Pareto Optimal Solutions for Smoothed Analysts

48
Ryan O’Donnell (CMU, IAS) joint work with Ankur Moitra (MIT)

description

Pareto Optimal Solutions for Smoothed Analysts. Ryan O’Donnell (CMU, IAS) joint work with Ankur Moitra (MIT). Binary optimization, linear objective. F ⊆ {0,1} n , “fea sible solutions”. max. Binary optimization, linear objective s. F ⊆ {0,1} n , “fea sible solutions”. - PowerPoint PPT Presentation

Transcript of Pareto Optimal Solutions for Smoothed Analysts

Page 1: Pareto Optimal Solutions for Smoothed Analysts

Ryan O’Donnell (CMU, IAS)

joint work with

Ankur Moitra (MIT)

Page 2: Pareto Optimal Solutions for Smoothed Analysts

Binary optimization, linear objective

F ⊆ {0,1}n, “feasible solutions”

max

Page 3: Pareto Optimal Solutions for Smoothed Analysts

Binary optimization, linear objectives

F ⊆ {0,1}n, “feasible solutions”

“max”

Page 4: Pareto Optimal Solutions for Smoothed Analysts

Pareto optima

def: x ∈ F is Pareto optimal if not dominated on every objective by some y ∈ F.

Obj1

Obj2

xy

Page 5: Pareto Optimal Solutions for Smoothed Analysts

Pareto optima

Obj1

Obj2

xy

def: x ∈ F is Pareto optimal if not dominated on every objective by some y ∈ F.

Page 6: Pareto Optimal Solutions for Smoothed Analysts

Obj1

Obj2

Page 7: Pareto Optimal Solutions for Smoothed Analysts

thm:

If d+1 linear objectives are “semi-random”

(in the Smoothed Analysis sense)

then for any F ⊆ {0,1}n,

E[# Pareto optima in F] ≤ O(n2d).

Page 8: Pareto Optimal Solutions for Smoothed Analysts
Page 9: Pareto Optimal Solutions for Smoothed Analysts

Application: 0-1 Knapsack

[Nemhauser−Ullmann69]:

For i=1…n, compute Pareto optimal

weight,value pairs achievable by items 1…i.⟨ ⟩

[Beier−Vöcking03]:

With 2 semi-rand objs, E[# PO’s] ≤ O(n4).

⇒ O(n5)-time alg for 0-1 Knapsack in

Smoothed Analysis model!

Page 10: Pareto Optimal Solutions for Smoothed Analysts

Model [BV03]

F ⊆ {0,1}n arbitrary

d+1 linear objs

x

=

Obj(x)

ϕ ≥ 1 a parameter

Each is a r.v. on [0,1] with pdf bdd by ϕ.

All independent.

Page 11: Pareto Optimal Solutions for Smoothed Analysts

Model [BV03]

Each is a r.v. on [0,1] with pdf bdd by ϕ.

All independent.

1/ϕ

ϕ

Page 12: Pareto Optimal Solutions for Smoothed Analysts

Prior work

Page 13: Pareto Optimal Solutions for Smoothed Analysts

[BV03]: d = 1, E[# PO’s] ≤ O(ϕn4)

[B04]: Same for arbit. F. Conj: ≤ O(nf(d))

[BRV07]: d = 1, E[# PO’s] ≤ O(ϕn2)

[RT09]: E[# PO’s] ≤ roughly

[MO11]: E[# PO’s] ≤ 2(4ϕd)d(d+1)/2 n2d

Remark: All bounds here hold even assuming Obj0 adversarial, nonlinear, arbitrary.

for n ≥ exp(exp(O(d2 log d))

(F = {0,1}n)

[BV03]: Ω(n2) when Obj0 adversarial, ϕ = 1

[BR11]: Ω(ϕn2), d = 1; Ω(ϕn)d-logd roughly, d > 1

Page 14: Pareto Optimal Solutions for Smoothed Analysts

Warmup:

Alternate proof (sketch) for

[BRV07]’s d = 1 bound

Page 15: Pareto Optimal Solutions for Smoothed Analysts

F ⊆ {0,1}nObj0(x) arbitrary

Obj1(x) ϕ-semi-random E[# PO’s] ≤ O(ϕn2) ?

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

Obj1

Page 16: Pareto Optimal Solutions for Smoothed Analysts

.8.4

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

.2 .9

Obj0(x) arbitrary

Obj1(x) ϕ-semi-random

Obj1

F ⊆ {0,1}n

E[# PO’s] ≤ O(ϕn2) ?

Page 17: Pareto Optimal Solutions for Smoothed Analysts

Goal: For each ϵ-strip S,

E[# PO’s in S] ≈ Pr[∃ a PO in S] ≤ O(n) ϕ ϵ

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

ϵ

ϵ2

Obj1

Union-bound over (n/ϵ) strips ⇒ E[# PO’s] ≤ O(ϕn2)

S

Page 18: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01111

01000

11011

00111

11110

ϵ

Obj1

Given x, Pr[ Vx ∈ S ] ?

S

01101

Page 19: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01111

01000

11011

00111

11110

ϵ

Obj1

Given x, Pr[ Vx ∈ S ] ?

S

Take any j s.t. xj = 1.

01101

Page 20: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

ϵ

Obj1

Given x, Pr[ Vx ∈ S ] ?

S

Take any j s.t. xj = 1.

.8.4.2 .9

= Pr[ Vj ∈ certain width-ϵ interval] ≤ ϕϵ.

Page 21: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

ϵ

Given x, Pr[ Vx ∈ S ] ?

S

Take any j s.t. xj = 1.

= Pr[ Vj ∈ certain width-ϵ interval] ≤ ϕϵ.

Boundedness Lemma: Pr[ Vx ∈ S] ≤ O(ϵ),

even just using the randomness of Vj.

Page 22: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

ϵ

Obj1

S

event Tx,S = “x is PO and Vx ∈ S”

.8.4.2 .9

Page 23: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

ϵ

Obj1

S

event Tx,S = “x is PO and Vx ∈ S”

.8.4.2 .9

Fantasy: Now a unique x s.t. Tx,S may yet occur

Page 24: Pareto Optimal Solutions for Smoothed Analysts

more complicated event:

Tx,j,S = “x is PO and xj = 1 and Vx ∈ S

and first PO to x’s left, call it y, has yj = 0”

Uniqueness Lemma:

Draw all Vi’s except Vj.

Then ∃ at most 1 x s.t. Tx,j,S may still occur.

Page 25: Pareto Optimal Solutions for Smoothed Analysts

Tx,j,S = “x is PO and xj = 1 and Vx ∈ S

and first PO to x’s left, call it y, has yj = 0”

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

ϵ

Obj1

S

.8.4.2 .9

Page 26: Pareto Optimal Solutions for Smoothed Analysts

Remainder of the d=1 proof sketch

Page 27: Pareto Optimal Solutions for Smoothed Analysts

Tx,j,S = “x is PO and xj = 1 and Vx ∈ S and …”

Uniqueness Lemma: Draw all Vi’s except Vj.

Then ∃ at most 1 x s.t. Tx,j,S may still occur.Bddness Lemma: For that x, Pr[Vx ∈ S] ≤ ϕϵ.

Union-bound over all j, S:

E[ # PO x s.t. first PO to x’s left, y, has yj ≠ 1 = xj for some j ] ≤ n(n/ϵ)ϕϵ = n2ϕ.

For each PO x, ∃ j s.t. yj ≠ c = xj. Maybe c = 0…

Union-bound over c ∈ {0,1}… + another trick.

Page 28: Pareto Optimal Solutions for Smoothed Analysts

Our result: Larger d

Page 29: Pareto Optimal Solutions for Smoothed Analysts

Obj0 arbitrary; Obj1, Obj2 ϕ-semi-random

01011

10100

01101

01111

01000

11011

00111

11110

d=2:

Obj0

Obj1

Obj2

Page 30: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

Obj1

Obj2

V =

Page 31: Pareto Optimal Solutions for Smoothed Analysts

Obj0 01011

10100

01101

01111

01000

11011

00111

11110

Obj2

ϵS

ϵ

Obj1

V =

Page 32: Pareto Optimal Solutions for Smoothed Analysts

more complicated event:

Tx,j,S = “x is PO and xj = 1 and Vx ∈ S

and first PO to x’s left, call it y, has yj = 0”

Page 33: Pareto Optimal Solutions for Smoothed Analysts

more complicated event:

Tx,j,c,S = “x is PO and xj = c and Vx − ∈ S

and first PO to x’s left, call it y, has yj ≠ c”

Page 34: Pareto Optimal Solutions for Smoothed Analysts

more complicated event:

Tx,J,C,S = “x is PO and…”

still

J: list of d coordinates

C: d×d matrix of bits w/ certain pattern

S: d-dimensional strip, plus “nearby” d′-dim. strips for all d′ < d

Page 35: Pareto Optimal Solutions for Smoothed Analysts

more complicated event:

J: list of d coordinates

C: d×d matrix of bits w/ certain pattern

S: d-dimensional strip, plus “nearby” d’-dim. strips for all d’ < d

B: “blueprint” [AMR09]

+

=

Tx,B = “x is PO and conditions involving V, x, B.”

still

Page 36: Pareto Optimal Solutions for Smoothed Analysts

Given B, entries of V are partitioned into

two sets, V[fewB] and V[mostB].

V =

Tx,B = “x is PO and conditions involving V, x, B.”

Page 37: Pareto Optimal Solutions for Smoothed Analysts

Boundedness Lemma: For any V[mostB] outcome,

Pr [condits involving V, x, B] ≤ ϕd(d+1)/2 ϵd(d+1)/2.

Uniqueness Lemma: Draw V[mostB].

Then ∃ at most 1 x s.t. Tx,B may still

occur.

Tx,B = “x is PO and conditions involving V, x, B.”

V[fewB]

Counting Lemma: O(d/ϵ)d(d+1)/2 n2d possible B.

Union bound ⇒ E[# PO’s] ≤ O(dϕ)d(d+1)/2 n2d.

Given B, entries of V are partitioned into

two sets, V[fewB] and V[mostB].

Page 38: Pareto Optimal Solutions for Smoothed Analysts

Tx,j,c,S = “x is PO and xj = c and Vx − ∈ S

and first PO to x’s left, call it y, has yj ≠ c”

J: list of d coordinates

C: d×d matrix of bits w/ certain pattern

S: d-dimensional strip, plus “nearby” d′-dim. strips for all d′ < d

B: “blueprint”

+

=

Tx,B = “x is PO and conditions involving V, x, B.”

Page 39: Pareto Optimal Solutions for Smoothed Analysts

Tx,B = “x is PO and SKETCH(x,V) = B”

where SKETCH() is a certain

deterministic algorithm.

Page 40: Pareto Optimal Solutions for Smoothed Analysts

SKETCH(x,V):

Page 41: Pareto Optimal Solutions for Smoothed Analysts

Bddness Lemma: For any V[mostB] outcome,

Pr [SKETCH(x,V) = B] ≤ ϕd(d+1)/2 ϵd(d+1)/2.

Uniqueness Lemma: Draw V[mostB].

Then ∃ at most 1 x s.t. Tx,B may still occur.

V[fewB]

Tx,B = “x is PO and SKETCH(x,V) = B”

Page 42: Pareto Optimal Solutions for Smoothed Analysts

Uniqueness Lemma: Draw V[mostB].

Then ∃ at most 1 x s.t. Tx,B may still occur.

Tx,B = “x is PO and SKETCH(x,V) = B”

Equivalent Lemma:

Suppose x, V are such that x is PO.

Assume SKETCH(x,V) = B.

Then RECONSTRUCT(B,V[mostB]) = x.

Page 43: Pareto Optimal Solutions for Smoothed Analysts

RECONSTRUCT(B,V[most]):

Page 44: Pareto Optimal Solutions for Smoothed Analysts

Bddness Lemma: For any V[mostB] outcome,

Pr [SKETCH(x,V) = B] ≤ ϕd(d+1)/2 ϵd(d+1)/2.V[fewB]

Uniqueness Lemma:

Suppose x, V are such that x is PO.

Assume SKETCH(x,V) = B.

Then RECONSTRUCT(B,V[mostB]) = x.

Counting Lemma: O(d/ϵ)d(d+1)/2 n2d possible B.

Page 45: Pareto Optimal Solutions for Smoothed Analysts

A sketch of SKETCH(x,V) for d = 2

Page 46: Pareto Optimal Solutions for Smoothed Analysts

SKETCH(x,V):

1. Let F0 = F

2. Let D1 = { z ∈ F0 : V1z > V1x and V2z > V2x }

3. Let y1 = argmax{ Obj0(y) : y ∈ D1

}

4. Let j1 = least index s.t.

5. Let F1 = { z ∈ F0 : Obj0(z) > Obj0(y1) and }

6. Let D2 = { z ∈ F1 : V2z > V2x }

7. Let y2 = argmax{ Obj1(y) : y ∈ D2 }

8. Let j2 = least index s.t.

9. Let F2 = { z ∈ F1 : Obj1(z) > Obj1(y1) and }

// if Vx is PO then it must be argmax{ Obj2(z) : z ∈ F2 }

10. Output: J = (j1, j2), C =

S = ( strip of Obj1,2(x) − diag(Vj1,j2 C), strip of Obj2(x) − )

SKETCH(x,V):

Page 47: Pareto Optimal Solutions for Smoothed Analysts

• Close gap of nd vs. n2d.

• Lower bounds when all objs semirandom?

• F ⊆ {0,1,2,…,k}n ?

• Bounds on Var[ # POs ] ?

• More Smoothed Analysis via “blueprints”?

Future directions?

Page 48: Pareto Optimal Solutions for Smoothed Analysts