChange(A2C2),FromUniversidadDeTalca,Chile.

PS75

INTRODUCINGC2PE,ANEWQPCRALGORITHMANDWEBINTERFACEFORRAWDATAANALYSIS

MatteJ1,PadarianJ2,SiqueiraR3,JonesB4,1GenéticaMolecularyMicrobiología,FacultaddeCienciasBiológicas,PontificiaUniversidadCatólicaDeChile. 2Environmental Science,AgricultureandEnvironment, TheUniversityof Sydney. 3PlantMolecular Biology University of Lausanne. 4Plant and Food Sciences, Agriculture and Environment, The University [email protected]

Page 70: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

69

The determination of transcript levels via quantitative polymerase chain reaction (qPCR) is now widespread andinstrumentalinresearch,medicineandabroadrangeofotherareas.ThestandardmethodofanalysisisdeltaCt,thatissimpletouse,buthasahighprobabilityofdeviatingfromthetruevalue.Severalalternativeapproachesthatgivemoreconsistentresultshavebeenpresentedbuttheyareallcomplextouse.TheC2PemethodwehavedevelopedcanimproveonthedeltaCtmethodby51%,usingthePCRcurvetoestimatetheefficiencyofeachreaction.Themaininnovationsarethattheembeddedequationsusethesecondphaseofthecurvetoaddaqualityvaluetothedataandtocorrecttheinformationgivenbytheexponentialphase.Wehavealsoincorporatedrevisedstatisticstoimprovetherobustnessoftheanalysisandconstructedaweb-basedinterfacetogiveastraightforward,streamlinedqPCRexperience.

PS76

VARIABILITY STUDY OF GRAIN YIELD, PHENOLOGY AND SAPONIN CONTENT IN QUINOA (CHENOPODIUM QUINOAWILLD.)

K.Ruf,C.Alfaro,B.Sagredo,A.delPozo,G.Lobos,A.Zurita-Silva.InstitutodeInvestigacionesAgropecuarias(INIA)CentrodeMejoramientoGenéticoyFenómicaVegetal,FacultaddeCienciasAgrarias,UniversidaddeTalca,Talca,Chile.

[email protected] (ChenopodiumquinoaWilld.) is anAndeancrop,whichhasbeencultivated forover7,000yearsbypre-Incancultures,mainlyinPeruandBolivia,butalsoinChile.Itisallotetraploid(2n=4x=36)species,mainlyautogamouswithapercentageofcross-pollinationrangingbetween0.5and17.4%,andthereforeitpresentsahighphenotypicandgenotypicvariability. Inthisworkweevaluatednumberofdaysfromtheemergencytoflowering(DEF)andharvest(DEH),seedyieldperplant,weightof1000 seedand saponingrain contentof96genotypeofquinoa from INIAgermplasmbankcollection, under fully irrigated conditions. DEF ranged from 65 to 110 days, but themajority of the genotypes (87)floweredbetween75and90daysafteremergence.Plantmaturityrangedfrom135to185daysafteremergence,butthehighestfrequency(46genotypes)presented145days.Seedyieldperplantwaslowerthan0.03kg/plantin45genotypes,but11genotypesyieldedmorethan0.1kg/plant.Theweightof1000seedsrangedbetween0.2and3.2g,withthehighestfrequency(18genotypes)with2.6g.Thesaponincontent(Koziolmethod),whichgivesabittertaste,showedalsoawiderangeofvariation,withthehighestfrequency(26genotypes)presenting5.5mgsaponin/gfreshweight,using.ThisisapreliminarystudyandispartofaPhDthesisonGxEinteractionandvariabilityofmorpho-physiologicaltraitsinadiversepanelofquinoagenotypes.Acknowledgements:ThisworkwasdonewiththehelpandthecollectionfromGermplasmBankofINIA.

PS77

ANTIOXIDANT PROPERTIES IN FRUITS OF BERBERIS MICROPHYLLA AND ARISTOTELIA CHILENSIS FROM DIFFERENTGEOGRAPHICAREAS

Barrientos F1, Alarcón-Poblete E2, Peña D2, Gonzalez J2, Alberdi M3,4, Reyes-Díaz M3,4, 1Carrera de Bioquímica,DepartamentodeCienciasQuímicasyRecursosNaturales,FacultaddeIngenieríayCiencias,UniversidadDeLaFrontera.2ProgramadeDoctoradoenCienciasdeRecursosNaturales;DepartamentodeCienciasQuímicasyRecursosNaturales,FacultaddeIngenieríayCiencias,UniversidadDeLaFrontera.3DepartamentodeCienciasQuímicasyRecursosNaturales,FacultaddeIngenieríayCiencias,UniversidadDeLaFrontera.4CenterofPlant,SoilInteractionandNaturalResourcesBiotechnology,ScientificandTechnologicalBioresourceNucleus(BIOREN-UFRO)[email protected](Berberismicrophylla)isanativespeciesfromArgentinaandChile,beingknownduetoitsmedicinalpropertiessuchashighantioxidant concentrations in fruits.Maqui (Aristotelia chilensis), endemic speciesofChile,hasalsohigh

Page 71: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

70

antioxidants. Thus, the aim of this workwas to compare the antioxidant features of calafate andmaqui fruits fromdifferentChileanareas.Theantioxidantactivity(AA)wasassessedbyDPPHmethod,totalphenols(TP)byFolin-Ciocalteumethodandtotalanthocyanins(TA)byadifferentialpHmethod.TheresultsshowedthatcalafateTPfromFajaMaisanwere37%higherthaninLonquimay,whileinmaqui,fromTemucoTPwere20%greaterthaninCarahue.AAincalafatewas43%inMañihualesandCoyhaiqueareasrespecttoLonquimay.However,AAofmaquiwas33%higherinTemucorespecttoPucón.CalafateTAwas49%higherinMañihualesareathaninLonquimay,whileinmaquifromTemucowassmallerthanfromPucónandCarahue.Comparingbothspecies,TPofmaquiwas29%higherthancalafate,whilemaquiAAwas18%higherthancalafate.Inconclusion,duetothehighantioxidantproperties,bothspeciescouldbeinterestingrawmaterialforadvancedstudiesandlateruseforhumanhealth,especiallymaquispecies.Acknowledgements:PIA16-0006AndDI16-2013Projects.

PS78

ASSESSMENT OF GENETIC DIVERSITY AND POPULATION STRUCTURE IN QUINOA (Chenopodium quinoa WILLD.)GERMPLASMCOLLECTIONUSINGSIMPLESEQUENCEREPEATMARKERS(SSR)

Arenas-Morales V1,2, Nuñez-Lillo G1, MontoyaM A3, Sandoval A3, León P3, Zurita-Silva A3, Meneses C1,2, 1Centro deBiotecnología Vegetal, Fac. Ciencias Biológicas, Universidad Andrés Bello. 2FONDAP Center for Genome Regulation.3CentrodeInvestigaciónIntihuasiInstitutodeInvestigacionesAgropecuarias(INIA)[email protected](ChenopodiumquinoaWilld.)isanimportantseedcropdomesticatedintheAndeanregionofSouthAmerica.Thegeneticvariabilityofquinoamightexplainitswideadaptationtodifferentecologicalenvironmentalconstrains(salinity,drought,frostandhighradiation).Nevertheless,therearefewcultivarsavailableinthecountryforintensiveagriculture.Forthisreason,quinoa-breedingprogramsarebeingcarriedoutinChileandotherSouthAmericancountries.TheaimofthisworkwastoanalysethegeneticdiversityandpopulationstructureofquinoaselectedlinesfromthebreedingprogramatINIAIntihuasi.Twenty-threemicrosatellitesfrompublicdatabaseswereanalysedforgenotyping96selectedlinesusingcapillary electrophoresis. Genetic diversity was determined through phylogenetic cluster and population structureanalysis.Weidentifiedbetween2and15alleleswithameanof4.75allelesinthisgenotypes.Theaverageheterozygositywas0.24and0.40wasthemeanPICvalue.UsingStructuresoftwareweidentifiedthreesub-populationsinourgenotypes,relatedtoSalaresandlowland/coastalecotypesandanotherputative‘south-lowland’ecotypeexclusivefromChile.ThisinformationwillbeimportanttoassistselectionprogramforcombiningsuperiortraitsinthebreedingpipelinebymeansofNGStools.Acknowledgments:ProgramaDeRecursosGenéticosINIAAndFONDAPCRG150900007.

PS79

CHARACTERIZATIONOFANTIOXIDANTMETABOLISMINTWOWILDTYPESOFMAQUIARISTOTELIACHILENSIS(MOL.)STUNTZ

Cárcamo-Fincheira P1, Jara M2, Inostroza-Blancheteaou C2, 1Facultad de Recursos Naturales, Facultad de RecursosNaturales,UniversidadCatólicaDeTemuco.2EscuelaAgronomia,FacultaddeRecursosNaturales,UniversidadCató[email protected] the present time the native species of Chilean berries have a great development in the identification andcharacterizationofseveralsecondarymetabolitesfor itsantioxidantrolebeneficialtohumanhealth,thusbecomingahighly attractive functional food.A. chilensis is a nativewoody species of our country, its fruit is a berry color black,characterizedbycontaininghighconcentrationsofantioxidantcompounds,alsohasbeenfoundinawhitevariantinsomenaturalpopulationsof this species.Westudied theantioxidantmetabolismof these two typesofmaqui in fruitsand

Page 72: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

71

leaves,throughthedeterminingofantioxidantactivity(DPPH),totalphenols(Folin-Coicalteau)andflavonoids(aluminumtrichloridemethod).Theresultsshowhigherantioxidantactivityinleavesthanfruitswherewhitemaquiwas7-foldhigherand21-fold inblackmaqui. Similar trends for totalphenolsarealsoobtained.Otherwise, flavonoids showedaminordifference between these organs obtaining about 2.5 and 1.3-fold in leaves than fruit of white and black maquirespectively.Ourresultsshowthatthemaquileavesexhibitgreaterantioxidantactivity,phenolconcentrationandtotalflavonoids compared with fruits. Regarding the whitemaqui fruit, they contain a high antioxidant activity and totalphenolic content, different to the determined for flavonoids where it is observed a lower concentration. This studyconstitutesanadvanceintheunderstandingofthesetypesofwildmaquiregardingtheirantioxidantmetabolismanditspotentialuses.

PS80

FUNCTIONALCHARACTERIZATIONOFTHETRANSCRIPTIONALCO-FACTORPAR1BYOVER-EXPRESSIONINCARROT

AriasD1,MaldonadoJ2,SilvaH2,StangeC1,1CentrodeBiologíaMolecularVegetal,FacultaddeCiencias,UniversidaddeChile.2LaboratoriodeGenómicaFuncional&Bioinformática,FacultaddeCienciasAgronómicas,UniversidadDeChile.danielaloreto.arias@gmail.comCarotenoidsarepigmentsthatprovidecolortoflowers,fruits,andsomeroots.Inplants,ithasbeendescribedthatareprecursorsofphytohormones,play a role inphotosynthesis, andprovideprotectionagainstphoto-oxidativedamage.Duringplant development, light induces the transcriptionof carotenogenic genes and carotenoid synthesis in leaves,flowersandfruits.Ontheotherhand,inArabidopsisplantthetranscriptionalcofactorPAR1promotesthecarotenogenicgenesexpression,therebyinducingcarotenoidsynthesisduringphotomorphogenicdevelopment.OrangeDaucuscarota(carrot)varietyproducesa largeamountofcarotenoids in itsmodifiedrootgrownindarkness(RD).Surprisingly, lightimpairs carrot root development and carotenoid synthesis. In order to identify non-carotenogenic genes involved incarotenoidsynthesisinRD,adenovoRNAseqanalysiswascarriedoutcomparingRDandrootsgrowninlight(RL).Genesinvolvedinlightsignaling,photomorphogenicdevelopmentandplastiddifferentiationwereoverexpressedinRDthaninRL.WefoundthatDcPar1geneisalmost2,000foldoverexpressedinRDthaninRL.ThisresultwasconfirmedwithaqPCRandnewRNAseqanalysisusingtherecentlypublishedcarrotgenome.HereweshowthatDcPar1hasahigherexpressioninRDthaninRLwhencarrotrootstartstodevelop.Theover-expressionofArabidopsisPar1geneincarrotwasachievedtodetermine if itpromotescarotenoidsynthesis.Weobserved that transformedsomaticembryospresentanorangephenotype even in light and mature transgenic lines have changes in carotenoid levels respect to wild-types. Theexpressionofkeycarotenogenicgeneswillbepresented.OurresultssuggestthatPar1participatesincarotenoidsynthesisincarrotstorageroot.Acknowledgments:Fondecyt1130245.

PS81

DCPSY1ANDDCPSY2PROMOTETHESYNTHESISOFCAROTENOIDSANDABIOTICSTRESSTOLERANCEINCARROTANDPARTICIPATEINCARROTSTORAGEROOTDEVELOPMENTINADARK-INDEPENDENTMANNER

MolinerosL1,AcuñaP1,AguileraA1,StangeC1,1Biología,Ciencias,[email protected], carotenoidsare isoprenoidcompoundssynthesized inplastidswhere theyactasaccessorypigmentsduringphotosynthesisandprotectcellsagainstphotooxidativedamage.Theyareprecursorsofhormonessuchasabscisicacidandprovideyellow,orangeandredcolorstoflowersandfruits.Inhumans,carotenoidsactaspowerfulantioxidantsandprovitaminAprecursors.Daucuscarotaisoneofthefewplantsthatsynthesizesandaccumulateshighamountsofcarotenoidsinitsstoragerootthatgrowsonlyindarkness.Withinthecarotenoidbiosyntheticpathway,PSYenzymeisarate-limitingstep.InDaucuscarota the two paralogs, DcPSY1 and DcPSY2 are differentially expressed during plant development being DcPSY1

Page 73: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

72

preferablyexpressedinmatureleaveswhileDcPSY2ismostlyexpressedinroots.Moreover,DcPSY2,andnotDcPSY1,isinducedduringabioticstresstreatment.Inthecurrentwork,usingPSY1:EYFPandPSY2:GFPfusionproteinsweprovethattheypresentplastidialsubcellularlocalization.BymeansofoverexpressionofDcPSYsgenesinD.carotawedemonstratedthe functionality of both genes, as they promote an increment in carotenoids in carrot leaves and storage root.Additionally,wedeterminedthattheexpressionofDcPSY1andDcPSY2intransgeniclinesinducesaltstresstolerancebyalesserpresenceofreactiveoxygenspecies.Surprisingly,transgenicembryosandseedlingspresentanorange-enriched-carotenoidphenotypeanddevelopanormalstoragerootinvitrointhepresenceoflight,onthecontrarythanwild-typeseedlings,wherelightimpairsstoragerootdevelopment.TheseresultssuggestthatDcPSY1andDcPSY2arerequiredforcarotenoid synthesis in leaves and storage roots and play a key role in carrot storage root development in a dark-independentmanner.Acknowledgments:Fondecyt1130245.

PS82IDENTIFICATIONOFMICROSATELLITEMARKERS INATRIPLEXDESERTICOLA USINGNEXTGENERATION SEQUENCING(NGS)CorreaF1,PérezJ1,AlmadaR2,RojasP1,PanequeM3,TorresC3,SagredoB1,BastiasA1,3,1BiotecnologíayrecursosnaturalesINIA-Rayentué. 2Genómica Centro de estudios avanzados en fruticultura. 3Ciencias ambientales y recursos naturalesrenovables,CienciasAgronómicas,[email protected]

Species of the genus Atriplex (Chenopodiaceae) are halophytes and able to photosynthesize under low soil wateravailabilityandhightemperatures,thushavingaC4photosyntheticpathway.SeveralAtriplexspeciesareknownfortheirhighbiomassgeneration,whichmadethemexcellentcandidatesforsolidbiofuelsproduction.Besides,Atriplexsp.alsocanbeusedasanimalforages,especiallyindroughtperiods.InChile,21nativespeciesofAtriplexhavebeenrecognized.MostofthenativeChileanspeciesfromAtriplexgenusareendemic.TheygrowinaridareasofChile’snorth,exceptaspeciesthatgrowuntiltheEstrechodeMagallanes.InthisstudyweworkwithAtriplexdeserticola,whichisfoundintheAtacamaDesert,oneofthedriestdesertsoftheworld.Herethesoil issandyandhasthicksalt layersonthesurface.Precipitationsarealmostabsentandmostofthehumiditycomesfromcoastalfogs.Theobjectiveofthisworkistodevelopmicrosatelliteorsimplesequencerepeat(SSR)markersfromgenomesequencingofA.desertícola.WehavegeneratedandcharacterizedgenomesequencesusingIlluminatechnology,Hiseq2500paired-end,specifically.Previously,thelibrarypreparationwasperformedwithTruseqDNAPCRfree350bplibrarypreparationkit.Onceobtainedthereads,aqualitycontrolwithFastQCsoftwarewasrealized.Then,apre-processingofthesequencesincluding trimming and filtering was realized with PRINSEQ software. Finally, the ribosomal, mitochondrial andchloroplasticsequenceswereeliminated.AssemblyoftheobtainednucleotidesequencereadswasperformedusingtheSOAPdenovosoftware.Finally,thesoftwareMISAwasusedtofoundmicrosatellitemarkersofAtriplexdeserticola.Inthiswork,weprovidedevidenceofgeneratinglevelsofdiversemicrosatellitemarkersfromhighthroughputnextgenerationsequencingoftheAtriplexdeserticolagenomicDNA.Themarkerscouldbeusedingermplasmanalysis,accessinggeneticdiversityandlinkagemappingofAtriplexdeserticola.Acknowledgments: Fondecyt 11150551. Plant Materials Were Obtained From Estación Experimental Las Cardas(UniversidadDeChile,IVRegion).

PS83

DETERMINATIONOFPOLYPHENOLCONTENTSANDHPLC-MSANALYSISOFNERTERAGRANADENSIS(MUTISEXLF.)ANDEMPETRUMRUBRUM(VAHLEXWILLD)

MoragaC,SchneiderC,VergaraC,FuicaC,RuminotF,ZuñigaC,DepartamentodeCienciasyTecnologiaVegetal,EscueladeCienciasyTecnologías,UniversidadDeConcepció[email protected]

Page 74: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

73

The specie Empetrum rubrum is a subshrub, which grows in Patagonia, Chile Malvinas/Falklan Islands, which ischaracterized to tolerate Andean conditions, dryland environments, temperatures as low as -15º C and direct sunexposure.Nerteragranadensisisacreepingplant,distributesmainlyaroundthePacificOcean.Polyphenolsorphenoliccompoundsaresecondarynaturalmetabolitessynthesizedinplantsandareproducedinresponsetobioticandabioticstresses.Becauseoftheirantioxidantactivity,plantphenolsplayaroleinthemaintenanceofthepro/antioxidantbalanceby neutralizing the reactive oxygen species (ROS). In this study total polyphenol contents, expressed as gallic acidequivalents (GAE), were determined inNertera granadensis and Empetrum rubrum by the spectrophotometricFolin -Ciocalteu method. The phenolic composition of these vascular plants were studies with HPLC-DAD-ESI-MS. Totalpolyphenolcontentswas32,40±0,02mgGAE/gand29,66±0,03mgGAE/ginaqueousextractandinmethanolextractofNerteragranadensis,respectively.InaqueousextractandmethanolofEmpetrumrubrum,totalpolyphenolcontentswas173,5±10,5mgGAE/gand240,5±3,4mgGAE/g,respectively. ThequalitativeHPLC-DAD-ESI-MSanalysisofthemethanolandaqueousextractofEmpetrumrubrum(leavesandstems)showedthepresenceofthefollowingphenols:chlorogenic acid, coumaroylquinic acid, laricitin hexoside, quercetin hexoside and isorhamnetin hexoside. The samemethodshowedthepresenceofchlorogenicacidinmethanolextractofNerteragranadenis(fruits,leavesandstems).Acknowledgements:VRID214.418.007-1.0ProyectCareerEngineeringVegetalBiotechnology.Mrs.ClaudiaFloresForHerTechnicalSupport.

PS84

BIOTECHNOLOGICAL TOOLS APPLIED TO VASCONCELLEA SPP: HAPLOIDS GENERATION AND GENETIC VARIABILITYUSINGGENOTYPINGBYSEQUENCING(GBS)

García-GonzalezR1,SilvaH2,CarrascoB3,1CentrodeBiotecnologíadelosRecursosNaturales,FacultaddeCienciasAgrariasyForestales,UniversidadCatólicadelMaule.2DepartamentodeProducciónAgrícola,FacultaddeCienciasAgronómicas,UnicersidaddeChile.3DepartamentodeCienciasVegetales,FacultaddeAgronomíaeIng.Forestal,PontificiaUniversidadCatólicaDeChile.bcarrasco@uc.clAstudyhasbeenconductedtoobtainhaploidplantformVasconcelleapubescens(Lenne´etC.Koch)Badillo.PreliminaryresultsshoweddifferencesinmicrosporedevelopmentalstateafterCuSO4treatmentsofflowers,favoringtheprevalenceofmidandlateuninucleatedstate.Then,microsporeswereisolatedfromanthersandweresupplementedwithdifferentcombination of 2,4-dicholorophenoxyacteicd acid (2,4-D) and naphthaleneacetic acid (NAA).Microspores cultured inliquidmediumformedsmallcellclustersafter15daysofculture.Thisistypicallythefirstsignofembryoformationinliquidmedium.Ontheotherhand,antherswereisolatedandplacedonMSmediumsupplementedwith2,4-DandANA.After21days,thefirstcalliappearsonthesurfaceoftheanther.AdditionallyweusedGBSasabiotechnologicaltooltostudythegeneticstructureofVasconcelleaspeciespresentinChile.Inthisregard,wehaveanalyzedtheorganizationofgeneticvariabilityof fournaturalpopulationsofV.chilensisand fourcultivatedpopulationsofV.pubescens.TheGBSallowedthe identificationof4,280and2,814SNPsfor95 individualsofV.chilensisand95 individualsofV.pubescens,respectively.HerewediscussthelevelandorganizationofSNPsvariabilityforbothspecies.Acknowledgments: Fondecyt Project N°1150919: Phenotypic, Genetic And Transcriptomic Differences BetweenVasconcelleaChilensisAndVasconcelleaPubescens:AnEvolutionaryComparativeApproachForTwoPapayasSpecies.

PS85

PUTATIVEMITOCHONDRIALIRONTRANSPORTERINArabidopsis

Vargas-Perez J1, Gomez I1, Jordana X1, Roschzttardtz H1, 1Genética Molecular y Microbiologia, Facultad de CienciasBiológicas,PontificiaUniversidadCató[email protected]

Page 75: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

74

Iron isanessentialplantmicronutrientbecause itactsasacofactor inmetalloproteinscontaining iron-sulfurclusters,hemesorbimetallic iron. Plantmitochondriahaveacrucialroleinthemetabolismof ironcofactors;neverthelessthemechanismsthatgovernmitochondrialironsensinganduptakearepoorlystudied.Recently,thefirstmitochondrialirontransporter in plants, namedMitochondrial Iron Transporter (MIT), has been described inOryza sativa.OsMIT is anessentialgene,andOsmitheterozygousmutantplantshavedecreasedmitochondrialironcontentandshowwholeplantiron imbalance.We identified twoMIThomologous genes inArabidopsis thaliana genome, At1g07030 (AtMIT1) andAt2g30160 (AtMIT2). In this work, T-DNA mutant lines for AtMIT1 were analyzed. Preliminary results indicate thatheterozygousAtmit1mutantplantsarehypersensitivetoironexcesswithanincreaseinreactiveoxygenspeciesinleaves.AnalysisofsegregationofthemutatedlocusfordifferentAtmitmutantalleleswillbeshown.OurresultssuggestthatAtMIT1mightparticipateinmitochondrialirontransport.Acknowledgments: FONDECYT 1160334 And 1141197 From The ChileanGovernment, And INTER 6809VRI PUC-ChileFundedThisWork.

PS86

MORPHOLOGICALANDMOLECULARSTUDIESOFRUNNERBEANLINES(PHASEOLUSCOCCINEUS.L)

GreveMJ1,SchwemberA1,CarrascoB1,1DepartamentodeCienciasVegetales,FacultaddeAgronomíaeIng.Forestal,PontificiaUniversidadCató[email protected] (Phaseolus coccineusL.)originated inMexico,GuatemalaandHonduras, and is aperennial species thatinvolvesthreebotanicalvarietiesbasedonthecoloroftheflower.Inthisresearch,acharacterizationoftenlinesofP.coccineusfromdifferentlocationsofChilewasmade,includingmorphologicalandmolecularstudies,usingmorphologicalanalysisof themost representative traitsbaseduponUPOVdescriptors. Emergency, germination, v2, v4, flowerbud,flowercolor,podcharacteristics,branchingheight,andtypeofgrowthwereevaluated.Regardingseedtraits,theirweight,color,width,length,shapeandcoloroftheseedhilumwereassessed.Concerningroots,theircolor,typeandpresenceorabsenceofnoduleswereinvestigated.Inparallel,molecularanalyseswithISSR(Inter-SimpleSequenceRepeat)markerswereconducted,beingthefirsttimethatthisisstudiedinChileusingP.coccineus.Also,fourlinesofP.vulgarisandonelineofP.lunatuswereanalyzed,todiscardhybridsbetweenthesespecies.TheanalysesoftheP.coccineuslinesoriginatedtwomaingroups.The first showedtuberousroot lineswithcross-pollination,anddisplayed long-beakandshort typepods,andtheselinestendedtoproducebothcoloredflowersandcoloredseeds.Thesecondgroupexhibitedfibrousrootlines,self-pollination,long-beakpods,andlongtypeofwhiteflowersassociatedtowhiteseeds.Acknowledgments:FIC-R-2014RegionOfO'Higgins,Chile,Code30343832-0.

PS87

EFFECTOFPHOSPHORUSONTHEPRODUCTIONOFBIOMASSANDPHENOLICSCOMPOUNDSINVARIETIESOFWHEATGROWNINHYDROPONICSYSTEMS

UlloaM1,2,MoralesH3,CartesP2,4,1DoctoradoenCienciasdeRecursosNaturalesUniversidaddeLaFrontera.2CenterofPlant,SoilInteractionandNaturalResourcesBiotechnology,ScientificandTechnologicalBioresourceNucleusUniversidaddeLaFrontera.3LaboratoriodeNutriciónyBioquímicaVegetalUniversidaddeLaFrontera.4DepartamentodeCienciasQuímicasyRecursosNaturalesUniversidaddeLaFrontera.marlys.ulloa.p@gmail.comPhosphorus(P)isanessentialelementforplantgrowth.Thiselementisoneofthemaincomponentsoffertilizersrequiredto supportmodernagriculture. Plantsdifferwidely in their sensitivity and tolerance tonutritional deficit, includingP

Page 76: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

75

deficiency,whichcould influence theproductionofphenoliccompoundsandplantgrowth.Wheatvarieties (Púrpura,MaxiandBTP-314)werecultivatedhydroponicallyatincreasingPsupplylevels(with0,0,01,0,1or0,4mMP)withtheaimofstudyingtheeffectofdifferentPdosesontheplantgrowthandaccumulationofphenoliccompounds.Theassaywasperformedfor21daysundergreenhouseconditions,andthepHofnutrientsolutionwasadjustedto6.0daily. Inleaves the dryweight, P content, total phenols concentration and lipid peroxidationwere quantified.Differencewasobservedindryweight,whichwasdependentontheconcentrationofPadded.PlantsgrownunderPdeficiency(0or0,01mMP)showedareducedPconcentrationinleavesaswellasincreasedformationofmalondialdehyde(duetooxidativedamage)andenhancedproductionoftotalphenols.PlantswithoptimalorexacerbatedPnutritionexhibitedadequatecontentofPinleaves,whereasareductionoftotalphenolscontentandformationofmalondialdehydewasfound.Acknowledgements:FONDECYTProject1161326AndDirecciónDeInvestigaciónDeLaUniversidadDeLaFrontera.

PS88

EXPRESSIONQTLANALYSESREVEALCANDIDATEGENESASSOCTIATEDWITHFRUITSOFTENIGRATEINPEACH

CarrascoT1,Cifuentes-EsquivelA2,Campos-VargasR1,MenesesC3,1CentrodeBiotecnologíaVegetalUniversidadAndrésBello.2DepartamentodeProducciónAgrícolaUniversidadDeChile.3CentrodeBiotecnologíaVegetalUniversidadAndré[email protected](MF)andnon-meltingflesh(NMF)arethetwomainfleshtypesinpeachesandnectarines.MFvarietiesshowahighersofteninglossinpostharvestthanNMF.However,therearesignificantdifferencesintheMFclassonsofteningspeed.InsomepopulationsderivedfromcrossesbetweenMFvarieties,itispossibletoobserveanormaldistributionforthistraitindicatingapolygeniccontrol.TheaimofthisworkwastoidentifycandidategenesinvolvedinfleshsofteningthroughQTLandexpressionQTLs (eQTL)analysis.AnF2population (n=152)derivedbyselfing ‘Venus’nectarinewasphenotyped at harvest + 3 days at room temperature during three consecutive seasons. Eight individuals showingcontrastingsofteningrateweresubmittedtototalRNAisolation,andtheyweresequencedusingRNA-seq.BasedonapreviousgeneticmapaconventionalQTLanalysiswasperformed.FromtheRNA-Seqanalysiswefound2,822differentiallyexpressedgenesbetweenhighandlowsofteningrategroups.Threeco-localizedQTLsweredetectedonlinkagegroup4(meanLODscoreequalto9.7and58%ofvariationexplained)usingphenotypicdatafromthreeseasons.EighteQTLsweredetectedco-localizingonLG4(7trans-eQTLandcis-eQTL)withaLODscorebetween3.2and6.9.Thesegenes(eQTL)arerelatedtoremodelingcellwall,sensingandethylenebiosynthesisandauxinsynthesis.Thisworkcontributestounravelthemolecularmechanismsresponsibleforsofteningrateinnectarines.Acknowledgments:FONDEFGenomaG13i10005,FONDECYT1160584andCORFO-Innova09PMG7240.

PS87CANBRASSINOSTEROIDSIMPROVEBERRYCOLORINTABLEGRAPECV.‘REDGLOBE’?

VergaraA1,TorrealbaM1,AlcaldeJA1,Pérez-DonosoA1,1DepartamentodeFruticulturayEnología,FacultaddeAgronomíaeIngenieríaForestal,PontificiaUniversidadCatólicaDeChile.asvergara@uc.clSkincolorisalimitingfactorforqualityofredtablegrapes.Undercertainenvironmentalconditions,properdevelopmentofcolorisnotpossibleandprecisetechnicalmanagementssuchastheapplicationofgrowthregulatorsarerequired.Inthisrespect,littleisknownabouttheeffectofbrassinosteroidsonripeningofgrapevineberriesandtheirpotentialasaviticulturaltool.Forthisreason,atrialwascarriedoutwherethreebrassinosteroidanalogues(24-epibrassinolide,Analog1andAnalog2)andacommercialformulationofbrassinosteroids(B-2000®,IONA,Chile)atconcentrationsof0.0(controltreatment),0.4,0.8mg·L-1foranaloguesand60mg·ha-1forthecommercialformulationwereappliedtocv.‘RedGlobe’clustersatvéraison.The24-epibrassinolide,Analog1andB-2000®treatmentsincreasedberryskincolor(measuredas

Page 77: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

76

Color Index forRedGrapes, CIRG) and total anthocyanin concentrations. Furthermore, anthocyanin’s profile changedcompared to the control treatment. Therewereno changes inotherberryqualityor yieldparameters. These resultsindicatethatthedifferentformsofbrassinosteroidshaveaconsistenteffectoncolordevelopment,showingthattheycanplayanimportantroleintheripeningofthegrapevineberriesandtheyhavepotentialasviticulturaltool.Nevertheless,furtherstudiesarerequiredtounderstandhowthesechangesareachieved.Acknowledgments: The authors thank Luis Espinoza (Universidad Técnica Federico Santa María) for facilitating thebrassinosteroidanalogues.FONDEFGrantNºCA13I10239,andCONICYTdoctoralfellowshipNº21130026(A.V.).

PS88

EXPRESSSION OF SWEET PROTEINS THAUMATIN AND BRAZZEIN IN TOMATO (SOLANUM LYCOPERSICUM VAR.MICROTOM)FRUITSColomerL1,QuirozL1,SimpsonK1,BarrazaH1,RosasC1,StangeC1,1Biología,Ciencias,[email protected] proteins like Thaumatin (TAU) and Brazzein (BRA) are non-toxic proteins that have 2000 to 3000 fold moresweetnessthansucroseand10timesmoresweetnessthanstevia.Atpresent,theyhavebeenusedassweetenersandflavorenhancersindifferentmealsandunlikestevia,theyhaveatastesimilartosucrosebutwithoutprovidingcalories.ForthesereasonstheexpressionofTAUandBRAcouldbeausefullstrategytoimprovethesweettastetofruitswithoutaddingcaloriesandcarbohydrates.Toexpresstheseproteinsintomatofruits,weusedaeukaryoticbicistronicexpressionsystem,whichallowedustoexpressbothproteins inasingleopenreadingframe,underthecontrolofauniquefruitspecificpromoter.Wealsogeneratedvectors,whichletustoexpresseachproteininanindependentway.ThefunctionalityofthesevectorswasachievedthroughtransienttransformationoftomatofruitsinwhichtheexpressionofTAUandBRAwassuccessfullyobtained.Thus,tomatoexplantswerestabletransformedwiththeTAU-BRA,TAUandBRAvectors.Duringthisworkwesuccessfullystandardizedthetransformationoftomatousingleavesasexplants,andtransformationefficiencyregardcotyledonexplantswillbepresented.Transformationproceduretakesapproximately16weeks,afterwhichtransformedseedlingsweretransferredtosoilandthenthecorrecttransformationandexpressionofTAUandBRAgeneswereevaluatedbyPCRandRT-PCR,respectively.Acknowledgments:ToGrantFONDEF-VIU14E049.

PS89

ANTIOXIDANTPROPERTIESANDDETERMINATIONOFTOTALPHENOLSINFRUITSOFRHAPHITHAMNUSSPINOSUS

SalcedoN,SchneiderC,DepartamentodeCienciasyTecnologiasVegetal,EscueladeCienciayTecnologías,UniversidadDeConcepció[email protected] spinosus oralsoknownasArrayanMacho is a speciewitha violetblue fruit,belonging to the familyVerbenaceae,endemictoChileanditisdistributedfromtheIVtoXIregioninthiscountry.ThereisnoinformationabouttheantioxidantactivityofRhaphithamnusspinosusandthefruitsofthisspeciearetoxic.TheobjectiveofthisresearchwastoevaluatetheantioxidantcapacityandphenoliccompoundscontentinmethanolextractofRhaphithamnusspinosusfruits.Theantioxidantactivitywasdeterminedbyspectrophotometricmeasurementswiththefreeradical2,2-diphenyl-2-picryl-hydrazyl(DPPH)andthecationradical2,2’-azino-bis(3ethylbenzothiazoline-6-sulphonicacid)(ABTS)inpresenceofRhaphithamnusspinosusfruitextract.AntioxidantcapacitywasdeterminedbycalculatingthepercentageinhibitionofDPPHandABTSabsorbance.Forthedeterminationoftotalpolyphenolsinthisfruits,Folin-Ciocalteuassaywasperformed.ThepercentageinhibitionforDPPHwas69,75%withanextractconcentrationof5,0mg/ml,and75.58%forABTSwithanextractconcentrationof0,47mg/ml.Thetotalpolyphenolcontentexpressedingallicacidequivalentswas29,19±1,51

Page 78: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

77

mg/gofmetanolextract.PhytochemicalscreeningofRhaphithamnusspinosusfruitsshowedthepresenceofflavonoidsandsaponins.Acknowledgements:VRID214.418.007-1.0ProjectCareerEngineeringVegetalBiotechnology.Mrs.ClaudiaFloresForHerTechnicalSupport.

PS90

TRANSCRIPTOME CHARACTERIZATION OF V. PUBESCENS AND V. CHILENSIS: TWO PHENOTYPICALLY CONTRASTINGPAPAYASPECIES.

GonzálezE1,MaldonadoJ1,LeonR1,GarciaR2,CarrascoB3,SilvaH1,1LaboratoriodeGenómicaFuncional&Bioinformática,FacultaddeCienciasAgronómicas,UniversidadDeChile.2CentrodeBiotecnologíadelosRecursosNaturales,FacultaddeCienciasAgrariasyForestales,UniversidadCatólicaDelMaule. 3DepartamentoDeFruticulturaYEnología,FacultaddeAgronomíaeIngenieríaForestal,PontificiaUniversidadCató[email protected](Caricapapaya)isthefourtheconomicallymostimportanttropicalspeciesandthecurrenttendenciesindicatethatthepapayaindustrywillcontinuegrowing.However,thepapayasufferssomeproblemsrelatedwithtolerancestoabioticandbioticstress.InChilewecanfindtwopapayaspecies,oneofthem,Vasconcelleapubescens,botanicallysimilartoC.papayaandtheotherone,Vasconcelleachilensisthatlivesunderextremeenvironmentalconditions.Duetotheseproperties,itisimportanttostartnewstudiesforthesetwospeciesinordertoobtainimportantbiologicalinformationthatwillincreasetheknowledgeaboutthemandsupportingconservationstrategiesaswellasbreedingprogramfortheVasconcelleaandCaricagenus.Inthiswork,weobtainedthetranscriptomeforV.pubescensandV.chilensisusingtheIlluminaplatform.TheRNAsequencedgenerated303,927,496paired-endreadsthatcorrespondtolibrariesoffruit(small,mediumandlargesize)frombothspecies.DenovoassemblyusingtheCLCGenomicWorkbenchversion9.0.1produced132,007contigswithanaverageof549bpandatotalof30,375full-lengthcDNAgenes.Additionally,basedonsimilaritysearchwith known proteins, those geneswere annotatedwith B2G and InterProScan. The differential expression ofselectedgeneslikepapain,amongothers,willbeconfirmedbyqPCR.Thus,transcriptomeinformationforthisspeciesisagoodresourcethatwillgreatlyenrichmolecularinformationandhelpfuturestudies.Acknowledgements:CONICYT,FONDECYT/RegularNº1150919.

PS91

WRKY7,-11AND-17TRANSCRIPTIONFACTORS,AREREPRESSORSOFUNFOLDEDPROTEINRESPONSEGENESDURINGPAMP-TRIGGEREDIMMUNITYAGAINSTBACTERIALPATHOGENSINARABIDOPSISTHALIANA

Arraño-Salinas P2,Moreno A1,Meneses C1,Blanco-Herrera F2, 1Centro de Biotecnología Vegetal, FONDAP Center forGenomeRegulation,FacultaddeCienciasBiológicas,UniversidadAndrésBello.2CentrodeBiotecnologíaVegetal,FacultaddeCienciasBiológicas,UniversidadAndrésBello.mblanco@unab.clPlantshaveevolvedsophisticatedmechanismstoprotect themselves fromthatenable themtoavoidpathogens.Therecognitionofpathogenstriggersasignalingcascade,which leadstothebiosynthesisofsalicylicacid,reactiveoxygenspecies, callose and the transcriptional activation of pathogenesis-related proteins (PRs). The accumulation of PRsgeneratesendoplasmicreticulumstressandtriggerstheunfoldedproteinresponse(UPR).However,failuretoattenuatetheUPRinresponsetopathogensmayhavedetrimentaleffectsonplants.Inthiscontext,WRKY7,11and17transcriptionfactors play a key role in the regulation of the defense response sincemutant plants lacking these factors aremoreresistanttopathogenicbacteriainfection.Weshowthatdouble-mutantplants(wrky7/wrky11andwrky11/wrky17)aremore effective at establishing a defense response against bacterial infections (Pst DC3000). Additionally, triplewrky

Page 79: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

78

mutantplants(wrky7/wrky11/wrky17)aremoreresistantthandouble-mutantplantstopathogenicbacteriaandexhibitedalargernumberofcallosedepositsinresponsetoFlg22.InordertogetinsightsaboutthemolecularmechanismsinvolvedinWRKYsmutant resistance phenotype, we analyze the expression ofCalS12 and ER chaperones genes. Our resultsindicatethatwrky7/wrky11/wrky17mutantaccumulatesmoretranscriptsofCalS12andERchaperones.Inaddition,anexpressionanalysisofthemaincomponentsofUPRsignalingpathwaysinplantssuggestthatbZIP28transcriptionfactorplaysakeyrole intheregulationofERchaperonesuponplantexposuretoFlg22.Also,wrky7/wrky11/wrky17mutantaccumulatesmoretranscriptofbZIP28suggestingthatWRKY7,11and17actastranscriptionalrepressorsofthisgene.Based on these observations,we postulate a fine-tuningmodel of basal defense response regulation in Arabidopsis,includingthenegativecontrolofgeneexpressionassociatedwithUPRandotherkey-defenseresponsegenessuchasCalS12thattogethercontrolthephysiologicalresponseofplant-pathogeninteraction.Acknowledgments:ProjectUNABDI-590-14/N.

PS92

MOLECULARCHARACTERIZATIONOFPRUNUSROOTSTOCKSGERMPLASMBASEDONAGENOTYPING-BY-SEQUENCING(GBS)APPROACH

GuajardoV1,SolísS2,AlmadaR3,SaskiC4,GasicK5,MorenoMÁ6,1MejoramientoGenéticoCentrodeEstudiosAvanzadosenFruticultura(CEAF).2FisiologíadelEstrésCentrodeEstudiosAvanzadosenFruticultura(CEAF).3GenómicaCentrodeEstudiosAvanzadosen Fruticultura (CEAF). 4GenomicsComputational LaboratoryClemsonUniversity. 5DepartmentofAgriculturalandEnvironmentalScienceClemsonUniversity.6DepartamentodePomologíaEstaciónExperimentaldeAulaDei-ConsejoSuperiordeInvestigacionesCientíficas(EEAD-CSIC)[email protected] breeding, a highnumberofmolecularmarkers are currently required for segregation analysis, genemappingandmarkerdiscoveryformarker-assistedselection(MAS).Genotyping-by-sequencing(GBS),anSNPgenotypingapproachbasedonnext-generationsequencing(NGS)technology,ishighlyconvenientcomparedwithpreviousmolecularmethods. It enables thediscoveryof a greatnumberofmarkers and the rapidprocessingof largepopulations.CEAF(CentrodeEstudiosAvanzadosenFruticultura)locatedinRengo,RegióndeO’Higgins,Chile,startedabreedingprogramforPrunusrootstocksin2010.Consequently,differentinterspecificcrosseshavebeencarriedoutbasedonthePrunusrootstock germplasm collection established at CEAF and the available pollen obtained from the Prunus rootstocksgermplasmoftheSpanishEEAD-CSIC(EstaciónExperimentaldeAulaDei-ConsejoSuperiordeInvestigacionesCientíficas).Inthepresentstudy,aGBSapproachwithdiploidPrunusrootstocksisperformedforSNPidentificationandtoassessthegenetic diversity of both Chilean and Spanish germplasm collections. GBS analysis has been performed based on 59genotypes,amongthem34fromCEAFand25fromEEAD-CSIC.Double-digestGBSlibrarieswereconstructedandanalysedatClemsonUniversityGenomicsComputationalLaboratory(CUGCL,Clemson,SouthCarolina,USA).SequencereadswerealignedtothePrunuspersicareferencegenome(Peachv2.1).Atotalof18,274highqualitySNPs(minorallelefrequency,MAF>0.05;missingdata<5%),wereidentified.Theyaredistributedovertheeightpseudomoleculesrepresentingthe8chromosomesofpeach.Thenumberof identifiedSNPsrangedfrom1,736 for thepseudomolecule8 to4,403 for thepseudomolecule1.TheseSNPswereusedforclusterandpopulationstructureanalysisandaccordinglythestudiedPrunusgenotypesweregroupedintofourmajorclusters(peach,cherry,almondandplumrootstocks).RelationshipsbetweenPrunusgenomesandcomparativegenomics,aswellasphylogeneticandpopulationstructureanalysis,willbediscussed.Acknowledgments: CONICYT-REGIONAL/GORE O´HIGGINS/CEAF/R08I1001; FONDECYT 3160316; FONDECYT 1160706;AndSpanishMinistryOfScienceAndInnovation(MICINN)GrantRFP2012-00020.

PS93

EFFECTOF SALINE STRESSONANTIOXIDANT CAPACITY IN FRUITSOF TWO TOMATOGENOTYPES:WILD TYPE ANDCHERRYCULTIVAR

Page 80: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

79

GutierrezM1,MartinezJP2,AlfaroJF3,FariasK4,FuentesL5,FuentesR6,LuttsS7,1CentroRegionaldeInvestigaciónLaCruz Instituto de Investigaciones Agropecuarias (INIA). 2Centro Regional de Investigación La Cruz-CREAS Instituto deInvestigacionesAgropecuarias (INIA). 3CentrodeBiotecnologíaUniversidadTécnicaFedericoSantaMaría. 4EscueladeAgronomíaUniversidadCatólicaDelMaule.5INIA-LaCruzCentroRegionaldeAlimentosySalud(CREAS).6DepartamentodeIndustriaUniversidadTécnicaFedericoSantaMaría.73GroupedeRechercheenPhysiologieVégétale(GRPV),EarthandLifeInstitute-Agronomy(ELI-A)Université[email protected] stress (or salinity) in plants induces excessive generationof reactive oxygen species (ROS intermediates) such assuperoxide,hydrogenperoxideandhydroxylradicals.AccordingtotheFAO,approximately20%ofthecurrent230millionhaofirrigatedlandissalt-affected.Overthelasttwodecades,humanactivitiesandglobalclimatechangehaveacceleratedsoil salinizationwithabroad impactonvegetable cropping. In this context, the studyofwild relativesof tomatohasbecomeamodern tool to improve thegenetic variabilityof traditional cultivated species. The trialwas conducted todeterminetheeffectofsalinitystress(NaCl)onantioxidantcapacity(FRAPandDPPH),totalpolyphenols,reduced(GSH)andoxidizedglutathione(GSSG),reduced(AsA)andoxidizedascorbate(DHA),infruitsoftwotomatogenotypesviz.wildtype(SolanumchilenseDun.)andcherry(Solanumlycopersicumvar.cerasiformeL.).BothtomatospeciesweregrowninagreenhouseunderahydroponicsystemattwoNaClconcentrations:40and80mM,representingtwodifferentsalinestresstreatments,andcomparedtothecontrolat0mMNaCl.FRAPandDPPHassaywereestablishedbyBenzieandStrain(1996)andbyBrand-Williams,Cuvelier,andBerset(1995)respectively.GSH,GSSG,AsAandDHAweredeterminedbyaspectrophometer.Thedatawereprocessedusingamulti-variatedanalysis(PCA).Resultsreportedthatthewildtomatopresentedahigherantioxidantcapacity(FRAP)andtotalpolyphenolscontentthancherrytomato.ThePCAshowedtheantioxidantcapacityweremoreelevatedinwildthancultivatedtomato.Totalpolyphenolcontentwouldaccountforthisdifference. On the other hand, results suggest that the antioxidant antioxidant capacity in wild tomato genotype isdifferent from the cherry genotype’s one, which opens interesting opportunities for plant breeding and in turn forobtainingnewcommercialvarieties.Acknowledgments:TheAgricultureMinisterOfChileForFundingThisResearchProject(Nº502190-70).

PS94

IDENTIFICATIONOFYIELDRELATEDQTLSINTABLEGRAPE

JiménezN1,LaurentC1,OcarezN1,NúñezR1,Morales I1,VargasV1,MejíaN1, 1LaboratoriodeFisiologíayGenómicayPostcosechaInstitutodeInvestigacionesAgropecuarias.npjimene@uc.clAmongthecharacteristicsthatdeterminethesuccessofanewtablegrapevariety,yieldisprobablythemostimportantonebuthas receivedvery littleattentiondue to its complexnature.Tounderstand thegeneticdeterminismofyield,severalrelatedtraitswereevaluatedthroughassociationanalysisconductedoverthe2015/16growingseason.WithanexperimentalF1progenyofmorethan600individualsderivedfromacrossbetweenCrimsonSeedlessandMuscatofAlexandriaandupto4,000SNPs,weconductedafineQTLmappinganalysisfordaystoharvest,numberofinflorescences,numberofflowers,numberofberries,berryweight,berryshatterandmillerandage.Thishigh-resolutionmappingallowedustoidentifyQTLsandtoproposecandidategenes.MorethanadozenofQTLswereidentifiedforthesecomplextraits.Mostofthemwithminoreffectsthatindividuallyexplainlessthan10%ofthephenotypicvariationandonelargeeffectQTLthatexplainedabove20%ofberryweightvariation.ThemostimportantCandidateGeneswereassociatedtofloralidentity,floweringtimeandphytohormones.Finally,thecombinationofthemostsignificantandwithlargeeffectQTLs(uptosixSNPssegregatingindependently)allowedthecaptureofalargestphenotypicvariation,between15-76%,forthesetraits.Theresultsofthisstudyrevealedthatcomplextraitslikeseveralindependentgenesandeachgenecontrolyieldhascumulativeeffect.Theseresultsarethebasisforthedevelopmentofamodeltounderstandyieldintablegrapes,validationinadditionalseasonsanddifferentgeneticbackgroundsisrequiredtodevelopassistedbreeding.

Page 81: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

80

Acknowledgments:FONDEFG09i1007AndBiofrutalesConsortium.

PS95

MOLECULARANDMICROBIOLOGICALSTUDYOFCHILEANISOLATESOFPSEUDOMONASSYRINGAEPVACTINIDIAE

Orellana M1, Serrano E1, Parada J P2, Holuigue L3, Salinas P1, 1Escuela de Biotecnología Universidad SantoTomás.2Biotecnología Universidad Andrés Bello.3Genética Molecular y Microbiología, Ciencias Biológicas, PontificiaUniversidadCatólicaDeChile.matiasfabian.orellana@alumnos.santotomas.clPseudomonas syringaepv actinidiae (Psa) is a gramnegativebacteriawhichproduces thebacterial cankerdisease inkiwifruitplants,themaincauseoftheeconomiclossesinthekiwifruitindustryworldwide.Psahasbeingclassifiedinto5differentbiovars,beingthebiovar3themostvirulentone.ChileisoneofthemainexportercountriesoffreshkiwifruitandonlyPsabelongingtobiovar3hasbeenidentifiedsofarintheinfectedorchards.Inthisworkwehaveperformedamolecularcharacterizationof fourteenPsa isolatedobtained fromChileanorchards.Wehavesequenced3conservedgenes(cts,gyrBandrpoD)andthesequenceswereusedtobuildaphylogenictree.Interestingly,weidentified3isolateswithsignificantdifferences incomparisontotheothersChileanPsa isolate.Furthermore,weusedthePsa isolatedtoperformahypersensitivity(HR)assayintobaccoplants;inthismodelPsabiovar3producesaHRresponse.Weobservedthatall theChilean isolatedproduceHRresponses in tobaccobutatdifferent levels, suggestingadifferentdegreeofrecognitionofPsa.Wepreviouslydeterminedthatall thePsa isolatedwereabletodevelopswimmingandswarmingmovementsinspecificagarplates,nowwearestudyingwhetherkiwifruitextractsareabletoattractPsa,changingthepatternofthesemovements.Acknowledgments:FONDECYT1141029.

PS96

WHOLEGENOME SEQUENCINGANDRNA-SEQANALYSES FOR FRUIT POSTHARVESTDISORDERS INA SEGREGATINGPOPULATIONOFPEACH[Prunuspersica(L.)BATSCH]

MenesesC1,2,Nuñez-LilloG1,ArenasV1, JaqueC1,BalladaresC1,PeredoT1, InfanteR3,Campos-VargasR1, 1CentrodeBiotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello.2FONDAP Center for GenomeRegulation.3DepartamentodeProducciónAgrícolaUniversidadDeChile.claudio.meneses@unab.clChileisanimportantfruitexporter,anditspeachbreedinginitiativeshavebeenfocusedonpostharvestandfruitqualityinordertosatisfyconsumerslocatedindistantmarkets.Fleshmealinessisarelevantpostharvestdisorderinpeachandnectarine, and its phenotype shows lack of juice after long cold storage (0-4 °C), reducing significantly quality andconsumeracceptance.Thus,theaimofthisresearchwastoidentifysomecandidategenesassociatedwithfruitqualitytraitsusingageneticlinkagemap,thewholegenomesequencing(WGS),andRNA-seqanalysis.FruitsoftheF1populationformed by 194 individuals (O’Henry X NR-053)were evaluated in four periods: Immediately after harvest (E1), Afterharvest+shelflife(E2),After21daysat0°C(E3)andAfter21daysat0°C+shelflife(E4).ThecorrelationbetweenQTLsfor mealiness and the identification of SNP, INDEL and structural variations of 30 individuals showing a contrastingexpressionoffleshmealinessallowedtoidentificationofcandidategenes.Further,RNA-seqwascarriedouttoobtainabetterunderstandingoffleshmealinessanditsphysiologicalregulationsinvolved.Forthispurpose,asubsetformedby5high sensitive and 5 tolerant individualswere used for studying the correlations between the transcriptome and thegenomicvariations,inordertoreachadeeperknowledgeofthisphenotype.Acknowledgments:CORFOConsorcioBiofrutales13CTI-21520-SP03&13CTI-21520-SP04,FONDECYT1160584,FONDEFG13i10005AndCORFO-Innova09PMG7240.

Page 82: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

81

PS97

TGACLASSIITRANSCRIPTIONFACTORSREGULATETHEBIOSYNTHESISOFSALICYLICACIDTHROUGHTRANSCRIPTIONALREPRESSIONOFSARD1GENEINARABIDOPSIS

Reyes-BravoP1,Herrera-VásquezA1,UrzúaT1, SeguelA1,HoluigueM1, 1GenéticaMolecular yMicrobiología,CienciasBiológicas,PontificiaUniversidadCató[email protected] acid (SA) is a key hormone in the plant defense responses to biotic and some abiotic stress conditions. InArabidopsis thaliana, the main source of SA is the chloroplastic isochorismate (IC) pathway in which, isochorismatesynthase1(ICS1)istheonlyknownenzymeinvolved.Ithasbeendescribedthattheaccumulationof ICS1transcriptiscorrelated with an increase in SA levels, which in turn triggers transcriptional reprogramming of defense genes.TranscriptionfactorsfromtheTGAfamilyhavebeenidentifiedinthisresponse.TheTGAfamilyinA.thalianaiscomposedby10membersgroupedin5classes,beingtheclassII(TGA2,TGA5,TGA6)essentialforSA-regulatedexpressionofdefensegenes.ThroughatranscriptomicanalysisofWTandtga2/5/6triplemutantplantsinresponsetoUV-Btreatments,wefoundthatICS1gene,togetherwithagroupofgenesinvolvedinSAbiosynthesis,wereup-regulatedintga256mutantplants.ToevaluatewhetherTGA2/5/6factorsdirectlyrepressSAbiosyntheticgenes,wemeasuredSAlevelsintga256plants and evaluated the recruitment of TGA2 to the SARD1 promoter by ChIP assays. SARD1 is a regulator of ICS1expression.WealsoevaluatedthefunctionalityoftheTGAboxinSARD1promoter(pSARD1)byanalyzingplantscarryingthewildtypeoramutantversionofpSARD1intheTGAboxfusedtotheGUSreportergene.ResultsfromthisworkindicatethatTGA2isabletoregulatetheSAbiosynthesisthroughthetranscriptionalrepressionofSARD1.Acknowledgments: FONDECYT N°1141202 And Millenium Nucleus Center For Plant Systems And Synthetic Biology(NC130030).

PS98HIGHDENSITYQTLMAPPINGTOWARDSGENOMICSELECTIONFORQUALITYRELATEDTRAITSINTABLEGRAPE

NuñezR1,OcarezN1,MoralesI1,JimenezN1,VargasV1,MejiaN1,1MejoramientoyBiotecnologiaINIA.Grapevine(VitisviniferaL.)isoneofthefirstcropsdomesticatedworldwideanditwaspresentallalonghumanhistoryovercenturiesinformsoffreshfruit.Chileisoneofthemainfreshtablegrapeexporters;thisachievementissupportedbyanindustryfocusedintheproductionofhighqualitythatisprincipallydeterminedbyvisualandorganolepticattributessuchasberrysize,skinelasticity,fleshtextureandseedlessness.Genotypingbasedinnextgenerationsequencingandimproved statisticsmixedmodels are improving plant breeding built over the traditional phenotype-based selection.Breedingismovingtowardsmarker-assistedselectionthatusesgenotype-phenotypeassociationstoestablishpredictivemethodologies.BasedononeofthelargestF1biparentalprogeniesderivedfromthecrossbetweenMuscatofAlexandriaand Crimson Seedless, 615 segregating plants were genotyped with the 20K Illumina SNP chip resulting in 6,441polymorphicmarkers,andwerephenotypicallyevaluatedovertwoseasons(2014-2015and2015-2016).Finally,afineQTLmappingandaGenomicSelection(GS)basedstrategywerecomparedtotesttheiraccuracyforselectionpurposes.Regardless of the limitations of our experimental design, our results suggest that both, QTL analysis and GS, haveadvantagesanddisadvantagesrelatedtoidentificationofcandidategenesandmostfavorablealleles.However,GStendstohavegreateraccuracyforverycomplextraits;neverthelessasignificantcorrelationbetweenresultsofbothapproacheswasdetected.OurcasestudyshowsthatbothQTLhaplotypebasedselectionandGenomicSelectionhavethepowertoimprovethebasesandefficiencyofselectionofseedlingsforthenextbreedingcycleandenhancingthecostbenefitsofabreedingprogramandadditionallyprovidenovelgenes involved ingrape-quality traits thatgenerateuniquevarietyrelease.Acknowledgments:FONDEFG09i1007AndBiofrutalesS.A

Page 83: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

82

PS99 FUNCTIONALCHARACTERIZATIONOFANANTIFUNGALPEPTIDEISOLATEDFROMTABLEGRAPES OcarezN1, JiménezN1,MejíaN1,1MejoramientoyBiotecnología,LaboratoriodeFisiologíayGenómicayPostcosecha,CentroRegionaldeInvestigaciónLaPlatina,INIA..MostcultivarsofVitisviniferaarehighlysusceptibletoseveralfungaldiseasesthatresultinqualitydropatharvestandpostharvest,generatingeconomiclossesaroundtheworld.Introgressionofresistancegenes,thatoccurnaturallyinotherVitis species, to table grapes through conventional breedingwould require several cycles to recover the table grapegenetic background. Alternatively, development of new varieties based on friendly genetic engineering approachesrequirestheidentificationandcharacterizationofgenessuitableforresistancedevelopment.Defensinsaresmallcationicpeptideswithaconservedcysteine-richmotiffoundinbothvertebratesandinvertebratesthathavealsobeenreportedinplants, thesepeptides killmicroorganisms inserting them intomembranebilayers and formingporesand couldbepromisingtargetstodevelopfungaldiseaseresistanceintablegrapeandgrapevine.Thesesmallpeptidesplayaroleintheinnatedefensesystemofplantsandaresuitableforagribiotechnologicalapplications.Adefensinpeptideof50aminoacid residues was isolated from table grapes and expressed in E. coli and transgenic tobacco lines to evaluate itsantipatogenicpotential. In vitroco-cultivationofE. coli expressing theplantdefensin andBotrytis cinerea showedasignificantantimicrobialactivity.Invitroestablishedtransgenictobaccosshowedresistancelevelsthatwerecorrelatedtothe accumulation of defensin transcripts measured by RT-qPCR. Greenhouse transgenic tobacco lines that expressectopically the defensin under control of the strong CaMV 35S promoter revealed a significative tolerance to fungaldisease,affectingbothestablishmentofinfectionandseveritymeasuredasthesurfaceofaffectedleafareaat12dayspostinfection.Both,invitroandgreenhouseresultsshowedthattheisolatedpeptideisasuitablecandidateforfuturedevelopmentofgeneticallymodifiedcropswithresistancetofungalpathogensorthedevelopmentofbiocontrolagents.Acknowledgments:FONDEFGrantG09i1007AndBiofrutalesConsortium.

PS100

ALKALOIDQTLIDENTIFICATIONINYELLOWLUPIN(LUPINUSLUTEUSL.)

OsorioC1,DelCantoG1, LichtinN1,RupayanA1,Maureira-Butler I1, 1UnidaddeGenómicayBioinformáticaCentrodeGenómicaNutricionalAgroacuí[email protected] low alkaloid varieties has facilitated their inclusion in human and animal nutrition and satisfied food industrystandards. However, it has also increased susceptibility to herbivores and transmission of aphid-borne viruses andbacteria.Fewalkaloidquantitativegeneticstudieshadbeenconductedinyellowlupin,pointingouttheneedofgeneratingbreedingtoolstoaidtheefficientmanipulationofthesessecondarymetabolites.Togeneticallydissectthesetraits,weanalyzed164diverseL.luteusaccessionsfromseveralorigins.Theaccessionswereassessedforlupinine,sparteineandgraminecontentinseedsovertwoseasons.Associationanalyseswerecarriedoutin315co-dominantmolecularmarkers(genomicSSRs,EST-SSRs,INDELs,andSNPs).Analyseswereconductedusingmixedmodels(principalcomponentanalysis(PCA)+kinshipmatrix(K)).Althoughtherewasastronggenotypexenvironmentinteractionforallevaluatedalkaloids,animportant number of significantmarkerswere observed in both seasons. For instance, nine and eightmarkerswereassociatedwithlupinineandsparteine,respectively,andgraminewasassociatedwith11markers.Threemarkerswereassociatedwith both lupinine and sparteine, suggesting one ormore commonQTLs for quinolizidine seed alkaloids.Currently,backcrosspopulationsarebeingusedtovalidatesignificantalkaloidassociatedmarkers.Acknowledgments:TheNationalCommissionForScientific&TechnologicalResearch(FONDECYTProject3140064),AndTheCONICYTRegional/GOREAraucanía/CGNA/R10C100).

PS101

Page 84: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

83

EFFECTOFTHEUSEOFTOMATOINIAROOTSTOCKONTHESYNTHESISOFPOLYAMINEPUTRESCINE,SPERMIDINEANDSPERMINE IN LIMACHINO GRAFTED PLANT DURING INFECTION PHYTOPTHOGENIC PSEUDOMONAS SYRINGAE PVTOMATO

AlfaroJ1,2,MartinezJ2,GharbiE3,LuttsS3,SeegerM3,1DepartamentodeQuímica,CentrodeBiotecnologíaDanielAlkalayLowittUniversidadTécnicaFedericoSantaMaría.2AgronomiaINIA.3GroupedeRechercheenPhysiologievégétale,EarthandLifeInstitute-Agronomy(ELI-A),UniversitécatholiquedeLouvain.felipealfaro88@gmail.comPseudomonassyringaepvtomato(Pst.) isoneofthemostharmfulbacteriafortomatoproduction,causingsignificanteconomiclossesduetodiseasesproducedbothinfruitandleaftissues.Theuseofrootstocksisaneffectivesolutionfordiseasecontrol,especiallyinsensitivetomatovarietieslikethelocalhigh-qualityoldLimachinotomato,whichishighlyaffectedbydeleteriousenvironmentalconditionssuchassalinity,droughtandpathogens.Polyamines(PAs)constituteagroupof lowmolecularweightaliphaticaminespresent inall livingorganisms.Themostwidespreadformsin livinginplantsareputrescine (Put), spermidine (Spd)andspermine (Spm).Polyamineshavebeen implicatedaskeyplayers ingrowthanddevelopmentprocesses,andinresponsetobioticandabioticstresses.Pathogensmaystronglyimpairplantgrowth and develoment producing major changes in the polyamine (PA) metabolism of the host. It has been welldocumented that the levels of both free and conjugated PAs undergo profound changes in plant tissue during theinteractionwithpathogenslikePst.Thesemetabolicpathwaysdependonthenatureofthemicroorganism,aconceptthatstemsfromthefactthattheseaminesmediatetheactivationofplantdefensemechanisms.TheaimofthisstudyistodeterminetheeffectoftomatorootstockINIAondefenseresponseofthegraftedplantLimachinotoPstbysynthesisofpolyaminesbyHPLC.WeprobeifpolyamineplaysaroleintheplantresponseandinthedefenseagainstpathogensandifthissynthesiswouldberelatedwithH2O2synthesis.Acknowledgments:ConicytPhD Intership,ConicytPhDAndRIABINFellowship, INIALaCruz,GRPVGroup,USM131342(MS);Fondecyt1151174&1110992(MS)AndProjectFIAPYT20140227.

PS102

EVALUATINGROOTVARIABILITYANDMETABOLITECONTENTINYELLOWCONTENT(LUPINUSLUTEUSL.)

OsorioC1,DelCantoG1,RupayanA1,LichtinN1,UdallJ2,Maureira-ButlerI1,1UnidaddeGenómicayBioinformáticaCentrodeGenómicaNutricionalAgroacuícola-CGNA.2PlantandWildlifeSciencesBringhamYoungUniversity.claudia.osorio@cgna.clPlantbreedershavecontinuouslygeneratednewbetteryieldingvarietiesmoreadaptedtolocalconditionsandspecializedtospecificindustryneeds.However,thisbreedingefforthasbeenmostlydedicatedtoincreaseshootbiomassandseedyields,leavingthestudyofroots,andtheirinfluenceupongrainyield,intherearseatofcropbreeding.Recenteffortshaveshownthatbybetterunderstandingrootphysiology,morphologyandgenetics,significantlyincreasesonseedyieldcouldbeachieved.Thus,breedinglupinswithstronganddeeprootsshouldincreaseandstabilizeseedyields,oneofthehardest traits to breed in lupin crops. Themain goal of this research is to genetically analyze root natural variation,includingmorphologyandmetabolitecontent,inadiversesetofL.luteus,tofacilitatethemanipulationandintrogressionoffavorableroottraitsintocultivatedtypes.LupinaccessionsweregenotypedusingasetofmolecularmarkersincludingSSRs,EST-SSRs,SNPs,andINDELs.AssociationanalyseswereconductedusingMIXEDmodelsand includingPopulationStructureandKinship to findout the fittestmodel.Severalgenomic regionswereassociated to rootmorphologyandsecondary metabolite content. Currently, we are carrying out bioinformatic analyses to uncover candidate genesresponsibleofrootvariability.Acknowledgments:TheNationalCommissionForScientific&TechnologicalResearch(FONDECYTProject1140944),AndTheCONICYTRegional/GOREAraucanía/CGNA/R10C100.

Page 85: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

84

PS103CLONALIDENTIFICATIONOFVitisviniferaCVPINOTNOIRUSINGWHOLEGENOMESEQUENCINGUrraC1,2,PavezC2,1,Nuñez-LilloG1,ZamoraP2,CastroA2,CantúD3,OrellanaA1,MenesesC1,4,1CentrodeBiotecnologíaVegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello. 2UC Davis Chile Life Sciences Innovation Center.3DepartmentofViticulture&EnologyUniversityofCaliforniaDavis.4FONDAPCenterforGenomeRegulation.claud.urra@gmail.comGrapevineisoneofthemosteconomicallyimportantfruitcropsandChileisthefourthworldwineexporter.Therearemany grape collections; this large diversity ismostly due to the long history of grapevine cultivation and vegetativepropagation,whichhasenabledtheconservationofcultivarsovercenturies.Molecularmarkershavebeenusedtostudygrapevine diversity. For instance, microsatellites are a powerful tool for cultivars identification. However, clonesidentificationremainsaproblemduetotheminimumgeneticdifferencesbetweenthem.OuraimistocharacterizethemostimportantcultivarsandclonescurrentlyusedforChileanwineries.Forthis,wedevelopedmolecularmarkersandweexpectto implementhigh-throughputgenotypingmethodologies.Wesequencedfour ‘Pinotnoir’clonesfromtwoChileanwineries.Rawdatasequencesweremappedagainstthereferencegenome‘PN40024’.Wedetectedanaverageof156,200homozygousvariantsbetweendifferentclones.TheSNPfrequencywasaround0.3SNPperKb,whereasforInDelwas1per23Kb.WeselectedascandidatemarkersInDelhigherthan10bponcodingregions.WeexpecttodevelopPCR-baseddetectionprotocolstoidentifyclonesusedforChileanwineindustrybasedonmolecularmarkerfingerprint.Theidentificationofthesestablemolecularmarkerswillbeusefulinclonaldiversitystudies.Acknowledgments:CORFO13CEI2-21852.

PS104

PROTOCOLSTOINTRODUCTIONOFCOLOBANTHUSQUITENSISATINVITROCULTURE

RiveraC,NavarreteE,Cuba-DíazM,DepartamentodeCienciasyTecnologíaVegetal,EscueladeCienciasyTecnologías,UniversidadDeConcepció[email protected](Caryophyllaceae)isavascularnativeplantofAntarctica,whichalsohasawidedistributionfrommaritime Antarctica toMexico and from 0 to 4.200m.a.s.l. All their habitats stand out for extreme edaphoclimaticconditions, which has led to C. quitensis to develop adaptivemechanisms, getting to form environmental ecotypes.Germplasmconservationofthespeciespopulationsisimperativetoconstituteitasapotentialmodelinstudiesofplantstressadaptation.Theestablishmentofthisspeciesinvitrohasbecomeachallengeduetocontaminationbyendophytemicroorganisms.Themicrobicideandphytotoxiceffectofcalciumhypochlorite,silvernitrateandsilvernanoparticleswasevaluatedtointroducingexplantsfromArctowski(Antarctica),Laredo(Patagonia)andConguillio(Andean)populationstoinvitroculture.Thepercentageofcontamination,oxidationandsurvivaloftheexplantswereconsideredandthennumberofshootsandrootswasevaluatedfortheplantletsestablishmentinvitro.TreatmentswithcalciumhypochloriteorsilvernitratepreventedexplantscontaminationinbothArctowskiandLaredopopulations,butnotConguilliobecausethesilvernitrate caused tissue oxidation delaying the establishment and sometimes death of tissue. Treatment with calciumhypochlorite10%for20minutesprovedtobethebestforArctowskiandLaredopopulationsbeingnecessarytoassessothertimesexposureand/orconcentrationstoConguillioorevaluateotherprotocols.Acknowledgements: VRID 213.418.004-1.0 INACHRG_02-13 Project And TheDepartamentoDe Ciencias Y TecnologíaVegetalForFundingThisResearchAndMissJeannetteParraForReviewingTheTranslationOfTheAbstract.

PS105

Page 86: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

85

CONTRIBUTIONOFFLOWERTRAITSINTHEDIFFERENTIATIONOFTOMATOLANDRACES

Donoso A1, Salinas R E3, Martínez J P2, Salazar E3, 1Ciencias Vegetales, Agronomía e Ingeniería Forestal, PontificiaUniversidadCatólicadeChile.2LaboratoriodeFisiologíaInstitutodeInvestigacionesAgropecuarias-LaCruz.3UnidaddeRecursosGenéticosInstitutodeInvestigacionesAgropecuariasLaPlatina.esalazar@inia.clTotheendoftheXIXcenturymultiplecultivarsofdifferentcolorsandshapesoftomatoeswereavailable inAmerica.Nowadaysconsideredaslandracesproducedbytheearlybreeding.LimacheisoneofthemaintomatogrowercommunesinChilesinceto1955.Alocalvarietyofthisterritory,theLimachinotomatohasbeendatedbacktothe1960´s.Localvarietiesoftenlackofapropercharacterization,makingithardtoidentify.Tomatoplantscharacterizationistraditionallycarriedoutusing fruitdescriptors. Manyvegetativedescriptors from IPGRIandUPOVshownovariation in the field,making the differentiation by vegetative characters of little use for close related tomato landraces. IPGRI flowerdescriptorshaveshownabetterdifferentiationapproach.Theflowerandinflorescencearchitecturehasbeenassociatedwiththetomatoplantsproductivityandcorrelatedwithfruitsize.Ahigh-throughputflowerdescriptionwasmadeof18tomatoaccessionsconservedatINIA´sgermplasmbanknetwork,whichincluded11Limachinotypetomatoes,alocalpinkvarietyandsix redcommercialvarieties.PCAshowedthat flowercharacterswereuseful fordifferentiatingverycloserelatedvarieties,inwhichvegetativedescriptorsdidnot,showinggreatuseofahigh-throughputflowerdescription,foridentifyingtomatolandracesandcommercialvarieties.Acknowledgments:FIAProjectPYT-2014-0227;INIA/Min.EconomíaRedDeBancosDeGermoplasmaProject501679-71;INIA/MINAGRIConservaciónDeRecursosGenéticosProject501453-71.

PS106

CHARACTERIZATIONOFTRADITIONALYELLOWMAIZEVARIETIESFROMCOIHUECO,ÑUBLEPROVINCE

BaezaC1,PalazuelosF2,BenítezD3,BerríosM3,SalazarE3,1LaboratoriodeBiotecnologíayFisiologíaVegetal,FacultaddeQuímica y Biología, Universidad de Santiago de Chile.2- Particular. 3Unidad de Recursos Genéticos Instituto [email protected] the commune of Coihueco, Chillan province, traditional farmers still cultivate yellowmaize landraceswith awidediversityofmorphologicalcharacteristicsthathavebeenpreservedfromgenerationtogeneration.Thegenereservoirmaintainedinthesepopulationshasnotbeenstudiedanditisbeinglostduetothereplacementorcontaminationwithhybridcommercialvarieties.Anevaluationthegeneticdiversityofsomeofthemaizepopulationscultivatedbyfarmerscouldcontributetotheimplementationofaneffectiveinsituconservationandutilization.ElevenaccessionscollectedfromCoihuecoweremorphologicalcharacterizedforplant,earandkerneltrait.Aditionally,theseaccessionplussomeotherrepresentativelandracesofChileanmaizeracescultivatedinChillanprovincebeforethe1990sarebeinggenotypedbySSRmarkers.Resultsshowedtheexistenceofsignificantmorphologicdifferencesamongaccessionsforallevaluatedtraits.PCArevealedthataccessionisseparatedmainlybyplantvigorandearlength(PC1)andkerneltrait(PC2).Atleastthreemorphotype were described: flint type and semi-flint type. Qualitative traits showed the existence of varietaladmixture.MorphologicaldataallowedustodeterminethatoneaccessionisanOchoCorridaslandracethatisclearlydifferentiated from theothers,which correspond to semi flint and flint accession, this lastprobably close toCamelialandrace.Acknowledgments:FIAProjectPYT-2015-0387;INIA/Min.EconomíaRedDeBancosDeGermoplasmaProject501679-71;INIA/MINAGRIConservaciónDeRecursosGenéticosProject501453-71.

Page 87: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

86

PS107

EVALUATION OF ANTIOXIDANT ACTIVITY AND TOTAL POLYPHENOL CONTENT IN THE AQUEOUS EXTRACT OFKAGENECKIAOBLONGARUIZETPAV

TapiaL,ScheneiderC,CienciasyTecnologíaVegetal,EscueladeCienciasyTecnologías,UniversidadDeConcepción.

[email protected]

Free radicals causeoxidativedamageandare responsible for causinghealthproblems. The antioxidant activity of anaqueous extract ofKageneckia oblongawas evaluated by analyzingDPPH (1,1-diphenyl-2-picryl-hydrazyl) free radicalscavengingandABTS+[2,2’-azino-bis (3ethylbenzothiazoline-6-sulphonicacid)] radicalcationscavengingactivity.ThetotalphenoliccontentoftheaqueousextractwasdeterminedbytheFolin-Ciocalteuspectrophotometricmethod.ThetypesofSecondaryMetaboliteswereinvestigatedaccordingtothecommonphytochemicalsmethods.IntheassayusingDPPH,aninhibitionof93,1%withaconcentrationof1,5mg/mlwasobservedandusingtheABTS+assayaninhibitionof72,8%withaconcentrationof0,27mg/mlwasdetected.TheIC50(concentrationofaqueousextracttoproduce50%ofdecreaseoftheabsorbance)valueswere0.31mg/mland0,176mg/mlwithDPPHandABTS+assay,respectively.Onegram(g)ofaqueousextractisequivalentto0,129±0,004gofgallicacid(DPPHassay)andto0,267g±0,002ofTrolox(ABTS+assay)andthepolyphenolcontentingallicacidequivalentswas0,204±0,017g/gextract.PhytochemicalscreeningofKageneckiaoblonga showed thepresenceof tanninsand saponins.Our results revealedantioxidantactivity in theaqueousextractofKageneckiaoblonga.Acknowledgements:VRID214.418.007-1.0ProyectCareerEngineeringVegetalBiotechnology.Mrs.ClaudiaFloresForHerTechnicalSupport.

PS108

OPENSOURCETOOLSANDRESOURCESFORCOMMUNITY-BASEDPLANTENGINEERING

PollakB1,CerdaA1,AlamosS2,DelmansM1,MoyanoT7,KahlL3,MolloyJ1,PatronN4,GutierrezR7,5,HaseloffJ6,FedericiF7,5,1, 1PlantSciencesUniversityofCambridge. 2BiologyBerkeley. 3BiobricksFoundation. 4TheGenomeAnalysisCentreEarlhamInstitute.5FONDAPCenterforGenomeRegulationMillenniumNucleusforPlantSystemsandSyntheticBiology.6PlantScienceUniversityofCambridge.7GeneticaMolecularyMicrobiologiaPontificiaUniversidadCatolicadeChile.ffederici@bio.puc.clCommunity-basedpracticesarechangingscience,technologyandengineeringacrossacademicinstitutions,communitylabs, hackspaces, industries and NGOs. The use of crowd-sourced technologies and the adoption of open sourceframeworkshavealreadyfuelledarevolutioninsoftwareandhardwareengineering,fromDIYcomputingtoadvancedmachine learningendeavours.Repositoriesofdataand resources, suchasGithub,are facilitating standardisationandcuration of tools and protocols through distributed and collaborative user-developer ecosystems. At the OpenPlantSyntheticBiologyCentreandSynBioLabUC,wepromotethedevelopmentandadoptionofopensourcetechnologies,repositoriesofIP-freeresourcesandbetterpracticesforbioengineering.Here,wepresentasetofcomputationalandgenetictoolsthataimtoengagetheplantbiologycommunity.First,wewilldescribeanewsetofIP-freegeneticresourcesandmethodsformultiplex,efficientandlowcostDNAfabricationthatallowstheassemblyofupto16genesroutinelyfromabroadrangeofbasicelements(e.g.promoters,tags,repressors,etc).Second,wewillpresentcomputationaltoolsthatallowsthecompilationofgenomicdataintogene-centricorientedDNArepositories,allowingforautomaticannotation,communitybasedcurationandstreamlinedsequencevisualisationandretrieval,implementedinMarchantiapolymorphathroughanopensourcedatabaseframeworkandavailablethroughGithub. Third,wewill describework in process related toOpenMTA legal frameworks aimed to lubricate user-userinteractionsbyoptimisingdistributionandsharingofresources.Finally,wewillhighlighthowtheseeffortsarealigned

Page 88: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

87

withinwidernarrativessuchastheOpenPlantProjectandUNESCO-supportedTECNOxcompetition,whichseektoengagecitizensintoopensourcetechnologiesforproblem-solvinginaneraofpressingglobalchallenges.Acknowledgments: CONICYT-PAI 82130027, Fondecyt Iniciación 11140776. FONDAP (15090007), Millennium NucleusCenterForPlantSystemsAndSyntheticBiology (NC130030)AndBBSRCSyntheticBiologyResearchCentreOpenPlantBB/L014130/1.

PS109

IDENTIFYING GENETIC FACTORS UNDERLYING SEED OIL AND MUCILAGE CONTENT IN FLAXSEED (LINUMUSITATISSIMUML.)BYASSOCIATIONMAPPING

QuianR1,GajardoH1,CloutierS2,Soto-CerdaB1,1GenomicsandBioinformaticsUnitAgriaquacutureNutritionalGenomicCenter(CGNA).2OttawaResearchandDevelopmentCentreAgricultureandAgri-FoodCanada.braulio.soto@cgna.clFlaxseed(LinumusitatissimumL.)iswell-knownforthecontentoffunctionalcompoundswithspecificbiologicalactivityandhealth-relatedbenefits.Flaxseedoilishighlyrichinpolyunsaturatedfattyacids,specificallyα-linolenicacid,anditshullisanimportancesourceofsolubledietaryfiber(mucilage).Withtheaimofidentifyinggenomicregionsassociatedtoseedoilandmucilagecontentweperformedanassociationmappingstudyamong100accessionsfromtheCanadianflaxcorecollectionassessedacrosstwoseasonsinChileandgenotypedwith391genome-widemicrosatellitemarkers.Themeanseedoilandmucilagecontentrangedfrom28.2%–43.9%and25–87.9mg/gofseed,respectively,andanon-significantcorrelationbetweenthetraitswasobservedinthepopulation.Amixedlinearmodeladjustedbypopulationandfamilystructures(PCA+K)identifiedthreeandtwocandidateQTL,whichexplained35.6%and5.8%ofthephenotypicvariation(R2)forseedoilandmucilagecontent,respectively.SeveralpromisingfunctionalcandidategeneswereidentifiedneartheQTLregions.Forexample,forseedoilcontent,genesinvolvedincellwallandfattyacidbiosynthesispathwaywereidentified.Similarly,formucilagecontentanenzymewithacriticalrole inthetranslocationofnucleotidesugarsfromthecytosolintothelumenwasfound.ThecandidateQTLidentifiedhereinprovidesavaluablefoundationforfuturemarker-assistedbreeding,whichcouldcontributetofurtherdiversifythefoodandfeedmarketforflaxseed.Acknowledgments: ComisiónNacionalDe InvestigaciónCientífica Y Tecnológica (CONICYT)Regional ProgramAndTheAraucaniaRegionalGovernment/CGNA/R10C100.

PS110

METHODOLOGY TOUSE CRIPSR/CAS9 IN LONG SPAM LIFE PLANT SPECIES, USING FLOWERING STIMULATION ANDPRECISIONLIGHTING

Matte J1, Siqueira R2, Aquea F3, Jones B4, Arce-Johnson P1, 1GenéticaMolecular yMicrobiología, Ciencias Biológicas,PontificiaUniversidadCatólicaDeChile.2PlantMolecularBiologyUniversityofLausanne.3Laboratoriodebioingeniería,ingenieriayciencias,UniversidadAdolfoIbáñez.4PlantandFoodSciences,AgricultureandEnvironment,[email protected],thedemandforwoodproductsisexpectedtocontinuetoincreaseintothefuture.Comparedtoannualcropplants,directgeneticmodificationoftreesspecieshasgainedlittleattention,partiallybecausetreeshavemuch longer lifecycles and tight regulations opposing transgenic use in the field. The newly developed gene editingtechnologies, suchCRISPR/Cas9 increase thepotential for themodificationof species.CRISPR/Cas9has severalmajoradvantages over previous transgenic-based approaches and can work alongside conventional breeding programs bydirectly improving known yield-related loci or genes. We have a modified CRISPR/Cas9 system that promotes earlyflowering inplants, by ectopic expressionof genes relatedwith flowering time. Togetherwithprecision lightingwith

Page 89: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

88

differentratiosofBlue,RedandFarRedlightwehavemanagedtoregulatethisacceleratessexualdevelopmentobtainingviableflowers.TheCRISPR/Cas9mutatedplantsflowerearlierthanthewildtypeplants,resultinginfastrecoveryofthesecondgeneration(T2)inArabidopsis.Wewillusethistechnologytoacceleratebreedinginarboreusspecies.

PS111CHARACTERIZATIONOFCHILEANSOLANUMMURICATUM(AITON)POPULATIONSBYMEANSOFSSRMARKERSMartinC1,CorreaF1,BastiasA1,RojasP1,PerezJ1,ContrerasC2,JanaC2,SagredoB1,1GenomicayMejoramiento,INIA-Rayentué.2Mejoramiento,INIA-Intihuasi.InChile,Solanummuricatum(Aiton)ismainlycultivatedinnorth-centralregionsofCoquimboandValparaíso.ThisspeciesnativetotheAndeanregionwasprobablyintroducedinpre-Columbiantimesasadomesticatedfruitplant,andlittleisknownaboutitsgeneticvariability.Nowadays,thewaterdeficitcausedbyclimatechangeisaseriousthreattothiscrop.Inordertoavoidgeneticlosses,INIAiscollectingandcharacterizingthemostrepresentativematerialcultivatedbyfarmersinthenorth-centralregionsofChile.Morethan150accessionsfrom21populations,belongingtodifferentfarmersfromregionsIV,VandXVofChile,respectively,havebeencollected.TheexsitucollectionisbeingmaintainedatPandeAzúcarExperimentalStation(INIA-Intihuasi,LaSerena).Ageneticcharacterization,usingrobustandfriendlymolecularmarkerssuchasSSR,isdesirabletooptimizeitsconservation.Toaccomplishthisgoal,availablegenomicplatformfrompotatoandtomatogenomes,plusatranscriptomeofS.muricatumwereusedtodesignhighinterspecifictransferableSSRamongthesespecies.Apanelof12SSRwasselectedtoperformthegeneticcharacterizationoftheentirecollection.Analysisofidentity,geneticvariabilityandgeneticstructureintra-andinterpopulations,willbeusefulinformationtooptimizetheconservationofthisvaluablegeneticresourceofS.muricatum,includingbreedingpurposes.Acknowledgments:FIA:PYT-2014-0270.

PS112

ACODOMINANTDIAGNOSTICMARKERFORTHESLOWRIPENINGTRAITINPEACHUlloa-Zepeda L2, Cifuentes-Esquivel A2,1, RubilarM2, Blanco-Herrera F2, Meneses C2,3, 1Departamento de ProducciónAgrícolaUniversidaddeChile.2CentrodeBiotecnologíaVegetalUniversidadAndrésBello.3FONDAPCenterforGenomeRegulation.Lissette.u@hotmail.comChile is themain peach exporter in the South Hemisphere. Currently, postharvest performance and fruit quality areessentialforselectionofnewcultivarsinbreedingprograms.However,breedingisatimeconsumingandcostlyprocess.Inpeach,slowripening(SR)traitisarecessivemutationconsistingoffruitsthatareunabletoripe.Forexample,flesh-softeningratetendszeroandSRfruitsdonotproduceethylene.SRindividualsarediscardedfrombreedingprograms.ThroughQTLsanalysisandwholegenomesequencing,wedetectedadeletionof26kbintheregionassociatedwiththeSR phenotype. In this region, we identified a NAC transcription factor as the best candidate responsible for the SRphenotype.Thus,theaimofthisworkwastodevelopaco-dominantmolecularmarkertoearlydeterminationfortheSRphenotype.Twopairofprimersweredesigned(PSR3)togenotypethisstructuralvariantontheprogenyof‘Venus’F2(N=141)andcommercialcultivars.Finally,thePSR3markerco-segregatedwiththeSRphenotypeinallcases,allowingtheclearandreliablediscriminationofthesrallele.Moreover,wecharacterizetheexpressionprofileofNACgene(PpNAC72)infruitsfromanormalripeningsiblingof‘Venus’F2population.Furthermore,weidentifiedmoreandsmallercellsinfruitflesh between SR and normal ripening siblings during development. This work contributes to unravel themolecularmechanismsresponsiblefortheSRphenotype.Acknowledgments:INNOVACORFO09PMG-7240.

PS113

Page 90: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

89

GENETIC DETERMINANTS THAT CONTROL DEVELOPMENT AND OVERALL BERRY QUALITY IN GRAPEVINE REVEALUNIQUEANDCOMMONROLES

Ocarez N2, Núñez R2, Jiménez N2, Morales I2, Vargas V2, Defilippi B2, Hinrichsen P1, Mejía N2, 1Mejoramiento yBiotecnología, Laboratorio de Biotecnología, Centro Regional de Investigación La Platina, INIA. 2Mejoramiento yBiotecnología,LaboratoriodeFisiologíayGenómicayPostcosecha,CentroRegionaldeInvestigaciónLaPlatina,INIA.DiscoveryofgeneticdeterminantstoimplementMarkerAssistedBreedingwashamperedforcomplextraitsduetothelackofsignificantandreliablegenotype-phenotypeassociations,initsturncausedbytheabsenceoflargepopulationscharacterizedbothatgeneticandphenotypiclevel.Ontheotherhand,factorsinfluencingoverallberryqualityintablegrapelikeseedlessness,berrysize,skinelasticityandfleshtexture,areintrinsictoitsdevelopmentalprocessandyetwereneveranalyzed,atgeneticlevel,inanintegrativeapproach.Quantitativetraitloci(QTL)analysiswasperformedovertwoseasonsinaF1biparentalcrossofmorethan500individualsgeneticallycharacterizedwithupto4,000SNPmarkers.Thegeneticarchitecturedescribesthecomplexnatureofquality-relatedtraits:23QTLsweredetectedforseedpalatabilitytraits,15forberrysize,16forskinelasticityand38forfleshtexture,mostsignificativeQTLswerereproducibleamongseasons.TheseQTLsexplainaverylowportionofphenotypicvariation,reflectingthecomplexorverycomplexnatureofthesetraits,makingdifficultthefeasibilityofassistedselectionwithoneorveryfewmarkers.However,thecombineduseofmostsignificantassociatedmarkers,uptosixSNPsbytrait,capturesthelargestproportionofphenotypicvariations(upto50%)enablingthepossibility, inthenearfuture,toapplyassistedselectionwithapanelofvalidatedmarkers.HolisticQTLanalysisofberryqualitysubtraitsresultedinthediscoveryofgeneticdeterminantsthatcontributetothesimultaneouscontrolofuptothreetraits,inthesameoroppositedirectionsinrelationtoquality.Additionally,geneticinteractionsbetweenQTLsandthemajorlocithatcontrolsseedlessnesswerediscovered.Validationoftheseresultsindifferentgeneticbackgroundsanddevelopmentonmarkersforassistedselectioncouldimprovesignificativelybreedingpractices.Acknowledgments:FONDEFGrantG09i1007AndBiofrutalesConsortium.

PS114

ANALYSISOFGENETICDIVERSITY,STRUCTURALPOPULATIONANDIDENTIFICATIONOFSNPASSOCIATEDWITHFRUITTRAITINPEACH

Rubilar M1, Nuñez G1, Arenas V1, Infante R2, Meneses C1,3, 1Centro de Biotecnología Vegetal Universidad AndrésBello.2DepartamentodeProducciónAgrícolaUniversidadDeChile.3CenterforGenomeRegulationFONDAP.miguel.angel.rubilar.romero@gmail.comThepeach-tree(Prunuspersica[L.]Batsch)standsasoneofthemostimportanttemperatefruit.It’samodelspeciesforhisfamily(Rosaceae)wheremultiplegeneticandgenomicstudieshavebeendonetothedate.Becauseofthehistoryofdomesticationofthisspecie,thegeneticvariabilityhasbeendecreasedgreatly,raisingalsothelinkagedisequilibrium(LD)oftheactualdomesticatedgermplasm.Forthisreason,actualbreedingprogramshaveproblemsduetothelowlevelofgeneticdiversityavailabletodevelopnewvarieties.Theuseofgeneticmarkerssuchassinglenucleotidepolymorphism(SNP)areuseful todeterminate theactualdegreeof variabilitybetweenpopulationsorparent collections.Thisworkconsistedinthesequencingof95individualsofalocalgermplasmcollectionthroughgenotypingbysequencing(GBS).Afterthesequencing,5,890SNPwereselectedwithanaveragedepthof7andaminorallelefrequency(MAF)of1.0%orhigher.Usingthissetofdata,geneticvariability,phylogeneticrelationshipandgeneticstructureofthegermplasmweretested. Using association genetic strategy, 3 traitswere tested (flesh color, skin pubescence and harvest date), withmarkersassociatedtoregionsinthegenomecorrespondingtochromosome1,5and4,respectively.Thisworkcontinuestounravelthegeneticbasisofmajortraitsinpeach-tree,givingalsoarobustsetofmarkerstotestmoretraitsinthenearfuture.Acknowledgments:FONDECYT1160584AndCORFO09PMG-7240.

Page 91: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

90

PS115

GENOMESIZECOMPARISONINCOLOBANTHUSQUITENSISPOPULATIONSSHOWDIFFERENCESINSPECIESPLOIDY

Cuba-DiazM1,GómezAG1,RiveraC1,CerdaG2,1DepartamentodeCienciasyTecnologíaVegetal,EscueladeCienciasyTecnologíaUniversidadDeConcepción.2CMABío-BíoUniversidadDeConcepción.mcubaster@gmail.comColobanthusquitensisistheonlynativedicotyledoneaeintheAntarctic.Thisspeciesalsorepresentsawidegeographicdistribution,from68°Sto17°Nandfrom0ma.s.l.inthesouthto4,200ma.s.l.inthenorthofitsdistributionarea.Asthedescribedhabitatsfordifferentpopulationscoincideintheirextremeabioticcharacteristics,therehasbeenanincreasinginterest instudyingdifferentpopulations,aswellastheexistenceofphenotypicorgeneticvariabilityamongthem.Incontrast,verylittleisknownaboutitsgenome;knowledgeofgenomesizeandploidylevelsallowsthedevelopmentofstrategiestogenerateinformationinpopulationstudiesrelatedtostructure,geneflowandgeneticdiversitytodescribephenotypic characteristics. Several studies have related genome size to the ecologic requirements of the speciesdistributedthroughawideenvironmentalgradient.Forseveralyearsnow,flowcytometryhasbecomeasimplemethodto determine genome size in a large list of species. In this work, we determined genome size for threeC. quitensispopulations. The populations of Arctowski (Antarctica) and LaMarisma (Punta Arenas) have 2C= 1.95 pg, while theConguillio (South-Central Chile) population reported 2C= 0.84 pg, approximately half as much. This might evidencedifferentploidylevelsbetweenthepopulations,whichcreatesnewquestionsregardingthenumberofchromosomesandthepossibleexistenceofendopoliploidyrelatedtothedistributionandadaptivemechanismsofthisspeciesthroughoutitswidedistribution.Acknowledgments: INACHRG_02-13 Project AndByDepartamentoDe Ciencias Y Tecnología Vegetal, UniversidadDeConcepción.

PS116

GENETICTRANSFORMATIONOFDESCHAMPSIAANTARCTICADESV.,MEDIATEDBYAGROBACTERIUMTUMEFACIENS

BelmarN,CubaM,1DepartamentodeCienciasyTecnologíaVegetal,EscueladeCienciasyTecnologíaUniversidadDeConcepción.

[email protected]

Antarctic isoneof themostextremeenvironmentaround theworld; very cold temperatures,highUV radiation, lownutrientsavailabilityinthesoilandseasprayaresomeoftheabioticstressorsthatmustendurethespecieslivingthere.The native species have developedmechanisms that allow them their establishment in the ecosystem.Deschampsiaantarcticaisoneofthem,sometolerancemechanismsandgenehavebeendescribedforthespecie.D.antarcticabelongtothePoaceaefamilywherethereareseveralplantsofagriculturalinterest.Therefore,genomicstudiesarerequiredtofacilitate the use of the genes of D. antarctica in other species of the same family. The development of genetictransformationprotocolsisanecessarytoolforthesegenestudies.InthisworkanAgrobacteriumtumefaciens-mediatedprotocol from explants of seedlings established in vitro is developed. Two strains ofA. tumefasciens, three bacterialconcentration(0.5,0.7and1)equivalenttotheabsorbanceofthebacterialsuspensionatOD=600nmandthreetimesofco-culture(10,20and30min)wereevaluated.Alltreatmentsappliedproducedahighpercentageoftransientexpression(98%)withoutsignificantdifferences(α=0.05)fortransientpercentagenortothepercentageoftissuestainingbetweentreatments. Results about selection of transformed plants will be shown. This is the first report about genetictransformationinthespecie.Acknowledgements:VRID213.418.004-1.0ProjectAndTheDepartamentoDeCienciasYTecnologíaVegetalForFundingThisResearch.

Page 92: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

91

PS118

GENETIC TRANSFORMATION OF COLOBANTHUS QUITENSIS (KUNTH) BARTL MEDIATED BY AGROBACTERIUMTUMEFACIENSBurgos Y, Arcos C, Cuba-Díaz M, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y TecnologíaUniversidadDeConcepció[email protected] transformation allows the introduction of genes of interest in the plant genome ormodifies its own; beingAgrobacteriumthemostusedmethodsforintroducinggenesintoplantcellsanditssubsequentregenerationoftransgenicplants.ColobanthusquitensisbetterknownasAntarcticpearlwort,itistheonlynativedicotofAntarctica.Itsabilitytoadapttoextremeabioticconditions,doesregard itasaplantmodelforstudiesaboutecophysiologicalandmolecularmechanismsofplantadaptationtostress.Preliminarily,twoAgrobacteriumstrains(EHA105andLBA4404),inoculationtimesof30and50minutesandabsorbanceof0.4,0.7and0.9atODof600nmwereevaluated.Thefirstresultsshowedthat thegreater transientexpressionwasobtainedwithLBA4404strain,30minutesof inoculationand in0.7and0.9absorbancewithoutsignificantdifferencesbetweenthem.Fromtheseresults,callusandplantlets from invitroplantsfrom threeC. quitensis populationswere tested. The effect of acetosyringone addition at liquid and solid co-culturemediumwasalsoevaluated. Thehighestpercentageof transientwasobtained in the treatmentwithacetosyringoneadded only at solid co-culture medium in plantlets from Conguillio and Arctowski populations, similar results wereobtained for callus from Conguillio and Laredo populations. Acetosyringone application in solid co-culture mediumincreased the inoculationofexplantsby thebacterium, increasingefficiency transformation. This constitutes the firstreportaboutgenetictransformationofspecies,openingadoortotheuseofthisspeciesinfunctionalgenomicsstudies.Acknowledgments:VRID213.418.004-1.0ProjectAndTheDepartamentoDeCienciasYTecnologíaVegetalForFundingThisResearch.

PS119

QTLIDENTIFICATIONFORAGRONOMICTRAITSINPRUNUSSALICINATHROUGHGENOTYPEBYSEQUENCING(GBS)

SalazarJ1,PachecoI2,ShinyaP1,RuizD3,Martínez-GómezP3,BarbaP4,InfanteR1,1ProducciónagrícolaUniversidadDeChile.2INTAUniversidadDeChile.3DepartamentodeMejoraVegetalCEBAS-CSIC.4INIAUniversidadDeChile.juansalazar12@hotmail.comAssistedselectionbymolecularmarkersforfruitplantsbreedingistodayadifficultchallengetoachieveduetopolygenicnature of themost agronomic traits. Inmany cases resulting in several QTLs for the same trait located in differentchromosomes.Therefore itbecomes increasinglynecessary tousemoreefficient technologies, suchasgenotypingbysequencing(GBS),whichallowsgeneratingsaturatedgeneticmapsandfacilitatemoreaccurateQTLsidentification.TheF1Japaneseplumpopulation‘98-99’בAngeleno’of153seedlingswasgenotypedbyGBS,usingpeachv1asareferencegenome,andresultinginafiltereddatasetof42,909SNPs.Genotypingerrors,homozygotesandheterozygotesunder-callingaswellasSNPswithover10%ofmissingdatawereeliminated.Atotalof955SNPsweremapped in ’98-99’בAngeleno’ family.Parentalmapswereconstructedwith454SNPs for ’98-99’and501SNPs for ‘Angeleno’coveringagenomicregionof673.56and643.01cMrespectively.Severalphenologicalandagronomictraitsweremeasuredduring2016season,findingmajorQTLsforripeningtime,skincolorandfruitweightinLG4,LG3andLG7,respectively.ThesepreliminaryresultsrepresentapromisingbeginningforattemptmolecularassistedselectionasatoolinthenewbreedingprogramsofJapaneseplum.Acknowledgements:TheAuthorsWouldLikeToThankAllInstitutionsThatHaveCollaboratedInCarryingOutThisWork,SpeciallyToUniversityOfChileAndFONDECYTProjectNº3160080AsFundingInstitution.

Page 93: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

92

PS120

THETRANSCRIPTIONALDYNAMICSOFTWORESURRECTIONFILMYFERNSFROMHYMENOPHYLLACEAEUNRAVELKEYASPECTSOFTHEIRRESURRECTIONSTRATEGYASSOCIATEDTOITSVERTICALDISTRIBUTIONINWILD.

Larama1,2, Ostria-Gallardo E3,5, Berrios G3, Gutierrez A3, Ensminger I4 and Bravo L3,5, 1Departamento de IngenieríaMatemática,UniversidaddeLaFrontera,Temuco,Chile.2CentrodeModelaciónyComputaciónCientífica,UniversidaddeLaFrontera,Temuco,Chile.3LaboratoriodeFisiologíayBiologíaMolecularVegetal,UniversidaddeLaFrontera,Temuco,Chile. 4University of Toronto, Mississauga, Canada. 5Scientific and Technological Bioresource Nucleus BIOREN-UFRO,Temuco,Chile.enrique.ostria@frontera.clFernsfromtheHymenophyllaceaefamilyareoneofthemaincomponentsoftheepiphyticspeciesdiversityintheChileantemperaterainforest.Thesespeciesarecalledfilmyfernsbecausetheypossessmembranousfrondsofasinglelayerofcells,lackofcuticles,presentnodifferentiatedepidermis,andhavenostomata,showingapoikilohydricstrategymosttypicalofbryophytes.Fromanecophysiologicalapproach,lightintensityandthevaporpressuredeficitincreaseswhereastherelativehumiditydecreasessignificantlyverticallyalonghosttrees.Theseconditionsactasaselectivepressureforfilmyfernstodealwithhighirradianceandhighevaporativedemand,conditioningtheirverticaldistribution.RNA-seqonthe Illumina Hi-seq platform was used to study the transcriptional responses of Hymenophyllum caudiculatum andHymenophyllumdentatum (Hymenophyllaceae),which contrast in their verticalmicrohabitatpreferencesand in theirratesofwaterloss.Specifically,welookatthedynamicsdifferentialgeneexpressionoffrondssubjectedtoexperimentaldesiccation-rehydrationcycles.Ouranalysisidentifiedcommonalitiesanddifferencesingeneregulation,andkeygenescorrelatedwith the fronds hydration state, providing a broad viewof the patterns of gene expression responding tomicroenvironmentalsignalsandbehindthephysiologyoftheirresurrectionstrategy.Acknowledgments:FONDECYT1120964,FONDECYTPOSTDOCTORAL3160446.

PS121

IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF CONSTANS-LIKE GENES IN STONE FRUIT TREE SPECIES(PRUNUSL.)

AlmadaR1,LienqueoI1,RojasP2,PimentelP3,SalvatierraA1,VillarL1,DonosoJ2,SagredoB2,1LaboratoriodeGenómicaCentrodeEstudiosAvanzadosenFruticultura.2LaboratoriodeBiotecnologíaINIACRI-Rayentué.3LaboratoriodeFisiologíaCentrodeEstudiosAvanzadosenFruticultura.

[email protected]

TheCONSTANS (CO) family is an important regulatorof flowering anddormancy inphotoperiod sensitiveplants. Butinformationregardingtheirroleinstonefruittrees(PrunusL.)islimited.Throughbioinformaticsanalysis,weidentifiednineCONSTANS-like(COL)genesinthepeach(P.persica)genome.ToestablisharelationshipbetweentheputativepeachCO-likeproteinsandthosefromtheArabidopsis,aphylogenetictreewasdeveloped.ThetreeshowedthatthepeachCO-likeproteinscanbesubdividedintothreesubfamiliesasinArabidopsis.GenomemappinganalysisrevealedthatpeachCOLgenesweredistributedonseveralchromosomes,especiallyonchromosome1(4genes)and3(3genes)butalsoinchromosomes 5 and 8. The peach COL TFs from each subfamily were shown to share similar amino acid motifcompositions.Analysisoftheexon-intronstructureofPpCOLgenesshowedthattheyhave2-4exonsandsuggeststhatexongainandlossoccurredduringtheevolutionofthisgenefamily.BasedonthepeachCOLgenefamilyinformation,westudiedtheexpressionpatternsof9COLgenesinleavesandfloralbudsofsweetcherry(P.avium)trees.ThePrunusCO-likegenesweredifferentiallyregulatedin leavesandfloralbudssuggestingroles intheperceptionof lightsignalsandsexual reproductive development in this species. Our resultswill provide a platform for functional identification andmolecularevolutionstudiesofCO-likeTFsinPrunus,whichcanbevaluableforunderstandingphotoperiod-dependentdevelopmentprocessesinstonefruittrees.Acknowledgments:FONDECYTProject1160706;CONICYTRegional/CEAF/R08I1001.

Page 94: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

93

PS122A PAIRWISE PROBABILISTIC FRAMEWORK TO INFER FUNCTIONAL GENE NETWORKS AND IDENTIFY KEY GENES INRESPONSETOPERTURBATIONSMoyano T1, Vidal E2, De Daruvar A3, Gutiérrez R1, 1Departamento de Genética Molecular y Microbiología, CienciasBiológicas, Pontificia Universidad Católica De Chile.2Centro de Genomica y Bioinformatica, Facultad de Ciencias,UniversidadMayor.3CentredeBioinformatiquedeBordeauxUniversitédeBordeaux.tcmoyanoyugovic@gmail.comItissecondnaturenowadaystousechangesingeneexpressiontoidentifyrelevantgenesinresponsetoaperturbationor inadevelopmentaltransition.However,manykeygenesforanorganism’sresponsearenotregulatedatthegeneexpressionlevel(e.g.earlygenesinsignalingpathways).Thesegenesarehiddentomolecularprofilingapproachessuchastranscriptomeanalysis.Herewesoughttoaddresstheproblemoffindingfunctionallyrelevantgenesforrespondingto a perturbation regardless of whether they change at the gene expression level under contrasting experimentalconditionstoevaluatetheperturbation.In order to identify these genes, we first model transcriptome states and boundaries using large public expressiondatabases currently available for Arabidopsis thaliana and Saccharomyces cerevisiae. Using a novel entropy-basedframeworkweuncoveredinherentrestrictionsingeneexpressionatthegenome-widelevel,thatrevealnovelfunctionalrelationships for genes that are not obtained by widely used methods such as correlation or mutual information.Moreover,ourapproachallowedustoidentifykeygenesinvolvedinresponsetoperturbations,someofwhichareandsomeofwhicharenotregulatedinresponsetotheperturbation.Ournovelframeworktoanalyzetranscriptomedataprovides insights into gene regulatory networks that cannot be attained with existing bioinformatics methods. Thisapproachcanbeeasilyapplicabletoanyorganismwithlargetranscriptomedatabases.Acknowledgments:FONDAPCRG15090007,MillenniumNucleusBSSVNC130030,HHMI,FONDECYT1100698,FONDECYT11121225,BecaNacionalDeDoctorado21110366.

PS123KIWIFRUIT PLANTS VARIETIES GROWN IN CHILE SHOW DIFFERENTIAL SUCEPTIBILITY TO INFECTION WITHPSEUDOMONASSYRINGAEPV.ACTINIDIAE(PSA)

FernándezA1,AmazaL1,HoluigueL2,SalinasP1,1EscueladeBiotecnología,FacultaddeCiencias,UniversidadSantoTomás.2GenéticaMolecularyMicrobiología,CienciasBiológicas,PontificiaUniversidadCatólicaDeChile.

[email protected]

Thekiwifruitplantspecies(Actinidiaspp.)arenativefromChinaandhavebeenrecently introducedandcommerciallyexploited in several countries, includingChile. Since2008 the kiwifruit industryhasbeen severely jeopardizedby thekiwifruitbacterialcankerdisease,causedbythebacteriaPseudomonassyringaepv.actinidiae(Psa).Thisbacteriamovessystemicallythroughtheplantproducingtheprogressivedeathofallplanttissues.Amongthe5differentPsabiovars,biovar3isthemostvirulentone,whichaccordingtosequencingdatawouldbethebiovarpresentinChile.Ontheotherhand,themostcultivatedvarietiesofkiwifruitarefromthespeciesA.chinensisandA.deliciosa.Althoughbothspeciesaresusceptible toPsabiovar3 infection, it is stillunclearwhether thePsa3causes thesamedamage in thedifferentvarietiesofkiwifruit.Togaininsightintheseissueswe:1)evaluatedwhether4differentChileanisolatedPsa3producethesameseverityofdiseaseinonekiwifruitvariety,and2)determinedtheproliferationofonePsa3isolatedinseveralvarietiesofkiwifruit(maleandfemaleplants).Ourresultssuggestdifferentlevelsofsusceptibilityamongthevarietiesandspecies,beingtheKC8cultivarmoresusceptibleandthecultivarKA2moreresistanttoPsa.Furthermore,weevaluatedtheexpressionofSA-defensegenesandtheSAlevelsinmockandPsa-infectedkiwifruitplants,inordertoassociatethisdefensepathwaytothedifferentlevelsofsusceptibilityfoundindifferentvarieties.

Page 95: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

94

Acknowledgments:FONDECYT1141029.

PS124PERFORMANCE OF NATURALIZED VITIS GENOTYPES AS ROOTSTOCKS FOR DROUGHT TOLERANCE IN CABERNETSAUVIGNONANDSYRAHRiveraN1,2,AhumadaM1,2,MontoyaMA1,IbacacheA1,BalbontínC1,WalbergB3,ZamoranoD3,FranckN3,andZurita-SilvaA1,1InstitutodeInvestigacionesAgropecuariasINIA,CentrodeInvestigaciónIntihuasi,LaSerena,Chile.2UniversidaddelaSerena,EscueladeAgronomía,Ovalle,Chile.3CentrodeEstudiosdeZonasÁridas,FacultaddeCienciasAgronómicas,UniversidaddeChile,Coquimbo,Chileriverav.natalia@gmail.comWateravailabilityforirrigationhasbeenprogressivelydecliningingrapevineproductionareasduetoclimatechangeinChile. A compelling strategy for increasing thewater use efficiency under these conditions is selecting proper scion-rootstockcombinations.Withthisaim,westudiedcontrastingCabernetSauvignon(isohydric)andSyrah(anisohydric)cultivarsgraftedondifferentrootstocks:G25G32(Copiapó);G57,G65,G70(Huasco),fromourcollection“GermoVidNor”,Ruggeri140(commercial,droughttolerant),andself-graftedcontrols.Vineswerestablishedin35Lpotsanddripirrigated100%and30%(waterdeficit)inrandomblockdesign(4replicates)atCoquimbo.Morphological,physiologicaltraitsandgene expression (hormone, aquaporins, stress and development) were assessed during growth season. Stomatalconductanceandphotosynthesiswerereducedbydeficit irrigationbutunaffectedbyscionandrootstock.Conversely,significantdifferencesinrootstockdiameter,leafareaandleafnumberweredeterminedandpositivelycorrelatedtorootarea and volume. For both scions, G32 exhibited the best performance under drought, significantly higher thancommercialrootstock.Moreover,up-regulationofNCED1&NCED2,AP2/EREBP,TIP2.1&PIP2.2,PRP1,GDH&VvNAC1weredisplayedinCabernetSauvignongraftedonG32.Morphometricandfunctionalparametersresultedin improvedperformanceofG32understressforbothvines,pointingG32asmostpromisingrootstockforbothscions,enhancingtheiradaptiveresponses.Acknowledgments:FONDECYTRegularGrant1140039

PS125

GETTING CHILEAN TOMATO ROOTSTOCK USING INTERSPECIFIC CROSS BETWEENWILD (SOLANUM CHILENSE) ANDCULTIVATED(SOLANUMLYCOPERSICUM)TOMATOTOLERANTTOENVIRONMENTALSTRESSES

Alfaro J1,2,Martinez Castillo J2, Salinas L2, GutierrezM2, Fuentes R3, QuinetM4, Lutts S4, 1Departamento deQuimicaUniversidadTécnicaFedericoSantaMaría.2Agronomia INIA.3DepartamentodeEconomiaUniversidadTécnicaFedericoSanta María.4Groupe de Recherche en Physiologie végétale, Earth and Life Institute - Agronomy (ELI-A) , UniversitécatholiquedeLouvain.One of the consequences of climate change for world agriculture is a steady decline of arable land for vegetablesproduction,whichhas ledtoadrasticdecline insupplyofproducts insomeareas. InChile, thisproblemhasbecameimportant for the fresh tomato market, especially in the region of Arica and Parinacota. These áreas are indeedencountering numerous problems such as salinity, drought and boron excesses,which have a direct impact on plantproductivityandfruitquality.AposiblestrategytosolvetheseproblemsconsistsintheselectionofChileaninter-specificrootstocksadapted toeachof these stresses.Thewild tomato (Solanumchilense)hasbeenextensively studiedand isrecognizedashavingabroadspectrumofresistancetobioticandabioticdiseases,whichmakesitapromisingmaterialforstress-resistantrootstocksidentificationafterinter-specificcrosseswithcommercialtomato(Solanumlycopesicum)cultivarssensitive to thesestresses. In thisworkhandpollinationswereperformedfor theproductionof interspecifichybridsfromcrossesbetweenwildtomato(S.chilense)andalocalvarietyoftomato(S.lycopersicum).Identificationof

Page 96: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

95

interspecificrootstock(F1)wasperformedusingmolecularmarkers(CAPS)C2At4g04955,At1g28530,C2At3g08760andT0386AonDNAextractedfromleaftissues.Theobtainedresultsconfirmthattheharvestedmaterialwasahybridissuedfromthetwospecies.Tothebestofourknowledge,thisisthefirstreportmentioningsuchanhybridbetweenS.chilenseandS.lycopersicum.Acknowledgments:ConicytPhDFellowship,ChileAgricultureMinistry(INIAProject50219070).

PS126

CHARACTERIZATIONOFCHILEANSWEETCHERRY(PRUNUSAVIUML.)GERMPLASMBYMEANSOFSSRASSOCIATEDTOCOLOR,FRUITSIZE,MATURITYTIMEANDCROSSCOMPATIBILITY

DonosoA1,LemusG1,AlmadaR2,PerezJ1,BastiasA1,RojasP1,MartinC1,CorreaF1,SagredoB1,1UnidaddeRecursosGenéticosLaPlatinaInstitutodeInvestigacionesAgropecuarias.2CentrodeEstudiosAvanzadosenFruticulturaGenomica.

Sweetcherry (P.avium L.)production inChilepresents thegreatestgrowingandprofitability in the lastdecade.Fruitqualityisoneoftheaspectsthatwilldefineourcompetitivenessinfuturescenarios,albeittheincreasinglylimitedaccesstonewvarietiescanbeaseriousconstraint.TheChileanindustry,supportedbythestate,implementeditsownbreedingprogramsforsweetcherries.Longgenerationtimeandlargerplantsizeofcherrytreesseverelylimitthebreedingbasedon traditional practices of cross and selection. The INIA sweet cherry breeding program (INIA-SCBP) is developingmolecularbreedingmethods(MBM)toimprovethecosteffectivenessofbreedingprocesstoobtainnewvarieties.Usefulmarkers can help to identify the best genotypes (progenitors and progenies) carrying favorable alleles associated todesirabletraits.Nowadaysthereareavailablemarkerstoidentifyspecificallelesassociatedtoimportanttraitssuchascolor,fruitsize,maturitytimeandcrosscompatibility.ThegermplasmofINIA-SCBPconsistingof68genotypes,includingvarietiesandadvancedclones,werecharacterizedbymeansofmarkersPav-Rf-SSR,BPPCT034,CPSCT038,Pav-G4Mat-SSRandS-universal, linkedto loci involvedinfruitcolor, fruitsize,maturitytimeandcrosscompatibility,respectively.Frequencyofdesirablehaplotypesinthegermplasmcollectionandtheirexpectedgenotypeswithindifferentsegregantpopulations of the INIA-SCBP will be analyzed. It is expected that identification genotypes carrying the best allelecombinationsforthesetraitswillincreasethelikelihoodofbetterprogenywiththedesiredcharacterswithinthebreedingpopulationofINIA-SCBP.

Acknowledgments:FondecytRegular1161377;INNOVA-CORFO:09PMG-7243.

INDEXAcuñaP. 72AguileraA. 72AguirreC. 5,17AgurtoM. 9,25

Page 97: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

96

AhumadaM. 95AlamosS. 87AlabadiD. 7,22Alarcón-PobleteE. 70AlberdiM. 58AlcaldeJA. 76AlfaroB. 70AlfaroJ. 7,20,79,84AllanA. 12,13AlmadaR. 11,30,41,51,73,79,93,96AlvarezJ. 5,17,38,95AmazaL. 94AndradeD. 67AndradeP. 34AqueaF. 88ArayaJ. 8,23ArausV. 10,27,38ArenasA. 61Arenas-MoralesV. 71,81,90Arce-JohnsonP. 8,9,24,25,55,60,88ArcosC. 92AriasD. 72Arraño-SalinasP. 78ArmijoG. 9,25ArreyO. 9,26AsísR. 8,15AsprelliP 8,15AstudilloC. 68AuerC. 12,32AvilaA. 63BaezaC. 86BalbontínC. 43,50,95BalicI. 6,19BalladaresC. 81BarbaP. 34,92BarrazaH. 77BarrientosF. 70BastiasA. 11,30,73,89,96BelmarN. 91BeltránD. 56BenfeyP. 5,17BenítezD. 86BenkovaE. 7,14BerriosG. 93BerríosM. 86BertinA. 63Blanco-HerreraF. 9,25,64,78,89BlázquezM. 7,22BoddingtonK. 9,15BravoG. 33BravoL. 93BravoM. 49BravoS. 62,63BurgosY. 92CaamañoN. 48CabezaR. 8,23CaligariPDS. 69CalderiniD. 61Campos-VargasR. 6,19,41,45,47,48,76,81

Page 98: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

97

CanalesJ. 7,20,61CantúD. 85Cárcamo-FincheiraP. 71CarisC. 39CardemilL. 48CarrariF. 8,15CarrascoB. 52,74,75,78CarrascoC. 44CarrascoT. 76Carrasco-OrellanaC. 56Carrasco-PugaG. 10,27CarrilloL. 6,18CastroA. 5,17,85CastroF. 66CastrilloG. 6,14CavieresL. 64Celiz-BalboaJ. 57,63CerdaA. 87CernadasA. 8,15ChangC. 12,32ChorbadjianR. 9,25Cifuentes-EsquivelA. 76ClarkeM. 9,15CloutierS. 88ColomerL. 77ConteM. 8,15ContrerasC. 89Contreras-LópezO. 5,7,17,20ContrerasP. 34ContrerasR. 55CorralesAR. 6,18CorreaF. 11,30,73,89,96CorreaJ. 11,28CortésD. 35,64CortezD. 9,26CoruzziG. 10,27CouplandG. 6,14CovarrubiasM. 48Cuba-DíazM. 34,85,91,92CuestaC. 7,14CurieC. 59DefilippiB. 41,47,53,90DeDaruvarA. 94DeLorenzoL. 6,14DelCantoG. 83,84DelmansM. 87DelPozoA. 9,10,11,26,28,29,30,40,68,70DelRíoV. 5,16DelgadoL. 46DelgadoM. 63DíazF. 10,27Díaz-CortezA. 45DreyerI. 9,24Dominguez-FigueroaJ. 6,18DonosoA. 86,96DonosoJ. 11,30,93DomkeN. 36,39DuclercqC. 7,14DupréG. 53

Page 99: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

98

DupreeP. 57EnsmingerI. 93EscobarA. 11,29,68,69EspinozaC. 60Estrada-BravoF. 11,29,69,73FaríasK. 7,20,79FedericiF. 87FernándezA. 94FernandezM. 36FigueroaC. 6,18,37,46,50FigueroaN. 46,50FigueroaP. 6,18,37,46FloresY. 66FolchC. 12,31FonsecaA. 5,10,16,27FranckN. 95FredesI. 32,38FuentealbaC. 65FuentesF. 64FuentesL. 7,20,79FuentesR. 7,20,79,95FuicaC. 73FumanalB. 33GaeteC. 8,22GalleguillosC. 37GajardoH. 88GarcíaE. 61GarcíaR. 78García-GonzalezR. 74Garrido-BigotesA. 6,18,46GarrigaM. 11,29,73GasicK. 79GilE. 6,14GharbiE. 84GonzálezB. 35GonzálezE. 33,39,50,52,78 GonzalezJ. 56,70GonzalezM. 49,58González-AgüeroM. 41,45,47,53González-TalisJ. 69GomezI. 74Gomez-PaezM. 6,18GraetherS. 9,15GrantS. 7,21,59,60GrasD. 7,22,35GreenbergJ. 9,26GreveMJ. 75GuajardoJ. 6,19GuajardoV. 79GuerraF. 10,28GutiérrezA. 33,93GutiérrezC. 43GutiérrezL. 64GutiérrezM. 7,20,79,95GutiérrezR. 5,7,10,17,20,22,27,32,35,38,

42,55,61,87,94HandfordM. 8,23,42,65HasbúnR. 62HaseloffJ. 87

Page 100: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

99

HerreraR. 6,8,19,22,37,44,56,58Herrera-VásquezA. 5,9,10,16,26,27,40,82HinrichsenP. 11,28,45,90HoluigueL. 5,9,10,16,26,27,38,40,94,97,

99HuertaC. 66HurnyA. 7,14IbacacheA. 95IbeasMA. 7,21,60InfanteR. 11,31,81,90,92InostrozaL. 9,26Inostroza-BlancheteaouC. 71IturraC. 62JanaC. 89JaraK. 54JaraM. 71JaqueC. 81JelenskaJ. 9,26JiménezN. 36,53,80,83,90JonesB. 69,88JordanaX. 74KalazichJ. 12,31KahlL. 87KraiserT. 35LagosC. 36,39LamigL. 5,16,38Larama 93LaurentC. 80LejaiL. 38LemusG. 11,30,96LeónG. 45,64LeónP. 71LeónR. 52,78LeonhardtN. 6,14LeyvaA. 6,14LichtinN. 83,84LieseR. 8,23LienqueoI. 93LilloV. 65LizanaR. 8,22LobosG. 11,29,30,68,69,70LoyolaN. 7,20LuttsS. 7,20,66,79,84,95MadridG. 34MaldonadoJ. 52,72,78MardonesC. 63MartinC. 11,30,89,96MartínezJP. 7,20,66,79,84,86Martínez-CarrascoR. 40Martínez-CastilloJ. 95Martínez-GómezP. 92MatteJP. 69,88MatusI. 68Maureira-ButlerI. 83,84MedinaD. 36,39MedinaJ. 6,18,38,59MedinaM. 35MeiselL. 66MejíaN. 36,53,80,83,90

Page 101: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

100

MeletL. 48MéndezJ. 35MendezJ. 9,26MendezT. 37Mendez-EspinozaA. 11,29,40Mendez-YanezA. 49MenesesC. 41,71,75,78,81,85,89,90MenesesM. 45MeyerC. 9,25MicconoM. 5,17,34MillaleoR. 40,45MilloneD. 8,15MirandaS. 8,23MiyasakaAlmeidaA. 48,65,67MolinaRV. 6,18MolinerosL. 72MolloyJ. 87MontesC. 5,17,53MontoyaMA. 71MorcuendeR. 40MoraGilMDLL. 40,45MoragaC. 73MoralesC. 53MoralesH. 11,31,75MoralesI. 36,53,80,82,90MoralesS. 7,21Morales-QuintanaL. 6,8,19,22,54,56MorenoM. 79MorenoAA. 6,19,78MorenoS. 61MoyaV. 43Moya-LeónMA. 6,8,19,22,49,51,56MoyanoT. 5,10,17,27,87,94MuenaV. 7,20,66MujicaK. 66MuñozM. 12,31,44,47MuñozM. 54NavarreteE. 34,85NebauerS. 6,18Nilo-PoyancoR. 10,27NorambuenaL. 7,21,50,65,67,68NuñezC. 9,25,67NúñezR. 36,80,82,90Nuñez-LilloG. 71,81,85,90Núñez-SalazarR. 53NussaumeL. 6,14OBrienJ. 32,38OcarezN. 36,53,80,82,83,90OlivaresF. 46OlivaresS. 62,63OlmedoP. 6,19OportoM. 58OttF. 6,14OrellanaA. 5,13,57,64,85OrellanaD. 60OrellanaM. 81OrtegaM. 46OsorioC. 83,84Osorio-NavarroC. 67

Page 102: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

101

Ostria-GallardoE. 93OviedoK. 45,47PachecoI. 11,31,92PadarianJ. 69PalazuelosF. 86PanequeM. 73ParadaJ. 81ParraJ. 57,63Parra-AlmunaL. 40,45Parra-PalmaC. 51PasteneE. 46PastenesC. 44,47,54PatronN. 87PavezC. 85PavezL. 46Paz-AresJ. 6,14PedreschiR. 65PeñaA. 11,31,53PeñaD. 70PeñalozaA. 39PeraltaI. 8,15PeredoT. 81PerezJ. 11,30,73,89,96PerezP 40PerezR. 50Pérez-DíazR. 52Pérez-DonosoA. 76PimentelP. 41,43,49,51,93PintoM. 11,28PividoriM. 8,15PizarroL. 50PobleteG. 52Poblete-EcheverríaC. 69PontigoS. 57,60PollakB. 87PrietoH. 5,17,34PuentesA. 39QuianR. 87QuintanaC. 47QuinetM. 95QuirogaP. 66QuirozD. 5,17,34QuirozL. 77RamírezA. 5,17RamosP. 37,44,51,56Renau-MorataB. 6,18RestovicF. 8,24Reyes-DíazM. 58,70RiveraC. 34,85,91RiveraN. 95RiveraS. 47RiverasE. 7,22RizzitelloR. 12,32RojasB. 42RojasP. 11,30,83,89,93,96Romero-BravoS. 11,29,68,69Romero-RomeroJ. 60RosasC. 77RoschzttardtzH. 7,21,59,60,74

Page 103: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

102

RubilarM. 89,90Rubilar-HernándezC. 68RufK. 70Ruiz-LaraS. 33,50,52RuminotF. 73RupayanA. 83,84SadrasV. 10,16Saez-VasquezJ. 5,13Saez-AguayoS. 9,25,57,63SagredoB. 11,30,70,73,89,93,96SalazarE. 86SalazarJ. 11,31,92SalcedoN. 77SalinasC. 48SalinasH. 9,25SalinasL. 7,20,66,95SalinasP. 81,94,97SalinasR. 48,86Salinas-GrenetH. 64SalvatierraA. 41,49,51,93SanLeónD. 6,14SanMartín-DavisonA. 50,52SanceM. 8,15SanchezE. 5,17,34SandovalA. 71SanhuezaC. 64SaskiC. 79SchlechterR. 9,25SchneiderC. 73,77,87SchreiberL. 10,15SchulzeJ. 8,23SchwemberA. 75SeegerM. 84SeguelA. 5,9,10,16,26,27,82SepúlvedaT. 57,60SerranoA. 55SerranoE. 81ShinyaP. 11,31,92SilvaC. 11,31SilvaH. 52,72,74,78Silva-SanzanaC. 9,25SimpsonK. 77SinghK. 9,15SiqueiraR. 69,88SparksE. 5,17StangeC. 72,77StappungY. 6,19,37,58StegmayerG. 8,15SolanoI. 9,25SolísS. 41,43,51,79SotoD. 10,27SotoF. 50,52Soto-CerdaB. 88TapiaG. 9,10,26,28,35,53TapiaL. 87TempleH. 57,63TorresC. 73TorrealbaM. 76ToroG. 43,49,51

Page 104: PROGRAM AND ABSTRACTS - Biología Vegetal...13:30 - 13:50 Valenzuela-Riffo F1, Guajardo J1, Stappung Y1, Moya-León M1, Herrera R1, Morales-Quintana L 1 1 Laboratorio de Fisiología

November28thtoDecember1st2016

103

UbedaC. 53UdallJ. 84UgaldeJM. 5,10,16,27,38UlloaJL. 36UlloaM. 55,75Ulloa-InostrozaE. 58Ulloa-ZepedaL. 89UndurragaS. 7,22UrraC. 85UrzúaT. 40,82VaralaK. 10,27ValdebenitoF. 63ValenzuelaC. 37ValenzuelaM. 48ValenzuelaS. 36,39Valenzuela-RiffoF. 6,19,54ValleME. 8,15VargasV. 53,80,82,90Vargas-PerezJ. 7,21,60,74VásquezD. 34VegaA. 32,38VegaI. 55VegaMV. 9,26,35,53VelosoV. 8,24VergaraA. 76VergaraC. 73VergaraC. 41Vergara-BarrosP. 37Vicente-CarbajosaJ. 6,18,59VidalE. 5,7,10,17,22,27,94VillalobosL. 44,47,54VillarL. 93WalbergB. 95WeigelD. 6,14WildermuthM. 9,26YáñezM. 10,28YañezA. 9,26ZamoraP. 85ZamoranoD. 95ZapataS. 65ZapataV. 42ZuñigaA. 35ZúñigaG. 55ZúñigaP. 50Zuñiga-FeestA. 63Zurita-SilvaA. 70,71,95