Optical Transition Probabilities of Er3

5
Research Article Optical Transition Probabilities of Er 3+ Ions in ErBa 3 B 9 O 18 Crystal Ming He, 1 Tiezheng Liu, 2 Junling Xiu, 1 Yuanguang Tang, 1 and Zhihua Zhang 2 1 Department of Physics, College of Science, Dalian Jiaotong University, Dalian 116028, China 2 Liaoning Key Materials Laboratory for Railway, College of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China Correspondence should be addressed to Ming He; [email protected] Received 13 October 2014; Revised 24 December 2014; Accepted 24 December 2014 Academic Editor: Veer P. S. Awana Copyright © 2015 Ming He et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e optical absorption and emission intensity of luminescent and birefringent crystal ErBa 3 B 9 O 18 were examined from optical absorption data based on Judd-Ofelt theory. e three intensity parameters Ω ( = 2, 4, 6) are 3.10 × 10 −20 , 0.87 × 10 −20 , and 1.80 × 10 −20 cm 2 , respectively. From the obtained intensity parameters, the radiative probabilities , radiative lifetime , fluorescence branching ratios , and integrated emission cross sections have been calculated. In comparison with other Er-doped luminescent crystals, ErBa 3 B 9 O 18 may find application in thin disk laser. 1. Introduction Er 3+ activator has attracted much attention for its two laser emissions at 2.94 m( 4 I 11/2 4 I 13/2 ) and 1.54 m( 4 I 13/2 4 I 15/2 ). e emissions have potential applications in optocom- munication, sensors, or lidar system [13]. To now, the Er 3+ ion has exhibited laser operations in various Er 3+ -doped crystals or glasses [49]. For a laser crystal, the host material should be stable and efficient. Sometimes, the emission efficiency can be limited by the relatively low concentration of luminescent centers, because the quenching effect will occur if the Er 3+ ions concentration is too high. Host material determines the luminescent efficiency of the laser crystal or phosphor in many cases. us, it is necessary to search for new materials with higher doping tolerance to enhance the performance of the laser. Borates are well known for their applications in optical communications, nonlinear optics, luminescence material and lasers, and so forth [1016]. A series of isostructural compounds RBa 3 B 9 O 18 (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) [17, 18] were found to exhibit good lumi- nescence properties under UV or X-ray excitations. ese rare earth alkaline-earth isostructural compounds were first identified and structurally characterized by Li et al. [19]. ey crystallize in centric space group P6 3 /m with lattice parameters of about = 7.17 ˚ A and = 16.97 ˚ A. ree O atoms are bonded to one B atom and three BO 3 groups form a planar hexagonal [B 3 O 6 ] 3− ring [20]. e parallel arranged [B 3 O 6 ] 3− groups can separate the R 3+ ions, which makes the energy migration between two rare earth ions difficult. Taking YBa 3 B 9 O 18 and ErBa 3 B 9 O 18 (EBBO) as examples, the shortest distance of two Y 3+ or Er 3+ ions is 7.16-7.17 ˚ A, which is long enough to limit the energy transfer between luminescent centers [2022]. So, the quenching effect in EBBO is proved to be small and Er 3+ may be an efficient luminescent center. e transition properties of the optical crystals can determine their luminescent performance. So, we performed the research on spectroscopic properties of EBBO. 2. Experimental e crystals were grown by a pulling method [21]. An absorption spectrum was measured for EBBO using a crystal plate with faces (001) and about 0.4 mm thickness [23]. e absorption spectrum was measured from ultraviolet to infrared wavelength by the use of Lambda-900 UV–VIS–NIR spectrophotometer at room temperature. Hindawi Publishing Corporation Journal of Spectroscopy Volume 2015, Article ID 871320, 4 pages http://dx.doi.org/10.1155/2015/871320

Transcript of Optical Transition Probabilities of Er3

Page 1: Optical Transition Probabilities of Er3

Research ArticleOptical Transition Probabilities of Er3+ Ions inErBa3B9O18 Crystal

Ming He1 Tiezheng Liu2 Junling Xiu1 Yuanguang Tang1 and Zhihua Zhang2

1Department of Physics College of Science Dalian Jiaotong University Dalian 116028 China2Liaoning Key Materials Laboratory for Railway College of Materials Science and Engineering Dalian Jiaotong UniversityDalian 116028 China

Correspondence should be addressed to Ming He hemingdjtueducn

Received 13 October 2014 Revised 24 December 2014 Accepted 24 December 2014

Academic Editor Veer P S Awana

Copyright copy 2015 Ming He et alThis is an open access article distributed under the Creative Commons Attribution License whichpermits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The optical absorption and emission intensity of luminescent and birefringent crystal ErBa3B9O18

were examined from opticalabsorption data based on Judd-Ofelt theory The three intensity parametersΩ

119905(119905 = 2 4 6) are 310 times 10minus20 087 times 10minus20 and 180 times

10minus20 cm2 respectively From the obtained intensity parameters the radiative probabilities 119860119903 radiative lifetime 120591

119891 fluorescence

branching ratios120573119888 and integrated emission cross sectionssum have been calculated In comparisonwith other Er-doped luminescent

crystals ErBa3B9O18may find application in thin disk laser

1 Introduction

Er3+ activator has attracted much attention for its two laseremissions at 294 120583m (4I

112rarr4I132

) and 154 120583m (4I132

rarr

4I152

)The emissions have potential applications in optocom-munication sensors or lidar system [1ndash3] To now the Er3+ion has exhibited laser operations in various Er3+-dopedcrystals or glasses [4ndash9] For a laser crystal the host materialshould be stable and efficient Sometimes the emissionefficiency can be limited by the relatively low concentrationof luminescent centers because the quenching effect willoccur if the Er3+ ions concentration is too high Hostmaterialdetermines the luminescent efficiency of the laser crystal orphosphor in many cases Thus it is necessary to search fornew materials with higher doping tolerance to enhance theperformance of the laser

Borates are well known for their applications in opticalcommunications nonlinear optics luminescence materialand lasers and so forth [10ndash16] A series of isostructuralcompounds RBa

3B9O18

(R = Y Pr Nd Sm Eu Gd Tb DyHo Er Tm and Yb) [17 18] were found to exhibit good lumi-nescence properties under UV or X-ray excitations Theserare earth alkaline-earth isostructural compounds were firstidentified and structurally characterized by Li et al [19]

They crystallize in centric space group P63m with lattice

parameters of about 119886 = 717 A and 119888 = 1697 AThree O atomsare bonded to one B atom and three BO

3groups form a

planar hexagonal [B3O6]3minus ring [20] The parallel arranged

[B3O6]3minus groups can separate the R3+ ions which makes

the energy migration between two rare earth ions difficultTaking YBa

3B9O18

and ErBa3B9O18

(EBBO) as examplesthe shortest distance of two Y3+ or Er3+ ions is 716-717 Awhich is long enough to limit the energy transfer betweenluminescent centers [20ndash22] So the quenching effect inEBBO is proved to be small and Er3+ may be an efficientluminescent center The transition properties of the opticalcrystals can determine their luminescent performance So weperformed the research on spectroscopic properties of EBBO

2 Experimental

The crystals were grown by a pulling method [21] Anabsorption spectrum was measured for EBBO using a crystalplate with faces (001) and about 04mm thickness [23]The absorption spectrum was measured from ultraviolet toinfrared wavelength by the use of Lambda-900UVndashVISndashNIRspectrophotometer at room temperature

Hindawi Publishing CorporationJournal of SpectroscopyVolume 2015 Article ID 871320 4 pageshttpdxdoiorg1011552015871320

2 Journal of SpectroscopyAb

sorp

tion

18

09

00

Wavelength (nm)0 600 1200 1800

4G112

4F72

4F924I112

4I132

Figure 1The absorption spectra of EBBOcrystalThis figure is from[23] with permission

3 Results and Discussions

The spectrum presented in Figure 1 is measured in the wave-length ranges from 200 to 1700 nm The strong absorptionpeaks related to Er3+ ions transitions can be assigned Theabsorption bands located at 255 376 407 485 519 650 971and 1539 nm corresponding to the transitions from 4I

152to

4D72

4G112

2H112

4F72

4H112

4F92

4I112

and 4I132

respectively These strong absorption peaks show mainlythe eigenmultiplets typically observed in free Er3+ ions atsimilar spectral position due to the weak crystal field for rareearth ions The absorption at 1539 nm is very strong whichindicated that the transition probability of 4I

152rarr4I132

isbig and the integrated emission cross section is expected tobe great

The Judd-Ofelt theory was applied to evaluate the opticaltransition probabilities of Er3+ ions in EBBO Based onJudd-Ofelt theory of the parity-forbidden electric-dipoletransitions of rare earth ions [24 25] the electric andmagnetic dipole line strengths of a transition from initial 119869

119894

level to the terminal 119869119905level are described by

119878ed (119869119894 119869119905) = sum

119905=246

Ω119905

10038161003816100381610038161003816⟨Φ119869119894

10038171003817100381710038171003817119880(119905)10038171003817100381710038171003817

Φ119869119905⟩10038161003816100381610038161003816

2

119878md (119869119894 119869119905) = (ℎ

4120587119898119888)

2

sum

119905=246

Ω119905

10038161003816100381610038161003816⟨Φ119869119894119871 + 2119878Φ119869119905

⟩10038161003816100381610038161003816

2

(1)

where ℎ is Planckrsquos constant 119888 is the speed of light 119898 is themass of electron and ⟨Φ

119869119894119880(119905)Φ119869119905⟩ is the reduced matrix

elements depending on the Er3+ ions In this work the valuesof the squares of the reduced matrix elements are cited fromCarnallrsquos calculations [26] Ω

119905(119905 = 2 4 6) are the three

intensity parameters related to crystal field Magnetic dipoleline strengths are very small compared to electric ones andcan be neglected in the calculation of the parameters exceptfor 4I152

rarr4I132

The value of 119878md is cited from [27] to be

0683 times 10minus20 cm2 because 119878md does not vary with the hostcrystal

Then the measured line strengths 119878meased (119869

119894 119869119905) from the

absorption spectrum can be given by

119878meased (119869

119894 119869119905) =

9119899

(1198992 + 2)2[

3119888ℎ

812058731198902

2119869 + 1

119873119888

2303

120582119889

times int119869119894rarr119869119905

OD (120582) 119889120582 minus 119899119878md]

(2)

where 120582 is the mean wavelength of the absorption bandOD(120582) presents the measured optical density and 119889 is thethickness of the crystal The concentration of Er3+ ions 119873

119888

in ErBa3B9O18

is calculated based on the crystal structureparameter The crystal structure of ErBa

3B9O18

adopts acentric space group P6

3m and the lattice parameters are 119886 =

71817 A and 119888 = 16996 A [21] There are two Er3+ in one unitcell so119873

119888is calculated to be 263 times 1027m3 119899 is the refractive

index which can be obtained by Sellmeierrsquos equation [21] and119890 is the electron charge Table 1 presents the line strengths 119878edof nine absorption peaks of Er3+ in crystal Three intensityparametersΩ

119905(119905 = 2 4 6) were fitted by least-square method

to be 310 times 10minus20 087 times 10minus20 and 180 times 10minus20 cm2From Judd-Ofelt theory the electric-dipole andmagnetic-

dipole contributions 119860ed and 119860md of the total spontaneousemission probability are given by

1198601198691198691015840 = 119860ed + 119860md

=6412058741198902

3ℎ (2119869 + 1) 1205823

[

[

119899 (1198992+ 2)2

9119878ed + 119899

3119878md

]

]

= 1653 + 438 = 2091 (sminus1)

(3)

The luminescence parameters can be calculated from thefollowing equations

1198601198691198691015840 =

6412058741198902

3ℎ (2119869 + 1) 1205823

[

[

119899 (1198992+ 2)2

9119878ed + 119899

3119878md

]

]

1

120591119903

= sum

1198691015840

1198601198691198691015840

120573119888=

1198601198691198691015840

sum1198691015840 1198601198691198691015840

sum

1198691198691015840

=11986011986911986910158401205822

81205871198881198992

(4)

where 120573119888is the fluorescence branch ratio 120591

119903is the radiative

lifetime of a given upper level1198601198691198691015840 is the transition probabil-

ity of spontaneous emission and sum1198691198691015840 is the integrated emis-

sion cross section The calculated results are listed in Table 2The results show that radiative probabilities (209 sminus1) of

4I152

rarr4I132

are comparable to those of ErYAG (211 sminus1)

Journal of Spectroscopy 3

Table 1 Calculated strength parameters for Er3+ in EBBO

Peak Configuration Wavelength (nm) intOD(120582)119889120582 (nm) 119878meas (10minus20 cm2) 119878cal (10

minus20 cm2) Δ1199042

1 4I132

1539 2573 327 276 0262 4I

112971 083 020 080 036

3 4F92

650 209 075 132 0324 4H

112519 535 237 272 012

5 4F72

485 197 094 127 0116 2H

92407 053 029 043 002

7 4G112

376 629 377 350 0088 4D

72255 135 118 085 011

Rms-Δ119904 = 040 times 10minus20 cm2Ω246

= (310 087 180) times 10minus20 cm2

Table 2 The spectral parameters for Er3+ ions in EBBO crystal

Transitions Wavelength (nm) 119860 ed (sminus1) 119860md (s

minus1) 120591119903(120583s) 120573

119888sum1198691198691015840 (10minus18 cm)

4I132 rarr4I152 1539 16528 4376 4783 1 2243

4I112 rarr4I152 971 23332 3733 087 100

4I112 rarr4I132 2778 2585 868 013 1212

4F92 rarr4I152 650 158341 568 090 303

4F92 rarr4I132 1156 6849 004 042

4F92 rarr4I112 1980 10475 006 186

4F92 rarr4I92 3448 259 000 014

4S32 rarr4I132 844 85240 983 083 275

4S32 rarr4I112 1212 6672 007 044

4S32 rarr4I92 1639 9738 010 119

2H92 rarr4I152 407 161662 238 038 121

2H92 rarr4I132 555 204455 049 286

2H92 rarr4I112 703 47728 011 107

2H92 rarr4I92 841 18100 001 006

2H92 rarr4F92 1089 4136 001 022

4G112 rarr4I152 376 1950540

4D72 rarr4I152 255 2254450

4I92 rarr4I132 1739 7216

4H112 rarr4I152 519 542035

4F72 rarr4I152 485 465879

[28] Er119909Y1minus119909

Al3(BO3)4(233 sminus1) [29] and ErLa

2CaB10O19

(262 sminus1) [30] The integrated emission cross section of1539 nm is 224 times 10minus18 cm which indicates that large ampli-fication gains near 154 120583m are expected to be obtained Sothe crystal has the potential to be a laser material withgood chemical and physical properties What is more due tothe high concentrations of Er3+ activators EBBO may findapplications in thin disk laser

4 Conclusion

Thespectroscopic properties of ErBa3B9O18crystal have been

investigated at room temperature The Judd-Ofelt theory hasbeen applied to evaluate the optical transition probabilitiesof Er3+ ions in ErBa

3B9O18 Based on the Judd-Ofelt theory

the intensity parameters obtained by the least-square fittingmethodΩ

119905(119905 = 2 4 6) are 310times 10minus20 087times 10minus20 and 180 times

10minus20 cm2 respectively The radiative probabilities lifetimeand fluorescence branching ratios have been calculatedCompared with other Er-doped laser crystals ErBa

3B9O18

crystal has large integrated emission cross sections and radia-tive probabilities With good chemical and physical proper-ties ErBa

3B9O18may find application in thin disk laser

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledge the support from theNational Natural Science Foundation of China (Grant nos51372026 and 51372027)

4 Journal of Spectroscopy

References

[1] Y Ding S Jiang B-C Hwang et al ldquoSpectral properties oferbium-doped lead halotellurite glasses for 15 120583m broadbandamplificationrdquo Optical Materials vol 15 no 2 pp 123ndash1302000

[2] J Breguet A F Umyskov S G Semenkov W Luthy H PWeber and I A Shcherbakov ldquoComparison of threshold energyof selectively excited YAlO

3Er andYAGEr lasersrdquo IEEE Journal

of Quantum Electronics vol 28 no 11 pp 2563ndash2566 1992[3] MYamada ldquoBroadband and gain-flattened amplifier composed

of a 155 [micro sign]m-band and a 158 [micro sign]m-band Er3+-doped fibre amplifier in a parallel configurationrdquoElectronics Letters vol 33 no 8 p 710 1997

[4] V P Gapontsev S M Matitsin A A Isineev and V BKravchenko ldquoErbium glass lasers and their applicationsrdquoOpticsamp Laser Technology vol 14 no 4 pp 189ndash196 1982

[5] J D Bradley J Dinnerman and P F Moulton ldquo3-120583m cw laseroperations in erbium-doped YSGG GGG and YAGrdquo OpticsLetters vol 19 no 15 pp 1143ndash1145 1994

[6] G J Kintz R Allen and L Esterowitz ldquoCW and pulsed28 120583m laser emission from diodeminuspumped Er3+LiYF

4at room

temperaturerdquo Applied Physics Letters vol 50 p 1553 1987[7] H Stange K Peterman G Huber and E W Duczynski

ldquoContinuous wave 16120583m laser action in Er doped garnets atroom temperaturerdquo Applied Physics B vol 49 no 3 pp 269ndash273 1989

[8] F Auzel S Hubert and D Meichenin ldquoMultifrequencyroomminustemperature continuous diode and Arlowast laserminuspumpedEr3+ laser emission between 266 and 285 120583mrdquo Applied PhysicsLetters vol 54 no 8 p 681 1989

[9] N Van Minh N Manh Hung D Thi Xuan Thao M Roef-faers and J Hofkens ldquoStructural and optical properties ofZnWO

4Er3+ crystalsrdquo Journal of Spectroscopy vol 2013 Article

ID 424185 5 pages 2013[10] L Wu X L Chen Q Y Tu et al ldquoPhase relations in the system

Li2O-MgO-B

2O3rdquo Journal of Alloys and Compounds vol 333

no 1-2 pp 154ndash158 2002[11] R C Stoneman and L Esterowitz ldquoEfficient resonantly pumped

28-120583m Er3+GSGG laserrdquo Optics Letters vol 17 no 11 p 8161992

[12] C Chen B Wu A Jiang and G You ldquoA new-type ultravioletSHG crystal 120573-BaB

2O4rdquo Scientia Sinica B vol 28 no 3 pp 235ndash

243 1985[13] M He X L Chen H Okudera and A Simon

ldquo(K1minus119909

Na119909)2Al2B2O7with 0 le 119909 lt 06 a promising nonlinear

optical crystalrdquo Chemistry of Materials vol 17 no 8 pp2193ndash2196 2005

[14] C Chen Y Wu A Jiang et al ldquoNew nonlinear-optical crystalLiB3O5rdquo Journal of the Optical Society of America B vol 6 no

4 pp 616ndash621 1989[15] LWu X L Chen H Li M He Y P Xu and X Z Li ldquoStructure

determination and relative properties of novel cubic boratesMM10158404(BO3)3(M = Li M1015840 = Sr M = Na M1015840 = Sr Ba)rdquo Inorganic

Chemistry vol 44 pp 6409ndash6414 2005[16] C Chen Y Wu and R Li ldquoThe relationship between the

structural type of anionic group and SHG effect in boron-oxygen compoundsrdquoChinese Physics Letters vol 2 no 9 p 3891985

[17] C Duan J Yuan and J Zhao ldquoLuminescence propertiesof efficient X-ray phosphors of YBa

3B9O18 LuBa

3(BO3)3 120572-

YBa3(BO3)3and LuBO

3rdquo Journal of Solid State Chemistry vol

178 no 12 pp 3698ndash3702 2005[18] C Duan J Yuan X Yang et al ldquoLuminescent properties of

REBa3B9O18

(RE = Lu Tb Gd Eu) under VUV excitationrdquoJournal of PhysicsDApplied Physics vol 38 no 19 p 3576 2005

[19] X Z Li C Wang X L Chen et al ldquoSyntheses thermalstability and structure determination of the novel isostructuralRBa3B9O18(R =Y Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb)rdquo

Inorganic Chemistry vol 43 no 26 pp 8555ndash8560 2004[20] M He W Y Wang Y P Sun Y P Xu and X L Chen ldquoGrowth

and optical properties of YBa3B9O18Ce crystalsrdquo Journal of

Crystal Growth vol 307 no 2 pp 427ndash431 2007[21] MHe GM CaiW JWangW YWang J Liu andX L Chen

ldquoGrowth and luminescence properties of a novel crystal withlarge birefringence ErBa

3B9O18rdquo Journal of Crystal Growth vol

311 no 4 pp 1234ndash1237 2009[22] M He X L Chen Y P Sun J Liu J T Zhao and C J Duan

ldquoYBa3B9O18 a promising scintillation crystalrdquo Crystal Growth

amp Design vol 7 no 2 pp 199ndash201 2007[23] M He T Z Liu M H Qiu et al ldquoStudy on the optical proper-

ties of ErBa3B9O18crystalsrdquo Physica B Condensed Matter vol

456 pp 100ndash102 2015[24] B R Judd ldquoOptical absorption intensities of rare-earth ionsrdquo

Physical Review vol 127 no 3 pp 750ndash761 1962[25] G S Ofelt ldquoIntensities of crystal spectra of rare-earth ionsrdquoThe

Journal of Chemical Physics vol 37 no 3 p 511 1962[26] W T Carnall P R Fields and K Rajnak ldquoElectronic energy

levels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 p 4424 1968

[27] W T Carnall P R Fields and K Rajnak ldquoElectronic energylevels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 no 10 pp 4414ndash4442 1968

[28] R ReisfeldThe Rare Earths in Modern Sciences and TechnologyPlenum Press New York NY USA 1979

[29] M G Liu B S Lu H F Pan and Q Song ldquoErxY1minusxAl3(BO3)4crystal growth and its spectral propertiesrdquo Acta Optical Sinicavol 8 pp 1079ndash1084 1988

[30] RGuo YWu P Fu and F Jing ldquoOptical transition probabilitiesof Er3+ ions in La

2CaB10O19crystalrdquo Chemical Physics Letters

vol 416 no 1ndash3 pp 133ndash136 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Optical Transition Probabilities of Er3

2 Journal of SpectroscopyAb

sorp

tion

18

09

00

Wavelength (nm)0 600 1200 1800

4G112

4F72

4F924I112

4I132

Figure 1The absorption spectra of EBBOcrystalThis figure is from[23] with permission

3 Results and Discussions

The spectrum presented in Figure 1 is measured in the wave-length ranges from 200 to 1700 nm The strong absorptionpeaks related to Er3+ ions transitions can be assigned Theabsorption bands located at 255 376 407 485 519 650 971and 1539 nm corresponding to the transitions from 4I

152to

4D72

4G112

2H112

4F72

4H112

4F92

4I112

and 4I132

respectively These strong absorption peaks show mainlythe eigenmultiplets typically observed in free Er3+ ions atsimilar spectral position due to the weak crystal field for rareearth ions The absorption at 1539 nm is very strong whichindicated that the transition probability of 4I

152rarr4I132

isbig and the integrated emission cross section is expected tobe great

The Judd-Ofelt theory was applied to evaluate the opticaltransition probabilities of Er3+ ions in EBBO Based onJudd-Ofelt theory of the parity-forbidden electric-dipoletransitions of rare earth ions [24 25] the electric andmagnetic dipole line strengths of a transition from initial 119869

119894

level to the terminal 119869119905level are described by

119878ed (119869119894 119869119905) = sum

119905=246

Ω119905

10038161003816100381610038161003816⟨Φ119869119894

10038171003817100381710038171003817119880(119905)10038171003817100381710038171003817

Φ119869119905⟩10038161003816100381610038161003816

2

119878md (119869119894 119869119905) = (ℎ

4120587119898119888)

2

sum

119905=246

Ω119905

10038161003816100381610038161003816⟨Φ119869119894119871 + 2119878Φ119869119905

⟩10038161003816100381610038161003816

2

(1)

where ℎ is Planckrsquos constant 119888 is the speed of light 119898 is themass of electron and ⟨Φ

119869119894119880(119905)Φ119869119905⟩ is the reduced matrix

elements depending on the Er3+ ions In this work the valuesof the squares of the reduced matrix elements are cited fromCarnallrsquos calculations [26] Ω

119905(119905 = 2 4 6) are the three

intensity parameters related to crystal field Magnetic dipoleline strengths are very small compared to electric ones andcan be neglected in the calculation of the parameters exceptfor 4I152

rarr4I132

The value of 119878md is cited from [27] to be

0683 times 10minus20 cm2 because 119878md does not vary with the hostcrystal

Then the measured line strengths 119878meased (119869

119894 119869119905) from the

absorption spectrum can be given by

119878meased (119869

119894 119869119905) =

9119899

(1198992 + 2)2[

3119888ℎ

812058731198902

2119869 + 1

119873119888

2303

120582119889

times int119869119894rarr119869119905

OD (120582) 119889120582 minus 119899119878md]

(2)

where 120582 is the mean wavelength of the absorption bandOD(120582) presents the measured optical density and 119889 is thethickness of the crystal The concentration of Er3+ ions 119873

119888

in ErBa3B9O18

is calculated based on the crystal structureparameter The crystal structure of ErBa

3B9O18

adopts acentric space group P6

3m and the lattice parameters are 119886 =

71817 A and 119888 = 16996 A [21] There are two Er3+ in one unitcell so119873

119888is calculated to be 263 times 1027m3 119899 is the refractive

index which can be obtained by Sellmeierrsquos equation [21] and119890 is the electron charge Table 1 presents the line strengths 119878edof nine absorption peaks of Er3+ in crystal Three intensityparametersΩ

119905(119905 = 2 4 6) were fitted by least-square method

to be 310 times 10minus20 087 times 10minus20 and 180 times 10minus20 cm2From Judd-Ofelt theory the electric-dipole andmagnetic-

dipole contributions 119860ed and 119860md of the total spontaneousemission probability are given by

1198601198691198691015840 = 119860ed + 119860md

=6412058741198902

3ℎ (2119869 + 1) 1205823

[

[

119899 (1198992+ 2)2

9119878ed + 119899

3119878md

]

]

= 1653 + 438 = 2091 (sminus1)

(3)

The luminescence parameters can be calculated from thefollowing equations

1198601198691198691015840 =

6412058741198902

3ℎ (2119869 + 1) 1205823

[

[

119899 (1198992+ 2)2

9119878ed + 119899

3119878md

]

]

1

120591119903

= sum

1198691015840

1198601198691198691015840

120573119888=

1198601198691198691015840

sum1198691015840 1198601198691198691015840

sum

1198691198691015840

=11986011986911986910158401205822

81205871198881198992

(4)

where 120573119888is the fluorescence branch ratio 120591

119903is the radiative

lifetime of a given upper level1198601198691198691015840 is the transition probabil-

ity of spontaneous emission and sum1198691198691015840 is the integrated emis-

sion cross section The calculated results are listed in Table 2The results show that radiative probabilities (209 sminus1) of

4I152

rarr4I132

are comparable to those of ErYAG (211 sminus1)

Journal of Spectroscopy 3

Table 1 Calculated strength parameters for Er3+ in EBBO

Peak Configuration Wavelength (nm) intOD(120582)119889120582 (nm) 119878meas (10minus20 cm2) 119878cal (10

minus20 cm2) Δ1199042

1 4I132

1539 2573 327 276 0262 4I

112971 083 020 080 036

3 4F92

650 209 075 132 0324 4H

112519 535 237 272 012

5 4F72

485 197 094 127 0116 2H

92407 053 029 043 002

7 4G112

376 629 377 350 0088 4D

72255 135 118 085 011

Rms-Δ119904 = 040 times 10minus20 cm2Ω246

= (310 087 180) times 10minus20 cm2

Table 2 The spectral parameters for Er3+ ions in EBBO crystal

Transitions Wavelength (nm) 119860 ed (sminus1) 119860md (s

minus1) 120591119903(120583s) 120573

119888sum1198691198691015840 (10minus18 cm)

4I132 rarr4I152 1539 16528 4376 4783 1 2243

4I112 rarr4I152 971 23332 3733 087 100

4I112 rarr4I132 2778 2585 868 013 1212

4F92 rarr4I152 650 158341 568 090 303

4F92 rarr4I132 1156 6849 004 042

4F92 rarr4I112 1980 10475 006 186

4F92 rarr4I92 3448 259 000 014

4S32 rarr4I132 844 85240 983 083 275

4S32 rarr4I112 1212 6672 007 044

4S32 rarr4I92 1639 9738 010 119

2H92 rarr4I152 407 161662 238 038 121

2H92 rarr4I132 555 204455 049 286

2H92 rarr4I112 703 47728 011 107

2H92 rarr4I92 841 18100 001 006

2H92 rarr4F92 1089 4136 001 022

4G112 rarr4I152 376 1950540

4D72 rarr4I152 255 2254450

4I92 rarr4I132 1739 7216

4H112 rarr4I152 519 542035

4F72 rarr4I152 485 465879

[28] Er119909Y1minus119909

Al3(BO3)4(233 sminus1) [29] and ErLa

2CaB10O19

(262 sminus1) [30] The integrated emission cross section of1539 nm is 224 times 10minus18 cm which indicates that large ampli-fication gains near 154 120583m are expected to be obtained Sothe crystal has the potential to be a laser material withgood chemical and physical properties What is more due tothe high concentrations of Er3+ activators EBBO may findapplications in thin disk laser

4 Conclusion

Thespectroscopic properties of ErBa3B9O18crystal have been

investigated at room temperature The Judd-Ofelt theory hasbeen applied to evaluate the optical transition probabilitiesof Er3+ ions in ErBa

3B9O18 Based on the Judd-Ofelt theory

the intensity parameters obtained by the least-square fittingmethodΩ

119905(119905 = 2 4 6) are 310times 10minus20 087times 10minus20 and 180 times

10minus20 cm2 respectively The radiative probabilities lifetimeand fluorescence branching ratios have been calculatedCompared with other Er-doped laser crystals ErBa

3B9O18

crystal has large integrated emission cross sections and radia-tive probabilities With good chemical and physical proper-ties ErBa

3B9O18may find application in thin disk laser

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledge the support from theNational Natural Science Foundation of China (Grant nos51372026 and 51372027)

4 Journal of Spectroscopy

References

[1] Y Ding S Jiang B-C Hwang et al ldquoSpectral properties oferbium-doped lead halotellurite glasses for 15 120583m broadbandamplificationrdquo Optical Materials vol 15 no 2 pp 123ndash1302000

[2] J Breguet A F Umyskov S G Semenkov W Luthy H PWeber and I A Shcherbakov ldquoComparison of threshold energyof selectively excited YAlO

3Er andYAGEr lasersrdquo IEEE Journal

of Quantum Electronics vol 28 no 11 pp 2563ndash2566 1992[3] MYamada ldquoBroadband and gain-flattened amplifier composed

of a 155 [micro sign]m-band and a 158 [micro sign]m-band Er3+-doped fibre amplifier in a parallel configurationrdquoElectronics Letters vol 33 no 8 p 710 1997

[4] V P Gapontsev S M Matitsin A A Isineev and V BKravchenko ldquoErbium glass lasers and their applicationsrdquoOpticsamp Laser Technology vol 14 no 4 pp 189ndash196 1982

[5] J D Bradley J Dinnerman and P F Moulton ldquo3-120583m cw laseroperations in erbium-doped YSGG GGG and YAGrdquo OpticsLetters vol 19 no 15 pp 1143ndash1145 1994

[6] G J Kintz R Allen and L Esterowitz ldquoCW and pulsed28 120583m laser emission from diodeminuspumped Er3+LiYF

4at room

temperaturerdquo Applied Physics Letters vol 50 p 1553 1987[7] H Stange K Peterman G Huber and E W Duczynski

ldquoContinuous wave 16120583m laser action in Er doped garnets atroom temperaturerdquo Applied Physics B vol 49 no 3 pp 269ndash273 1989

[8] F Auzel S Hubert and D Meichenin ldquoMultifrequencyroomminustemperature continuous diode and Arlowast laserminuspumpedEr3+ laser emission between 266 and 285 120583mrdquo Applied PhysicsLetters vol 54 no 8 p 681 1989

[9] N Van Minh N Manh Hung D Thi Xuan Thao M Roef-faers and J Hofkens ldquoStructural and optical properties ofZnWO

4Er3+ crystalsrdquo Journal of Spectroscopy vol 2013 Article

ID 424185 5 pages 2013[10] L Wu X L Chen Q Y Tu et al ldquoPhase relations in the system

Li2O-MgO-B

2O3rdquo Journal of Alloys and Compounds vol 333

no 1-2 pp 154ndash158 2002[11] R C Stoneman and L Esterowitz ldquoEfficient resonantly pumped

28-120583m Er3+GSGG laserrdquo Optics Letters vol 17 no 11 p 8161992

[12] C Chen B Wu A Jiang and G You ldquoA new-type ultravioletSHG crystal 120573-BaB

2O4rdquo Scientia Sinica B vol 28 no 3 pp 235ndash

243 1985[13] M He X L Chen H Okudera and A Simon

ldquo(K1minus119909

Na119909)2Al2B2O7with 0 le 119909 lt 06 a promising nonlinear

optical crystalrdquo Chemistry of Materials vol 17 no 8 pp2193ndash2196 2005

[14] C Chen Y Wu A Jiang et al ldquoNew nonlinear-optical crystalLiB3O5rdquo Journal of the Optical Society of America B vol 6 no

4 pp 616ndash621 1989[15] LWu X L Chen H Li M He Y P Xu and X Z Li ldquoStructure

determination and relative properties of novel cubic boratesMM10158404(BO3)3(M = Li M1015840 = Sr M = Na M1015840 = Sr Ba)rdquo Inorganic

Chemistry vol 44 pp 6409ndash6414 2005[16] C Chen Y Wu and R Li ldquoThe relationship between the

structural type of anionic group and SHG effect in boron-oxygen compoundsrdquoChinese Physics Letters vol 2 no 9 p 3891985

[17] C Duan J Yuan and J Zhao ldquoLuminescence propertiesof efficient X-ray phosphors of YBa

3B9O18 LuBa

3(BO3)3 120572-

YBa3(BO3)3and LuBO

3rdquo Journal of Solid State Chemistry vol

178 no 12 pp 3698ndash3702 2005[18] C Duan J Yuan X Yang et al ldquoLuminescent properties of

REBa3B9O18

(RE = Lu Tb Gd Eu) under VUV excitationrdquoJournal of PhysicsDApplied Physics vol 38 no 19 p 3576 2005

[19] X Z Li C Wang X L Chen et al ldquoSyntheses thermalstability and structure determination of the novel isostructuralRBa3B9O18(R =Y Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb)rdquo

Inorganic Chemistry vol 43 no 26 pp 8555ndash8560 2004[20] M He W Y Wang Y P Sun Y P Xu and X L Chen ldquoGrowth

and optical properties of YBa3B9O18Ce crystalsrdquo Journal of

Crystal Growth vol 307 no 2 pp 427ndash431 2007[21] MHe GM CaiW JWangW YWang J Liu andX L Chen

ldquoGrowth and luminescence properties of a novel crystal withlarge birefringence ErBa

3B9O18rdquo Journal of Crystal Growth vol

311 no 4 pp 1234ndash1237 2009[22] M He X L Chen Y P Sun J Liu J T Zhao and C J Duan

ldquoYBa3B9O18 a promising scintillation crystalrdquo Crystal Growth

amp Design vol 7 no 2 pp 199ndash201 2007[23] M He T Z Liu M H Qiu et al ldquoStudy on the optical proper-

ties of ErBa3B9O18crystalsrdquo Physica B Condensed Matter vol

456 pp 100ndash102 2015[24] B R Judd ldquoOptical absorption intensities of rare-earth ionsrdquo

Physical Review vol 127 no 3 pp 750ndash761 1962[25] G S Ofelt ldquoIntensities of crystal spectra of rare-earth ionsrdquoThe

Journal of Chemical Physics vol 37 no 3 p 511 1962[26] W T Carnall P R Fields and K Rajnak ldquoElectronic energy

levels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 p 4424 1968

[27] W T Carnall P R Fields and K Rajnak ldquoElectronic energylevels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 no 10 pp 4414ndash4442 1968

[28] R ReisfeldThe Rare Earths in Modern Sciences and TechnologyPlenum Press New York NY USA 1979

[29] M G Liu B S Lu H F Pan and Q Song ldquoErxY1minusxAl3(BO3)4crystal growth and its spectral propertiesrdquo Acta Optical Sinicavol 8 pp 1079ndash1084 1988

[30] RGuo YWu P Fu and F Jing ldquoOptical transition probabilitiesof Er3+ ions in La

2CaB10O19crystalrdquo Chemical Physics Letters

vol 416 no 1ndash3 pp 133ndash136 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Optical Transition Probabilities of Er3

Journal of Spectroscopy 3

Table 1 Calculated strength parameters for Er3+ in EBBO

Peak Configuration Wavelength (nm) intOD(120582)119889120582 (nm) 119878meas (10minus20 cm2) 119878cal (10

minus20 cm2) Δ1199042

1 4I132

1539 2573 327 276 0262 4I

112971 083 020 080 036

3 4F92

650 209 075 132 0324 4H

112519 535 237 272 012

5 4F72

485 197 094 127 0116 2H

92407 053 029 043 002

7 4G112

376 629 377 350 0088 4D

72255 135 118 085 011

Rms-Δ119904 = 040 times 10minus20 cm2Ω246

= (310 087 180) times 10minus20 cm2

Table 2 The spectral parameters for Er3+ ions in EBBO crystal

Transitions Wavelength (nm) 119860 ed (sminus1) 119860md (s

minus1) 120591119903(120583s) 120573

119888sum1198691198691015840 (10minus18 cm)

4I132 rarr4I152 1539 16528 4376 4783 1 2243

4I112 rarr4I152 971 23332 3733 087 100

4I112 rarr4I132 2778 2585 868 013 1212

4F92 rarr4I152 650 158341 568 090 303

4F92 rarr4I132 1156 6849 004 042

4F92 rarr4I112 1980 10475 006 186

4F92 rarr4I92 3448 259 000 014

4S32 rarr4I132 844 85240 983 083 275

4S32 rarr4I112 1212 6672 007 044

4S32 rarr4I92 1639 9738 010 119

2H92 rarr4I152 407 161662 238 038 121

2H92 rarr4I132 555 204455 049 286

2H92 rarr4I112 703 47728 011 107

2H92 rarr4I92 841 18100 001 006

2H92 rarr4F92 1089 4136 001 022

4G112 rarr4I152 376 1950540

4D72 rarr4I152 255 2254450

4I92 rarr4I132 1739 7216

4H112 rarr4I152 519 542035

4F72 rarr4I152 485 465879

[28] Er119909Y1minus119909

Al3(BO3)4(233 sminus1) [29] and ErLa

2CaB10O19

(262 sminus1) [30] The integrated emission cross section of1539 nm is 224 times 10minus18 cm which indicates that large ampli-fication gains near 154 120583m are expected to be obtained Sothe crystal has the potential to be a laser material withgood chemical and physical properties What is more due tothe high concentrations of Er3+ activators EBBO may findapplications in thin disk laser

4 Conclusion

Thespectroscopic properties of ErBa3B9O18crystal have been

investigated at room temperature The Judd-Ofelt theory hasbeen applied to evaluate the optical transition probabilitiesof Er3+ ions in ErBa

3B9O18 Based on the Judd-Ofelt theory

the intensity parameters obtained by the least-square fittingmethodΩ

119905(119905 = 2 4 6) are 310times 10minus20 087times 10minus20 and 180 times

10minus20 cm2 respectively The radiative probabilities lifetimeand fluorescence branching ratios have been calculatedCompared with other Er-doped laser crystals ErBa

3B9O18

crystal has large integrated emission cross sections and radia-tive probabilities With good chemical and physical proper-ties ErBa

3B9O18may find application in thin disk laser

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledge the support from theNational Natural Science Foundation of China (Grant nos51372026 and 51372027)

4 Journal of Spectroscopy

References

[1] Y Ding S Jiang B-C Hwang et al ldquoSpectral properties oferbium-doped lead halotellurite glasses for 15 120583m broadbandamplificationrdquo Optical Materials vol 15 no 2 pp 123ndash1302000

[2] J Breguet A F Umyskov S G Semenkov W Luthy H PWeber and I A Shcherbakov ldquoComparison of threshold energyof selectively excited YAlO

3Er andYAGEr lasersrdquo IEEE Journal

of Quantum Electronics vol 28 no 11 pp 2563ndash2566 1992[3] MYamada ldquoBroadband and gain-flattened amplifier composed

of a 155 [micro sign]m-band and a 158 [micro sign]m-band Er3+-doped fibre amplifier in a parallel configurationrdquoElectronics Letters vol 33 no 8 p 710 1997

[4] V P Gapontsev S M Matitsin A A Isineev and V BKravchenko ldquoErbium glass lasers and their applicationsrdquoOpticsamp Laser Technology vol 14 no 4 pp 189ndash196 1982

[5] J D Bradley J Dinnerman and P F Moulton ldquo3-120583m cw laseroperations in erbium-doped YSGG GGG and YAGrdquo OpticsLetters vol 19 no 15 pp 1143ndash1145 1994

[6] G J Kintz R Allen and L Esterowitz ldquoCW and pulsed28 120583m laser emission from diodeminuspumped Er3+LiYF

4at room

temperaturerdquo Applied Physics Letters vol 50 p 1553 1987[7] H Stange K Peterman G Huber and E W Duczynski

ldquoContinuous wave 16120583m laser action in Er doped garnets atroom temperaturerdquo Applied Physics B vol 49 no 3 pp 269ndash273 1989

[8] F Auzel S Hubert and D Meichenin ldquoMultifrequencyroomminustemperature continuous diode and Arlowast laserminuspumpedEr3+ laser emission between 266 and 285 120583mrdquo Applied PhysicsLetters vol 54 no 8 p 681 1989

[9] N Van Minh N Manh Hung D Thi Xuan Thao M Roef-faers and J Hofkens ldquoStructural and optical properties ofZnWO

4Er3+ crystalsrdquo Journal of Spectroscopy vol 2013 Article

ID 424185 5 pages 2013[10] L Wu X L Chen Q Y Tu et al ldquoPhase relations in the system

Li2O-MgO-B

2O3rdquo Journal of Alloys and Compounds vol 333

no 1-2 pp 154ndash158 2002[11] R C Stoneman and L Esterowitz ldquoEfficient resonantly pumped

28-120583m Er3+GSGG laserrdquo Optics Letters vol 17 no 11 p 8161992

[12] C Chen B Wu A Jiang and G You ldquoA new-type ultravioletSHG crystal 120573-BaB

2O4rdquo Scientia Sinica B vol 28 no 3 pp 235ndash

243 1985[13] M He X L Chen H Okudera and A Simon

ldquo(K1minus119909

Na119909)2Al2B2O7with 0 le 119909 lt 06 a promising nonlinear

optical crystalrdquo Chemistry of Materials vol 17 no 8 pp2193ndash2196 2005

[14] C Chen Y Wu A Jiang et al ldquoNew nonlinear-optical crystalLiB3O5rdquo Journal of the Optical Society of America B vol 6 no

4 pp 616ndash621 1989[15] LWu X L Chen H Li M He Y P Xu and X Z Li ldquoStructure

determination and relative properties of novel cubic boratesMM10158404(BO3)3(M = Li M1015840 = Sr M = Na M1015840 = Sr Ba)rdquo Inorganic

Chemistry vol 44 pp 6409ndash6414 2005[16] C Chen Y Wu and R Li ldquoThe relationship between the

structural type of anionic group and SHG effect in boron-oxygen compoundsrdquoChinese Physics Letters vol 2 no 9 p 3891985

[17] C Duan J Yuan and J Zhao ldquoLuminescence propertiesof efficient X-ray phosphors of YBa

3B9O18 LuBa

3(BO3)3 120572-

YBa3(BO3)3and LuBO

3rdquo Journal of Solid State Chemistry vol

178 no 12 pp 3698ndash3702 2005[18] C Duan J Yuan X Yang et al ldquoLuminescent properties of

REBa3B9O18

(RE = Lu Tb Gd Eu) under VUV excitationrdquoJournal of PhysicsDApplied Physics vol 38 no 19 p 3576 2005

[19] X Z Li C Wang X L Chen et al ldquoSyntheses thermalstability and structure determination of the novel isostructuralRBa3B9O18(R =Y Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb)rdquo

Inorganic Chemistry vol 43 no 26 pp 8555ndash8560 2004[20] M He W Y Wang Y P Sun Y P Xu and X L Chen ldquoGrowth

and optical properties of YBa3B9O18Ce crystalsrdquo Journal of

Crystal Growth vol 307 no 2 pp 427ndash431 2007[21] MHe GM CaiW JWangW YWang J Liu andX L Chen

ldquoGrowth and luminescence properties of a novel crystal withlarge birefringence ErBa

3B9O18rdquo Journal of Crystal Growth vol

311 no 4 pp 1234ndash1237 2009[22] M He X L Chen Y P Sun J Liu J T Zhao and C J Duan

ldquoYBa3B9O18 a promising scintillation crystalrdquo Crystal Growth

amp Design vol 7 no 2 pp 199ndash201 2007[23] M He T Z Liu M H Qiu et al ldquoStudy on the optical proper-

ties of ErBa3B9O18crystalsrdquo Physica B Condensed Matter vol

456 pp 100ndash102 2015[24] B R Judd ldquoOptical absorption intensities of rare-earth ionsrdquo

Physical Review vol 127 no 3 pp 750ndash761 1962[25] G S Ofelt ldquoIntensities of crystal spectra of rare-earth ionsrdquoThe

Journal of Chemical Physics vol 37 no 3 p 511 1962[26] W T Carnall P R Fields and K Rajnak ldquoElectronic energy

levels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 p 4424 1968

[27] W T Carnall P R Fields and K Rajnak ldquoElectronic energylevels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 no 10 pp 4414ndash4442 1968

[28] R ReisfeldThe Rare Earths in Modern Sciences and TechnologyPlenum Press New York NY USA 1979

[29] M G Liu B S Lu H F Pan and Q Song ldquoErxY1minusxAl3(BO3)4crystal growth and its spectral propertiesrdquo Acta Optical Sinicavol 8 pp 1079ndash1084 1988

[30] RGuo YWu P Fu and F Jing ldquoOptical transition probabilitiesof Er3+ ions in La

2CaB10O19crystalrdquo Chemical Physics Letters

vol 416 no 1ndash3 pp 133ndash136 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Optical Transition Probabilities of Er3

4 Journal of Spectroscopy

References

[1] Y Ding S Jiang B-C Hwang et al ldquoSpectral properties oferbium-doped lead halotellurite glasses for 15 120583m broadbandamplificationrdquo Optical Materials vol 15 no 2 pp 123ndash1302000

[2] J Breguet A F Umyskov S G Semenkov W Luthy H PWeber and I A Shcherbakov ldquoComparison of threshold energyof selectively excited YAlO

3Er andYAGEr lasersrdquo IEEE Journal

of Quantum Electronics vol 28 no 11 pp 2563ndash2566 1992[3] MYamada ldquoBroadband and gain-flattened amplifier composed

of a 155 [micro sign]m-band and a 158 [micro sign]m-band Er3+-doped fibre amplifier in a parallel configurationrdquoElectronics Letters vol 33 no 8 p 710 1997

[4] V P Gapontsev S M Matitsin A A Isineev and V BKravchenko ldquoErbium glass lasers and their applicationsrdquoOpticsamp Laser Technology vol 14 no 4 pp 189ndash196 1982

[5] J D Bradley J Dinnerman and P F Moulton ldquo3-120583m cw laseroperations in erbium-doped YSGG GGG and YAGrdquo OpticsLetters vol 19 no 15 pp 1143ndash1145 1994

[6] G J Kintz R Allen and L Esterowitz ldquoCW and pulsed28 120583m laser emission from diodeminuspumped Er3+LiYF

4at room

temperaturerdquo Applied Physics Letters vol 50 p 1553 1987[7] H Stange K Peterman G Huber and E W Duczynski

ldquoContinuous wave 16120583m laser action in Er doped garnets atroom temperaturerdquo Applied Physics B vol 49 no 3 pp 269ndash273 1989

[8] F Auzel S Hubert and D Meichenin ldquoMultifrequencyroomminustemperature continuous diode and Arlowast laserminuspumpedEr3+ laser emission between 266 and 285 120583mrdquo Applied PhysicsLetters vol 54 no 8 p 681 1989

[9] N Van Minh N Manh Hung D Thi Xuan Thao M Roef-faers and J Hofkens ldquoStructural and optical properties ofZnWO

4Er3+ crystalsrdquo Journal of Spectroscopy vol 2013 Article

ID 424185 5 pages 2013[10] L Wu X L Chen Q Y Tu et al ldquoPhase relations in the system

Li2O-MgO-B

2O3rdquo Journal of Alloys and Compounds vol 333

no 1-2 pp 154ndash158 2002[11] R C Stoneman and L Esterowitz ldquoEfficient resonantly pumped

28-120583m Er3+GSGG laserrdquo Optics Letters vol 17 no 11 p 8161992

[12] C Chen B Wu A Jiang and G You ldquoA new-type ultravioletSHG crystal 120573-BaB

2O4rdquo Scientia Sinica B vol 28 no 3 pp 235ndash

243 1985[13] M He X L Chen H Okudera and A Simon

ldquo(K1minus119909

Na119909)2Al2B2O7with 0 le 119909 lt 06 a promising nonlinear

optical crystalrdquo Chemistry of Materials vol 17 no 8 pp2193ndash2196 2005

[14] C Chen Y Wu A Jiang et al ldquoNew nonlinear-optical crystalLiB3O5rdquo Journal of the Optical Society of America B vol 6 no

4 pp 616ndash621 1989[15] LWu X L Chen H Li M He Y P Xu and X Z Li ldquoStructure

determination and relative properties of novel cubic boratesMM10158404(BO3)3(M = Li M1015840 = Sr M = Na M1015840 = Sr Ba)rdquo Inorganic

Chemistry vol 44 pp 6409ndash6414 2005[16] C Chen Y Wu and R Li ldquoThe relationship between the

structural type of anionic group and SHG effect in boron-oxygen compoundsrdquoChinese Physics Letters vol 2 no 9 p 3891985

[17] C Duan J Yuan and J Zhao ldquoLuminescence propertiesof efficient X-ray phosphors of YBa

3B9O18 LuBa

3(BO3)3 120572-

YBa3(BO3)3and LuBO

3rdquo Journal of Solid State Chemistry vol

178 no 12 pp 3698ndash3702 2005[18] C Duan J Yuan X Yang et al ldquoLuminescent properties of

REBa3B9O18

(RE = Lu Tb Gd Eu) under VUV excitationrdquoJournal of PhysicsDApplied Physics vol 38 no 19 p 3576 2005

[19] X Z Li C Wang X L Chen et al ldquoSyntheses thermalstability and structure determination of the novel isostructuralRBa3B9O18(R =Y Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb)rdquo

Inorganic Chemistry vol 43 no 26 pp 8555ndash8560 2004[20] M He W Y Wang Y P Sun Y P Xu and X L Chen ldquoGrowth

and optical properties of YBa3B9O18Ce crystalsrdquo Journal of

Crystal Growth vol 307 no 2 pp 427ndash431 2007[21] MHe GM CaiW JWangW YWang J Liu andX L Chen

ldquoGrowth and luminescence properties of a novel crystal withlarge birefringence ErBa

3B9O18rdquo Journal of Crystal Growth vol

311 no 4 pp 1234ndash1237 2009[22] M He X L Chen Y P Sun J Liu J T Zhao and C J Duan

ldquoYBa3B9O18 a promising scintillation crystalrdquo Crystal Growth

amp Design vol 7 no 2 pp 199ndash201 2007[23] M He T Z Liu M H Qiu et al ldquoStudy on the optical proper-

ties of ErBa3B9O18crystalsrdquo Physica B Condensed Matter vol

456 pp 100ndash102 2015[24] B R Judd ldquoOptical absorption intensities of rare-earth ionsrdquo

Physical Review vol 127 no 3 pp 750ndash761 1962[25] G S Ofelt ldquoIntensities of crystal spectra of rare-earth ionsrdquoThe

Journal of Chemical Physics vol 37 no 3 p 511 1962[26] W T Carnall P R Fields and K Rajnak ldquoElectronic energy

levels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 p 4424 1968

[27] W T Carnall P R Fields and K Rajnak ldquoElectronic energylevels in the trivalent lanthanide aquo ions I Pr3+ Nd3+ Pm3+Sm3+ Dy3+ Ho3+ Er3+ and Tm3+rdquo The Journal of ChemicalPhysics vol 49 no 10 pp 4414ndash4442 1968

[28] R ReisfeldThe Rare Earths in Modern Sciences and TechnologyPlenum Press New York NY USA 1979

[29] M G Liu B S Lu H F Pan and Q Song ldquoErxY1minusxAl3(BO3)4crystal growth and its spectral propertiesrdquo Acta Optical Sinicavol 8 pp 1079ndash1084 1988

[30] RGuo YWu P Fu and F Jing ldquoOptical transition probabilitiesof Er3+ ions in La

2CaB10O19crystalrdquo Chemical Physics Letters

vol 416 no 1ndash3 pp 133ndash136 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Optical Transition Probabilities of Er3

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of