PN Junctions - nanohub.org

23
ECE-305: Fall 2016 PN Junctions Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] Pierret, Semiconductor Device Fundamentals (SDF) Chapter 4 (pp. 195-213) 9/26/2016 1

Transcript of PN Junctions - nanohub.org

Page 1: PN Junctions - nanohub.org

Bermel ECE 305 F16

ECE-305: Fall 2016

PN Junctions

Professor Peter BermelElectrical and Computer Engineering

Purdue University, West Lafayette, IN [email protected]

Pierret, Semiconductor Device Fundamentals (SDF)Chapter 4 (pp. 195-213)

9/26/2016 1

Page 2: PN Junctions - nanohub.org

outline

1) PN Junctions qualitative

2) PN Junctions quantitative

Bermel ECE 305 F169/26/2016 2

Page 3: PN Junctions - nanohub.org

NP junction (equilibrium)

N P

xp-xn 0

“transition region”

Bermel ECE 305 F169/26/2016 3

Page 4: PN Junctions - nanohub.org

NP junction

N P

transition region

electric field, electrostatic potential, n(x), p(x), rho(x)

xp-xn 0

+

-

EVL >VR

r < 0

NA-

r > 0

ND+

9/26/2016 Bermel ECE 305 F16 4

Page 5: PN Junctions - nanohub.org

energy band approach

EC

EV

EF

Ei V = 0

EC

EV

Ei

1) Fermi-level must be constant in equilibrium.

2) Positive electrostatic potentials lower the electron energy

3) Left side must develop a positive potential, Vbi.

EF

qVbiV = Vbi

9/26/2016 Bermel ECE 305 F165

Page 6: PN Junctions - nanohub.org

eq. energy band diagram

EFEF

1) Begin with EF

2) Draw the E-bands where you know the carrier density3) Electrostatic potential by flipping E-band upside down. 4) E-field from slope5) n(x), p(x) from the E-band diagram6) rho(x) from n(x) and p(x)7) diffusion current from (5) or from (6)

EC x( ) = EC- ref - qV x( )

E x( ) =

1

qdEC x( ) dx

9/26/2016 Bermel ECE 305 F16 6

Page 7: PN Junctions - nanohub.org

energy band diagram

7

EF

EC

EV

x

E

Ei

x = xpx = 0x = -xn

9/26/2016 Bermel ECE 305 F16

Page 8: PN Junctions - nanohub.org

“read” the e-band diagram

1) Electrostatic potential vs. position

2) Electric field vs. position

3) Electron and hole densities vs. position

4) Space-charge density vs. position

9/26/2016 Bermel ECE 305 F16 8

Page 9: PN Junctions - nanohub.org

electrostatics: V(x)

V

x

N P

xp-xn

qVbi

9/26/2016 Bermel ECE 305 F16 9

Page 10: PN Junctions - nanohub.org

electrostatics: E (x)

E

xN P

r = q p0 x( ) - n0 x( ) + ND+ x( ) - NA

- x( )éë ùû

xp-xn

9/26/2016 Bermel ECE 305 F16 10

Page 11: PN Junctions - nanohub.org

carrier densities vs. x

log10 n x( ), log10 p x( )

xN P

xp-xn

p0P = NA

p0N = ni2 ND

n0N = ND

n0 p = ni2 NA

9/26/2016 Bermel ECE 305 F16 11

Page 12: PN Junctions - nanohub.org

electrostatics: rho(x)

r

x

N P

r = q p0 x( ) - n0 x( ) + ND+ x( ) - NA

- x( )éë ùû

xp

-xn

qND

-qNA

9/26/2016 Bermel ECE 305 F16 12

Page 13: PN Junctions - nanohub.org

the built-in potential

EC

EV

EFP

Ei V = 0

EC

EV

Ei

EFN

qVbiV = Vbi

n0 = nieEFN -Ei( ) kBT p0 = nie

Ei-EFP( ) kBT

n0p0= e EFN -EFP( ) kBT = eqVbi kBT Vbi =

kBT

qlnn0p0ni2

æ

èçö

ø÷=kBT

qlnNDNAni2

æ

èçö

ø÷

9/26/2016 Bermel ECE 305 F16 13

Page 14: PN Junctions - nanohub.org

outline

1) PN Junctions qualitative

2) PN Junctions quantitative

Bermel ECE 305 F16

9/26/2016

Using “the depletion approximation”

15

Page 15: PN Junctions - nanohub.org

“the semiconductor equations”

Three equations in three unknowns:

In steady state equilibrium, we only need to solve the Poisson equation

How do we calculate rho(x), E(x), and V(x)?

9/26/2016 Bermel ECE 305 F16 16

Page 16: PN Junctions - nanohub.org

NP junction (equilibrium)

N P

xp-xn 0

“transition (depletion) region”

Bermel ECE 305 F16

Vbi =kBT

qlnNDNAni2

æ

èçö

ø÷

V = 0V =Vbi

1) What is the width of the depletion region?2) What is the maximum electric field?

9/26/2016 17

Page 17: PN Junctions - nanohub.org

the Poisson equation

d

dxeSE( ) = r x( )

dE

dx=r x( )eS

=r x( )KSe0

dE

dx=r x( )KSe0

9/26/2016 Bermel ECE 305 F16 18

Page 18: PN Junctions - nanohub.org

the “depletion approximation”

dE

dx=r x( )KSe0

r

x

N P

-xn

r = +qND

xp

r = -qNA

qNDxn = qNAxp

NDxn = NAxp

9/26/2016 Bermel ECE 305 F16 19

Page 19: PN Junctions - nanohub.org

the electric field

dE

dx=r x( )KSe0

r

xN P

xp

-xn

r = -qNA

dE

dx=qNDKSe0

dE

dx= -

qNAKSe0

E x( ) > 0

9/26/2016 Bermel ECE 305 F16 21

Page 20: PN Junctions - nanohub.org

the electrostatic potential

dE

dx=r x( )KSe0

xN P

xp-xn

E

E x( ) = -

dV

dx

W = xn + xP

E 0( ) =qNDKSe0

xn

NDxn = NAxPxn =NA

NA + NDW

dE

dx=qNDKSe0

9/26/2016 Bermel ECE 305 F16 22

Page 21: PN Junctions - nanohub.org

calculating �(�) from ℰ(�)

xP

xp-xn

E

V x( ) = - E x( )x

xp

ò dx

V x( )

V = 0

V =Vbi

See Pierret, SDF, pp. 212-213

9/26/2016 Bermel ECE 305 F16 24

Vbi = E x( )- xn

xp

ò dx

Vbi =

1

2E 0( )W

ℰ(0)

E x( ) = -

dV

dx

Page 22: PN Junctions - nanohub.org

summary

xN P

xp-xn

E

W = xn + xP

NDxn = NAxP

xn =NA

NA + NDW

xp =ND

NA + NDW

W =2KSe0q

NA + NDNDNA

æ

èçö

ø÷Vbi

é

ëê

ù

ûú

1/2

E 0( ) =2qVbiKse0

NDNANA + ND

æ

èçö

ø÷é

ëê

ù

ûú

1/2

Vbi =kBT

qln

NDNAni2

æ

èçö

ø÷

E 0( ) =

2VbiW

9/26/2016 Bermel ECE 305 F1625

Page 23: PN Junctions - nanohub.org

conclusions

Developed a qualitative procedure to sketch ℰ, �, �, and � for PN junctions

Used Poisson’s equation and ‘depletion approximation’ to quantify these values

This approach also gives us the width of the ‘depletion region’ on both sides of the junction (�� and ��), plus the ‘built-

in’ voltage ���

9/26/2016 Bermel ECE 305 F16 26