Phenotypic deconstruction of dormant bud winter...

15
Phenotypic deconstruction of dormant bud winter hardiness XII International Conference on Grapevine Breeding and Genetics Université de Bordeaux 7/15/2018-7/20/2018 Jason P. Londo and Alisson P. Kovaleski

Transcript of Phenotypic deconstruction of dormant bud winter...

  • Phenotypic deconstruction of dormant bud winter hardiness

    XII International Conference on Grapevine

    Breeding and Genetics

    Université de Bordeaux

    7/15/2018-7/20/2018

    Jason P. Londo and Alisson P. Kovaleski

  • Cold Hardiness: phenotyping 6-8 months of non-visual physiology

    -40

    -30

    -20

    -10

    0

    10

    20

    Nov-13 Dec-13 Jan-14 Feb-14 Mar-14 Apr-14

    Key Aspects:

    Cane, Trunk, Phloem, Xylem, Cambium, Compound Bud

    Cold Hardiness: minimum temperatures do not breach bud’s defenses. Buds track temperature.

    Dormancy is critical: must be induced to gain cold hardiness, maintained to prevent damage.

    Timing is everything.

    MaximumHardiness

    0°C

    11°CChilling hour accumulation

    Endodormancy Ecodormancy

    Tem

    pe

    ratu

    re °

    C

    Full Chilling Insufficient Chilling

  • Phenotyping dormant bud cold hardiness

    0.E+00

    1.E-04

    2.E-04

    3.E-04

    4.E-04

    5.E-04

    6.E-04

    1.9

    -2.1

    -6.1

    -10

    .2-1

    4.3

    -18

    .4-2

    2.4

    -26

    .5-3

    0.5

    -34

    .6

    Vo

    ltag

    e (V

    )

    Temperature (°C)

    Low Temperature

    Exotherm (LTE)

    HTE

  • Tracking Bud Survival

    -35.00

    -25.00

    -15.00

    -5.00

    5.00

    15.007-Nov 7-Dec 6-Jan 5-Feb 7-Mar 6-Apr

    2012-2013

    -35.00

    -25.00

    -15.00

    -5.00

    5.00

    15.0012-Nov 12-Dec 11-Jan 10-Feb 12-Mar 11-Apr

    2013-2014

    -35.00

    -25.00

    -15.00

    -5.00

    5.00

    15.0012-Nov 12-Dec 11-Jan 10-Feb 12-Mar

    2014-2015

    V. ripariaV. amurensisV. vinifera

    • The type of winter determines bud cold hardiness: strong environmental component

    • Buds do not gain maximum hardiness unless the winter conditions are severe.

    • Phenotyping the entire winter is logistically challenging, we need to deconstruct the

    responses.

    De

    gre

    es

  • σ T – Changes in LTE based on mean and oscillation.

    Starting LTE: ~ - 12°C

    Mean 7°C0°C oscillation

    Mean 7°C3°C oscillation (4 to 10°C)

    Mean 7°C5°C oscillation (2 to 12°C)

    Mean 2°C0°C oscillation

    Mean 2°C5°C oscillation (-3 to 7°C)

    LTE: ~ - 12°C

    LTE: ~ - 12°C

    LTE: ~ - 17°C

    LTE: ~ - 15°C

    LTE: ~ - 20°C

    Starting LTE: ~ - 12°C3°C

    5°C

    5°C

    8°C

    0°C

    Acclimation:Gaining Cold Hardiness

    Londo and Kovaleski 2017

  • σ T – Changes in LTE based on mean and oscillation.

    Acclimation:Gaining Cold Hardiness

    Londo and Kovaleski 2017

    V. amurensis

    V. ripariaV. labruscaV. cinerea

    V. rupestrisV. aestivalisV. vulpina

    Strong

    Weak

    V. vinifera

    Response

    σ T - Significantly different between species.

  • -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    4-Aug 3-Sep 3-Oct 2-Nov 2-Dec 1-Jan 31-Jan 2-Mar 1-Apr 1-May31-May

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    03-Oct 2-Nov 2-Dec 1-Jan 31-Jan 2-Mar 1-Apr 1-May

    Me

    as

    ure

    d L

    TE v

    alu

    es

    °C

    2013-2014

    43 different Vitis riparia

    σ T

    Comparing cold hardiness response with statistics based models

    No genotype effect Genotype effect

    LTE

    °C

    All V. riparia respond to temperature fluctuations in the same way. Dormancy induction may modulate max LTE?

    Londo and Kovaleski 2018: in review

  • Deacclimation:Chilling and Losing Cold Hardiness

    -30

    -20

    -10

    0

    10

    20

    30

    17-Sep 17-Oct 16-Nov 16-Dec 15-Jan 14-Feb 16-Mar 15-Apr 15-May

    LTE

    °C

    −30

    −25

    −20

    −15

    −10

    −5

    0

    0 10 20 30 40 50 60 70 80 90

    Time (day)

    LT

    E (

    °C

    )360

    860

    1580

    10 °C

    −30

    −25

    −20

    −15

    −10

    −5

    0

    0 10 20 30 40 50 60 70 80 90

    Time (day)

    LT

    E (

    °C

    )

    360

    860

    1580

    22 °C

    −30

    −25

    −20

    −15

    −10

    −5

    0

    0 10 20 30 40 50 60 70 80 90

    Time (day)

    LT

    E (

    °C

    )360

    860

    1580

    0 10 20 30 40 50 60 70 80 90

    Days

    0 10 20 30 40 50 60 70 80 90

    Days

    Endodormancy Ecodormancy Chilling accumulation increases rate of deacclimation

    Chilling accumulates

    Kovaleski, Reisch and Londo 2018: in review

  • −25

    −20

    −15

    −10

    −5

    0

    0 50 100 150

    Time (Day)

    LT

    E (

    °C)

    Temperature (°C)

    2

    4

    7

    8

    10

    11

    22

    0

    25

    50

    75

    100

    0 400 800 1200 1600

    Accumulated Chill

    Ra

    te (

    %)

    4

    22

    0

    25

    50

    75

    100

    0 400 800 1200 1600

    Accumulated Chill

    Ra

    te (

    %)

    4

    22

    Deacclimation and Chilling

    Chill Accumulation

    ~

    De

    acc

    lim

    ati

    on

    po

    ten

    tia

    l

    Endodormancy

    Ecodormancy

    −25

    −20

    −15

    −10

    −5

    0

    0 50 100 150

    Time (Day)

    LT

    E (

    °C)

    Temperature (°C)

    2

    4

    7

    8

    10

    11

    22

    −25

    −20

    −15

    −10

    −5

    0

    0 50 100 150

    Time (Day)

    LT

    E (

    °C

    )

    Temperature (°C)

    2

    4

    7

    8

    10

    11

    22

    Full speeddepends on the airplane

    Rate of deacclimationdepends on the temperature

    Ψdeacc

    Deacclimation rates at different chilling and temperatures

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 4 8 12 16 22 30

    Temperature (°C)

    kd

    ea

    cc (

    °C

    /day)

    1580 (97 %)

    1030 (60 %)

    860 (30 %)

    360 ( 0 %)

    0

    1

    2

    3

    0 4 8 12 16 22 30

    Temperature (°C)

    kd

    ea

    cc (

    °C

    day

    -1 )

    860

    1440

    1580

    Kovaleski, Reisch and Londo 2018: in review

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    0 250 500 750 1000 1250 1500

    Cab. Sauv. 10°C

    Riesling 10°C

    Riesling 22°C

    V. riparia 22°C

    De

    acc

    lim

    ati

    on

    rate

    , °C

    /da

    y

    Chill Accumulation

    V. amurensis 22°C

    V. amurensis 10°C

    V. riparia 10°C

    Cab. Sauv. 22°C

    What does this have to do with phenotyping?

    Deacclimation potential is driven by chilling

    Deacclimation rate is temperature specific

    New high-throughput phenotypes for mapping populations

    Slope: Dormancy transition speed

    and

    Inflection Point: 50% Deacclimating potential

    Rate/Ratio

  • Deacclimation rate in 4 mapping families at 15°C

    -25

    -20

    -15

    -10

    -5

    0

    V. riparia

    V. amurensis

    V. cinerea

    V. vulpina

    V. viniferaX

    LTE

    °C

    Days in 15 °C

    T0 T4 T11 T21

    Rate of loss °C/day

    0.57

    0.51

    0.30

    0.29

    -25

    -20

    -15

    -10

    -5

    0

    2/5 2/10 2/15 2/20 2/25

    V. riparia family

    -25

    -20

    -15

    -10

    -5

    0

    2/5 2/10 2/15 2/20 2/25

    V. vulpina family

    15°C0.29 °C/Day

    15°C0.57 °C/Day

    4°C0.07 °C/Day

    4°C0.04 °C/Day

    LTE

    °C

    LTE

    °C

  • -30

    -20

    -10

    0

    10

    20

    30

    40

    Aug-16 Oct-16 Nov-16 Jan-17 Mar-17 Apr-17 Jun-17

    Phenotypes in action: Integration of σ Tand Σdeac predict cold hardiness

    σ T Σdeac

    Outcome: Breaking the curve into two portions identifies separate phenotypes:

    1) Response potential: variation at species level = σ T

    2) Dormancy/deacclimation resistance: variation at genotype level = Σdeac

    Combining these two traits increases prediction ability and can be used to help map the traits.

    -30

    -20

    -10

    0

    10

    20

    30

    40

    Aug-16 Oct-16 Nov-16 Jan-17 Mar-17 Apr-17 Jun-17

  • -30

    -20

    -10

    0

    10

    20

    30

    40

    Aug-16 Oct-16 Nov-16 Jan-17 Mar-17 Apr-17 Jun-17

    Phenotypes in action: Integration of σ Tand Σdeac predict cold hardiness

    σ T Σdeac

    Outcome: Breaking the curve into two portions identifies separate phenotypes:

    1) Response potential: variation at species level = σ T

    2) Dormancy/deacclimation resistance: variation at genotype level = Σdeac

    Combining these two traits increases prediction ability and can be used to help map the traits.

  • Summary

    • Understanding the complexity of the cold hardiness trait:

    • Temperature variation is a strong contributor to acclimation ability - species level trait.

    • Dormancy induction may determine max potential LTE - new phenotype goal.

    • Deacclimation rate and potential is key to predicting frost risk and budbreak – genotype level trait.

    • Development of high(er)-throughput phenotyping for cold hardiness

    • Ongoing development of a model for predicting behavior

  • Thank you for your attention. Questions?

    Research GeneticistJason Londo

    Kathleen DeysHanna MartensBill SrmackJohn KeetonBob MartensGreg Noden

    Bruce ReischBill WilseyTim MartinsonLynn Johnson

    Ravines Wine CellarsAnthony Road Wine Co.

    Anne Fennell – SDSUKrista Shelli – USDA, Parma

    PhD CandidateAlisson Kovaleski