Optimization of a 3-Cylinder CNG Engine within a Hybrid Powertrain€¦ ·  · 2015-08-20Engine...

19
Optimization of a 3-Cylinder CNG Engine within a Hybrid Powertrain Universität Stuttgart In Kooperation mit: Di l I D ilBl d 11/5/2008; Dateiname Folie 1 Dipl.-Ing. Daniel Boland October 20th, 2008

Transcript of Optimization of a 3-Cylinder CNG Engine within a Hybrid Powertrain€¦ ·  · 2015-08-20Engine...

Optimization of a 3-Cylinder CNG

Engine within a Hybrid Powertrain

Universität Stuttgart

In Kooperation mit:

Di l I D i l B l d

11/5/2008; DateinameFolie 1

Dipl.-Ing. Daniel Boland October 20th, 2008

Outline

P j t D i tiProject Description

Project Description; Engine Data

GT Power Engine Model X10XE

FKFS User Cylinder GTIse Interaction; Model Calibration;Universität Stuttgart

In Kooperation mit:

FKFS User Cylinder – GTIse Interaction; Model Calibration;

Model Validation; HP-EGR Variation; Phlegmatic Engine

GT Drive Hybrid Modell X10XE

Control Strategy; Shift of Operating Points; SoC during Drive Cycles;Control Strategy; Shift of Operating Points; SoC during Drive Cycles;

Transmission/FD Variation

11/5/2008; DateinameFolie 2

Universität Stuttgart

In Kooperation mit:

Project Description

11/5/2008; DateinameFolie 3

Project Description

P j t AiProject Aims

• Mild-HEV based on an Opel Astra Caravan (total mass: 1500 kg)

• CO2 emissions < 90 g/km performing the NEDC

Universität Stuttgart

In Kooperation mit: Realization:

• Accomplishing future emission standards (Euro 5): NOx emissions

• Application of a small volume, highly charged ICE (X10XE)

• Hybrid (Start/Stop, Recuperation, … etc.)

• Fuel: CNG (monovalent)

11/5/2008; DateinameFolie 4

y ( )

Engine Data

E i D t U itEngine Data: Unit:Type Family 0 (1. Gen.)Number of Cylinders 3Displacement 973 cm3

Compression Ratio ε* 1:10.6 (TD)Connecting Rod length* 132.5 mm

Universität Stuttgart

In Kooperation mit:

g gStroke* 78.6 mmBore 72.5 mmNumber of Valves 4 (IV: 2; EV: 2)Number of Valves 4 (IV: 2; EV: 2)Rated Power* 71 kW (5500 rpm)Rated Torque* 160 Nm

(2000 4000 )(2000 - 4000 rpm)Rated Engine Speed* 5500 rpmInjection Valve NGI 2 (Bosch)

11/5/2008; DateinameFolie 5

ECU* ME 1.5.5

* modified in comparison to series engine

Universität Stuttgart

In Kooperation mit:

GT Power Engine Model X10XE

11/5/2008; DateinameFolie 6

FKFS User Cylinder – GTise InteractionStarting FKFS

Cylinder Pressure

s u

r e [

b a

r ]

30

40

50

60Conditions:

Residuals

Cylinder

FKFS

User Cylinder

ower

P r e

s

0

10

20

C r a n k A n g l e [ d e g ]-125 -75 -25 25 75 125

Pressure

Mass Mean Temperature

Quasidimensional Combustion Model:

EntrainmentGT

-Po

Universität Stuttgart

In Kooperation mit:Parameter:

A/F-Ratio

Engine Speed

Combustion Chamber

Flame Propagation

Turbulence

ng Parameter:

Spark Timing

Spark Plug Pos. Wall Heat Transfer:

Bargendeer P

rese

ttin

Burn Rate

R a

t e

[ J

/ C A

]

15

20

25

30

35

40Fuel

Port-/Direct-Injection

Bargende

Woschni-Huber

Use

r Cyl

inde

11/5/2008; DateinameFolie 7

B u

r n

0

5

10

C r a n k A n g l e [ d e g ]-30 -10 10 30 50 70

Engine Turbulence

Level

Knock Model:

Worret

FKFS

U

Model Calibration: Cyl. Pressure and Burn Rate

e [

b a

r ]40

50

60 PTA Quasidim.

Typ: X10XE

Engine:

P r e

s s

u r

e

10

20

30 Cylinder:

Displacement:

Comp. Ratio:

3 997cm³

1:10.6Universität Stuttgart

In Kooperation mit:

P

0

C r a n k A n g l e [ d e g ]-125 -100 -75 -50 -25 0 25 50 75 100 125

A ] 40 ] 2600 1Cylinder No. :

Operation Point:

t e [

J /

C A

20253035

a t u

r e

[ K

1400170020002300

4000 rpm

10 bar

8 ° C A

y

Engine Speed:

IMEP:

50 % D P

B u

r n R

a

05

1015

T e

m p

e r

200500800

11008 ° C A

1

0 %

50 % D. P. :

A/F-Ratio:

EGR:

11/5/2008; DateinameFolie 8

0

C r a n k A n g l e [ d e g ]-25 -5 15 35 55

200

C r a n k A n g l e [ d e g ]-125 -75 -25 25 75 125

Model Calibration: Intake- and Exhaust Pressure

Typ: X10XE

Engine:

k e

e [

b a

r ]1.20

1.30 PTA Quasidim.

Cylinder:

Displacement:

Comp. Ratio:

3 997cm³

1:10.6

I n t

a k

P r e

s s

u r

e

1 00

1.10

Universität Stuttgart

In Kooperation mit: 1Cylinder No. :

Operation Point:

P 1.00

C r a n k A n g l e [ d e g ]-150 -50 50 150 250 350 450 550

2.6

4000 rpm

10 bar

8 ° C A

y

Engine Speed:

IMEP:

50 % D Ph a

u s

tu

r e [

b a

r ]

1.8

2.2

8 ° C A

1

0 %

50 % D. P. :

A/F-Ratio:

EGR:

E x

hP

r e s

s u

1.0

1.4

11/5/2008; DateinameFolie 9

1.0

C r a n k A n g l e [ d e g ]-150 -50 50 150 250 350 450 550

Model Validation: Spark Timing

Engine:

PTA Quasidim.

e [

b a

r ]25303540

50 % D . P . : 01 ° C A 50 % D . P . : 05 ° C A 50 % D . P . : 08 ° C A 50 % D . P . : 15 ° C A 50 % D . P . : 20 ° C A

Type:

Cylinder:

Displacement:

X10XE

3 997cm³

Engine:P

r e s

s u

r e

5101520 50 % D . P . : 25 ° C A

Universität Stuttgart

In Kooperation mit:

Displacement:

Comp. Ratio:

997cm³

1:10.6

Operation Point:

P

0

C r a n k A n g l e [ d e g ]-125 -75 -25 25 75 125

] 25

1

2000 rpm

5 b

Cylinder No. :

Engine Speed:

IMEP

Operation Point:

t e [

J /

C A

15

20

25

5 bar

1

0 %

IMEP:

A/F-Ratio:

EGR:

B u

r n R

a t

0

5

10

11/5/2008; DateinameFolie 10

0

C r a n k A n g l e [ d e g ]-50 -25 0 25 50 75

HP-EGR Variation

Engine:

PTA Quasidim.

c y

[ %

]36.0

36.5

37.0

Type:

Cylinder:

Displacement:

X10XE

3 997cm³

Engine:E

f f i

c i e

n

35.0

35.5

Universität Stuttgart

In Kooperation mit:

Displacement:

Comp. Ratio:

997cm³

1:10.6

Operation Point:

34.5

E G R - R a t e [ % ]0 5 10 15 20 25

] 20

1

2000 rpm

5 b

Cylinder No. :

Engine Speed:

IMEP

Operation Point:

t e [

J /

C A

101214161820

Reference 20% HP-EGR

5 bar

1

8 ° C A

IMEP:

A/F-Ratio:

50 % D. P. :

B u

r n R

a t

02468

10

11/5/2008; DateinameFolie 11

0

C r a n k A n g l e [ d e g ]-50 -25 0 25 50 75

Phlegmatic EnginePhlegmatic Engine: Theory• OP of high TPR can be shifted to lower (wider turbine neck square area)

Lower exhaust gas back pressure

Hi h i ffi i ( d d PMEP)

Better cylinder filling due to reduced internal EGR

0.8

Higher engine efficiency (reduced PMEP)

• Worse transient behavior of the engine can be compensated by e-motor

Universität Stuttgart

In Kooperation mit: w R

a t

i o

0 6

0.7

M a

s s

F l

o

0.5

0.6

T u

r b i

n e

M

0.3

0.4

1 8 0 m m 2 2 0 0 m m 2 2 4 0 m m 2

11/5/2008; DateinameFolie 12

T

0.2

T u r b i n e P r e s s u r e R a t i o1.0 1.5 2.0 2.5 3.0

Δ Π t2 8 0 m m 2

Phlegmatic Engine: Turbine/Compressor Variation

E i ffi i b i d t 3 P t

Operation Point:E P

1 0-0.5

• Engine efficiency can be raised up to 3 Percent

Operation Point:4000 rpm

10 bar

Engine Speed:

IMEP:

P M

-1.5-1.0

η i

35 035.536.0

Universität Stuttgart

In Kooperation mit:

CompressorKP35-1574 CBK

34.535.0

G R

i n t

5 06.07.0

PMEP [bar]

ηi [%]

EGR [mg]

E G

4.05.0

p 1 41.82.2

EGRint [mg]

p2 [bar] p3 [bar]

ΠV [-]

1.01.4

Π

1 651.801.95

11/5/2008; DateinameFolie 13

V [ ] ΠT [-]

T u r b i n e N e c k A r e a [ m m 2 ]180 200 240 280

1.501.65

Universität Stuttgart

In Kooperation mit:

GT Drive Hybrid Model

11/5/2008; DateinameFolie 14

Control Strategy (modified ECMS)VREQ

Simulink Energy BrokerDriver

T u

T sREQ

VACT

Torque Split

T u

SoC

Universität Stuttgart

In Kooperation mit: ICE Control EM Control

TICE TEM

Engine State Motor/Generator

BMEP Accel. Pos.

IEngine State Motor/Generator

T Torque

11/5/2008; DateinameFolie 15

u Torque Split Factors Energy EquivalentI CurrentSoC State of Charge

Shift of Operating Points (Non-HEV vs. HEV)Part load OP's are shifted within the HEV Compound to higher loads

O p e r a t i n g P o i n t s180

Better specific fuel consumption (torque used for generator)

] 140

160

Universität Stuttgart

In Kooperation mit: q u

e [

N m

]

100

120

g i n

e T

o r

60

80

E n

g

20

40

X10XE Basic CNG Engine

11/5/2008; DateinameFolie 16

0

E n g i n e S p e e d [ 1 / m i n ]1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

X10XE Basic CNG Engine X10XE HEV ECMS

SoC during Drive CyclesNEDC• Multiple drive cycles are possible Emissions: 85.1 gCO2/km ∆ SoC: 0.001%

FTP 75Emissions: 89.8 gCO2/km∆ S C 0 001%

• Multiple drive cycles are possible

• Initial SoC is met to avoid penalization

h ]100

120

] 0.66

0.68

∆ SoC: 0.001% NEDCNEDC

Universität Stuttgart

In Kooperation mit:

v [

k m

/ h

0

20

40

60

80

S o

C [

-

0 56

0.58

0.60

0.62

0.64

00.56

T i me [ s ]0 200 400 600 800 1000 1200

1200 68

FTP 75

[ k m

/ h

]

40

60

80

100

120

S o

C [

- ]

0.60

0.62

0.64

0.66

0.68

11/5/2008; DateinameFolie 17

v

0

20

S

0.56

0.58

T i me [ s ]0 200 400 600 800 1000 1200 1400

Transmission/Final Drive Variation• Gearbox WR-ECO/ER using 2 overdrive gears

• FD ratio increases from FD1 to FD5

Minimal CO2/NOx emissions using economical gear boxes

1.60

90

91

T r a n s m i s s i o n V a r i a t i o nF i n a l D r i v e F D 2

F i n a l D r i v e V a r i a t i o nT r a n s m i s s i o n E R

Minimal CO2: FD1 / Minimal NOx: FD2

Universität Stuttgart

In Kooperation mit:

m ]1.50

1.55

m ]

88

89

90

N O

x [ g

/ k

m

1.45

C O

2 [

g / k

m

86

87

N

1.35

1.40C

84

85

11/5/2008; DateinameFolie 18

1.3083

T r a n s m i s s i o n / F i n a l D r i v e V a r i a t i o nCR WR WR-ECO ER FD1 FD2 FD3 FD4 FD5

Thank you for your kind Universität Stuttgart

In Kooperation mit: AttentionAttention

11/5/2008; DateinameFolie 19