Part B Tensors

30
1 Part B Tensors 'cos 'sin cos sin ' 'sin 'cos sin cos ' x x y x x or y x y y y Or, inverting ' cos sin ' cos sin ' sin cos ' sin cos x x y x x or y x y y y The graph above represents a transformation of coordinates when the system is rotated at an angle CCW

description

Part B Tensors. Or, inverting. The graph above represents a transformation of coordinates when the system is rotated at an angle  CCW. 2B1 Tensors. - PowerPoint PPT Presentation

Transcript of Part B Tensors

Page 1: Part B  Tensors

1

Part B Tensors

'cos 'sin cos sin '

'sin 'cos sin cos '

x x y x xor

y x y y y

Or, inverting

' cos sin ' cos sin

' sin cos ' sin cos

x x y x xor

y x y y y

The graph above represents a transformation of coordinates when the system is rotated at an angle CCW

Page 2: Part B  Tensors

2

Let be two vectors in a Cartesian coordinate system. If is a transformation, which transforms any vector into some other vector, we can write

2B1 Tensors ,a b T

Ta c

Tb d

where c and d are two different vectors.

If

T a b Ta Tb

T a Ta

1.1

1.2

a

a

For any arbitrary vector a and b and scalar

T is called a LINEAR TRANSFORMATION and a Second Order Tensor. (1.1a) and (1.2a) can be written as,

T a b Ta Tb 1.3

Page 3: Part B  Tensors

3

2B1 Tensors

Questions:

If ( ) 3 , then is a tensor?T a a T

( ) 3( ) 3 3

3 3

So it satisfy ( )

( ) 3( ) 3

(3 ) 3

So it satisfy ( )

T a b a b a b

Ta Tb a b

T a b Ta Tb

T a a a

Ta a a

T a Ta

Yes

Page 4: Part B  Tensors

4

2B1 Tensors

Questions:

1If ( ) 3 2 , then is a tensor?T a a e T

1 1

1 1 1

( ) 3( ) 2 3 3 2

(3 2 ) (3 2 ) 3 3 4

So ( )

T a b a b e a b e

Ta Tb a e b e a b e

T a b Ta Tb

Yes

Page 5: Part B  Tensors

5

2B2 Components of a Tensor

Scalar has 1 component

Vector has 3 component

Tensor has ? component?

1 1 2 2 3 3

1 1 2 2 3 3

We know

ˆ ˆ ˆ

ˆ ˆ ˆ

Ta b

T a e a e a e b

a Te a Te a Te b

Page 6: Part B  Tensors

6

2B2 Components of a Tensor

~ ^ ^

i jjiT e T e

11 1 1

12 1 2

ˆ ˆ

ˆ ˆ

T e Te

T e Te

In general ˆ ˆij i jT e Te

The components of Tij can be

written as

11 12 13

21 22 23

31 32 33

T T T

T T T T

T T T

1 1 2 3

2 1 2 3

3 1 2 3

ˆ ˆ ˆ ˆ?? ?? ??

ˆ ˆ ˆ ˆ?? ?? ??

ˆ ˆ ˆ ˆ?? ?? ??

Te e e e

Te e e e

Te e e e

1 11 1 21 2 31 3

2 12 1 22 2 32 3

3 13 1 23 2 33 3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

Te T e T e T e

Te T e T e T e

Te T e T e T e

Page 7: Part B  Tensors

7

2B2 Components of a Tensor (cont.)

Example 2B2.3

~Re cos sin ~Re sin cos ~Re

1 1 2

2 1 2

3 3

e e

e e

e

Thus

100

0cossin

0sincos

R

Q: Let R correspond to a righ-hand rotation of a rigid body about the x3 axis by an angle . Find the matrix of R

Q: Let R correspond to a 90° right-hand rigid body rotation about the x3 axis. Find the matrix of R

1 2

2 1

3 3

ˆ ˆRe

ˆ ˆRe

ˆ ˆRe

e

e

e

0 1 0

1 0 0

0 0 1

R

Page 8: Part B  Tensors

8

2B3 Components of a transformed vector

The transformation ~T is linear if

For any arbitrary vectors aa12, and scalar

is then called a LINEAR TRANSFORMATION and is a second-order tensor.

If bTa~, then

11

2121~

)(~

~~)(

~

aTaT

aTaTaaT

3

2

1

333231

232221

131211

3

2

1

a

a

a

TTT

TTT

TTT

b

b

b

Page 9: Part B  Tensors

9

2B3 Components of a transformed vector

1 1 2 2 3 3

1 1 2 2 3 3

From the definition of the tensor

We know

ˆ ˆ ˆ

ˆ ˆ ˆ

Ta b

T a e a e a e b

a Te a Te a Te b

Now what is b? what are the components of b?

1 1 1 1 1 2 1 2 3 1 3

2 2 1 2 1 2 2 2 3 2 3

3 3 1 3 1 2 3 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

b e b a e Te a e Te a e Te

b e b a e Te a e Te a e Te

b e b a e Te a e Te a e Te

1 11 1 12 2 13 3

2 21 1 22 2 23 3

1 31 1 32 2 33 3

b T a T a T a

b T a T a T a

b T a T a T a

3

2

1

333231

232221

131211

3

2

1

a

a

a

TTT

TTT

TTT

b

b

b

Page 10: Part B  Tensors

10

2B2 Components of a Tensor (cont.)

Vector will have different components in (x,y,z) system and

(x’,y’,z’) system. AB is still the same.

Similarly, by a tensor T at P is the same in the two systems, but, will have different components like

1 2 3

1 2 3

ˆ ˆ ˆ and e ,e ,e

ˆ ˆ ˆ and e ,e ,e

ij

ij

T T

T T

Page 11: Part B  Tensors

11

2B4 Sum of Tensors

If Tand Sare two tensors, then

( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )ij i j i j i j ij ij

T S a Ta Sa

T S e T S e e Te e Se T S

T S T S

Definition:

the sum of and is is also a tensor, defined as:

( )

T S T S

T S a Ta Sa

Page 12: Part B  Tensors

12

2B5 Product of Two Tensors

Components:

im mjij

im mjij

TS T S

ST S T

or

~~ ~ ~

~~ ~ ~

TS T S

ST S T

In general, the product of two tensors is not commutative:

~~ ~~TS ST

)~

(~

)~~

( aSTaST

Page 13: Part B  Tensors

13

Q: Let R correspond to a 90° right-hand rigid body rotation about the x3 axis. Find the matrix of R

2B5 Product of Two Tensors

0 1 0

1 0 0

0 0 1

R

1 0 0

0 0 1

0 1 0

S

Q: Let R correspond to a 90° right-hand rigid body rotation about the x1 axis. Find the matrix of S

Q: Let W correspond to a 90° right-hand rigid body rotation about the x3 axis, then a 90° right-hand rigid body rotation about the x1 axis. Find the matrix of W

Ra ( )S Ra

? ( )a S Ra ( )SRa S Ra

W SR

W S R

Page 14: Part B  Tensors

14

2B6 Transpose of a Tensor

Transpose of ~T is denoted by

~T T

. If aand bare two vectors,

thenTa Tb b T a

In component form, TTij jiT

Note TTT TSST~~

)~~

(

TTTT ABCCBA~~~

)~~~

(

TTT T

Page 15: Part B  Tensors

15

2B7 Dyadic Product a b W ~

Definition

)()( cbacba

jijiij ebaeeWeW ˆ)(ˆˆ~

ˆ

jijiji aaaaebae )ˆ(ˆ

332313

322212

312111

321

3

2

1~

bababa

bababa

bababa

bbb

a

a

a

W

W , dyadic product of two vectors is also a tensor. It transforms a vector into a vector parallel to a

c

Page 16: Part B  Tensors

16

2B8 Trace of a Tensor

tr a b a b( )

11 22 33

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ

( )

ij i j ij i j

ij i j ij ij ii

T

tr T tr T e e T tr e e

T e e T T

T T T

tr T

Page 17: Part B  Tensors

17

2B9 Identity Tensor

A linear transformation which transforms every vector

a

into itself is an identify tensor ~I

~I a a

100

010

001~I

If ( ) 3 , we proved is a tensor, what is ?T a a T T

11 1 1 1 1(3 ) 3T e Te e e

(3 ) 3ij i j i j ijT e Te e e

3 0 0

0 3 0

0 0 3ijT

Page 18: Part B  Tensors

18

2B9 Inverse Tensor

Inverse, if ~Texists if the matrix Tis non-singular,

~ ~T T I 1

Note that

~ ~S T 1

then ~Sis the inverse of ~T, or

~~ST I

Given a tensor ~T, if ~Sexists such that

111 ~~~~ STTS

Page 19: Part B  Tensors

19

2B10 Orthogonal Tensor

Transformed vectors preserve their lengths and angles, thus if ~Q

is an orthogonal tensor, then ~Qa a

Thus ~ ~Qa Qb a b

for any aand b,

(~

) (~

)~

(~

)Qa Qb b Q QaT

( )( )Tb Q Q a b a b Ia

and

)~

,~

cos(),cos( bQaQba

Page 20: Part B  Tensors

20

2B10 Orthogonal Tensor (cont.)

Thus ~ ~ ~Q Q IT

Also, we have ~ ~Q Q I1 , So

1TQ Q

Thus for an orthogonal matrix, the transpose is also its inverse.Example:A rigid body rotation is an ORTHOGONAL tensor,

R R I

R

T

det 1

100

0cossin

0sincos

R

Page 21: Part B  Tensors

21

2B11 Transformation Matrix Between

Two Coordinate Systems Consider two systems 123 123X,, and X,,eee eee ,

ie is obtained from ieusing a rigid body rotation of ie. We are interested to relate the unit vectors iein Xfrom that of X.

ˆ ˆ ˆi i mi me Qe Q e

We see that,

1e

1e

2e2e

3e

3e1 11 1 21 2 31 3

2 12 1 22 1 32 3

3 13 1 23 1 33 3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

e Q e Q e Q e

e Q e Q e Q e

e Q e Q e Q e

Consider two systems 123 123X,, and X,,eee eee ,

ie is obtained from ieusing a rigid body rotation of ie. We are interested to relate the unit vectors iein Xfrom that of X.

Page 22: Part B  Tensors

22

2B11 Transformation Matrix Between Two Coordinate Systems (cont.)

Qis the transformation given by We note that forTQQI, Q

is an orthogonal matrix

1 1 1 2

2 2 1 2

3 3 3

ˆ ˆ ˆ ˆe Re cos sin

ˆˆ ˆ ˆRe sin cos

ˆˆ ˆRe

e e

e e e

e e

Thus

100

0cossin

0sincos

R

Q: Let be obtained by rotating the basis about the x3 axis by an angle . Find the transformation matrix of R from to

ie ie

ie ie

Page 23: Part B  Tensors

23

2B12 Transformation laws for Vectors. Consider one vector a

Let abelong to { }ie . Thus . iia ae in the X frame.

If X is another system, and we wish to express a within X, let

'

i mmie Q e '

'

'

11 21 311 1

2 12 22 32 2

3 313 23 33

. ( . )

[ ] [ ] [ ]

m mi mi mi

i mi m

T

a a Q e Q a e

a Q a

a Q a

Q Q Qa a

a Q Q Q a

a aQ Q Q

Consider one vector a

Let abelong to { }ie . Thus . iia ae in the X frame.

If X is another system, and we wish to express a within X, let

'

i mmie Q e

Thus 123,,aaaare the components of a with respect to the Xsystem.

Thus 123,,aaaare the components of a with respect to the Xsystem.

Page 24: Part B  Tensors

24

2B12 Transformation laws for Vectors. (cont.)Example:

If '{}ie is obtained by rotating {}ie ccw with respect to

3e-axis find the components of 12aein terms of '{}ie

Answer

0 1 0

1 0 0

0 0 1

Q

'

0 1 0 2 0

1 0 0 0 2

0 0 1 0 0

Ta Q a

Page 25: Part B  Tensors

25

2B13 Transformation law for tensor

Let and

Recall that the components of a tensor are:

Since i mimeQe, we have

{ }iT e { }iT e

T~

jiij

jiij

eTeT

eTeT~

~

ˆ ˆij mi m nj nT Q e TQ e

)ˆ~

ˆ( nmnjmi eTeQQ

Page 26: Part B  Tensors

26

2B13 Transformation law for tensor (cont.)

Note that the tensor T is the same, but has different components

Tin the new frame ie compared to in iT e

T~

333231

232221

131211

333231

232221

131211

332313

322212

312111

333231

232221

131211

QQQ

QQQ

QQQ

TTT

TTT

TTT

QQQ

QQQ

QQQ

TTT

TTT

TTT

Thus

QTQT T

Page 27: Part B  Tensors

27

2B13 Transformation law for tensor (cont.)

Let 010

120

001

T

If Q represents rotation as in the earlier example such that

010

100

001

Q

, then

'

2 1 0

1 0 0

0 0 1

TT Q T Q

Find the matrix of T with respect to the basis ie

Page 28: Part B  Tensors

28

2B14 Tensors by Transformation laws

{ }ie are the components of the system X, and '

{ }ie are that of

new system X. Q or ijQ define direction cosines tensor

transforming from X toX. '

cos( , )i jijQ e e ; Q is an

orthogonal transformation; T

QQ I

Q~

TQQ~~

Page 29: Part B  Tensors

29

2B14 Tensors by Transformation laws (cont.)

The components transform as follows:

'

'

'

'

th... ...

Scalar

Vector

Second Order Tensor

Third Order Tensor..... n Order Tensor

nn

i mi m

ij mi nj mn

ijk mi nj rk mnr

ijk mi nj ok sp mno

a Q a

T Q Q T

T Q Q Q T

T Q Q Q Q T

Page 30: Part B  Tensors

30

2B14 Tensors by Transformation laws (cont.)

a.) If ia are components of vector and ib are components of another vector, then ij i jTabis a second order tensor.

b.) If ia is a vector and ijTare tensor components, then

ijk i jkwaT is a the third order tensor.

c.) The quotient rule

If aiare components of a vector, Tij is the second-order tensor, then a T bi ij j

then is a vectorjb

Similarly Tijand Eij are tensors, then

TCEij ijkl kl

means Cijkl is a fourth-order tensor,