Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·...

6
1 3 March 2009 1 Gate Source Drain Ids Operation Mode: nMOS VGS < Vtn Gate Source Drain Ids VGS > Vtn VGD > Vtn Gate Source Drain Ids VGS > Vtn VGD < Vtn Cutoff Linear Saturation - - = 2 ) ( 2 DS DS T GS n DS V V V V k I 2 ) ( 2 T GS n DS V V k I - = 0 = DS I 3 March 2009 2 Gate Source Drain Ids Operation Mode: pMOS VGS < Vtp VGD < Vtp Gate Source Drain Ids VGS < Vtp VGD > Vtp Gate Source Drain Ids VGS > Vtp Cutoff Linear Saturation - - - = 2 ) ( 2 DS DS T GS p DS V V V V k I 2 ) ( 2 T GS p DS V V k I - - = 0 = DS I 3 March 2009 3 Gate Source Drain Ids Operation Region: pMOS VGS < Vtp VGD < Vtp Gate Source Drain Ids VGS < Vtp VGD > Vtp Gate Source Drain Ids VGS > Vtp Cutoff Linear Saturation 0 = DS I - - = 2 ) ( 2 DS DS T GS p DS V V V V k I 2 ) ( 2 T GS p DS V V k I - = 3 March 2009 4 CMOS Inverter First-Order DC Analysis Vin = 0 Vin = VDD • High noise margin • Ratioless • low output impedance • extremely high input impedance • no static power Vin Vout VDD 3 March 2009 5 CMOS Inverter: Transient Response Vin = VDD 0 Vin = 0 VDD Low-to-High High-to-Low To reduce delay: • Reduce CL • Reduce Rp,n • Increase W/L ratio Output: CL is composed of the drain diffusion capacitances of the NMOS and PMOS transistors, the capacitance of connecting wires, and the input capacitance of the fan-out gates 3 March 2009 6 NMOS Load Lines 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 x 10 -4 V DS (V) I DS (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V Linear Saturation V DS = V GS -V T

Transcript of Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·...

Page 1: Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·  · 2009-03-03Drain I ds Operation Mode: nMOS V GS< Vtn Gate Source Drain Ids

1

3 March 2009 1

Gate

Source

Drain

Ids

Operation Mode: nMOS

VGS < Vtn

Gate

Source

Drain

Ids

VGS > Vtn

VGD > Vtn

Gate

Source

Drain

Ids

VGS > Vtn

VGD < Vtn

Cutoff Linear Saturation

−−=

2)(

2

DSDSTGSnDS

VVVVkI

2

)(2

TGSnDS

VVkI

−=0=DSI

3 March 2009 2

Gate

Source

Drain

Ids

Operation Mode: pMOS

VGS < Vtp

VGD < Vtp

Gate

Source

Drain

Ids

VGS < Vtp

VGD > Vtp

Gate

Source

Drain

Ids

VGS > Vtp

Cutoff Linear Saturation

−−−=

2)(

2

DSDSTGSpDS

VVVVkI

2

)(2

TGSpDS

VVkI

−−=0=DSI

3 March 2009 3

Gate

Source

Drain

Ids

Operation Region: pMOS

VGS < Vtp

VGD < Vtp

Gate

Source

Drain

Ids

VGS < Vtp

VGD > Vtp

Gate

Source

Drain

Ids

VGS > Vtp

Cutoff Linear Saturation

0=DSI

−−=

2)(

2

DSDSTGSpDS

VVVVkI

2

)(2

TGSpDS

VVkI

−=

3 March 2009 4

CMOS Inverter

First-Order DC Analysis

Vin = 0Vin = VDD

• High noise margin

• Ratioless• low output impedance

• extremely high input impedance

• no static power

Vin Vout

VDD

3 March 2009 5

CMOS Inverter: Transient Response

Vin = VDD �0 Vin = 0 � VDD

Low-to-High High-to-Low

To reduce delay:

• Reduce CL

• Reduce Rp,n

• Increase W/L ratio

Output:

CL is composed of the drain diffusion capacitances of the NMOS and PMOS transistors, the capacitance of connecting wires, and the input capacitance of the fan-out gates

3 March 2009 6

NMOS Load Lines

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I DS

(A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Linear Saturation

VDS= V

GS- V

T

Page 2: Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·  · 2009-03-03Drain I ds Operation Mode: nMOS V GS< Vtn Gate Source Drain Ids

2

3 March 2009 7

PMOS Load Lines

Vin Vout

VDD

3 March 2009 8

CMOS Inverter Load Characteristics

3 March 2009 9

CMOS Inverter VTC

VTC: Voltage-Transfer Characteristic

3 March 2009 10

CMOS Inverter VTC

Vtn Vin

Vout

VDD

Vin Vout

VDD

S

S

D

D

G

G

3 March 2009 11

CMOS Inverter VTC

Vtn Vin

VDD

Vout

Vout - |Vtp|

Vin Vout

VDD

S

S

D

D

G

G

3 March 2009 12

CMOS Inverter VTC

• Set pMOS Linear IDS equal to nMOS

Saturation IDS

( )

−−−−−=

2

)())((

2

22

DDoutDDouttpDDinp

tninn

VVVVVVVk

VVk

( )0

2))((

2

)(22

=−

+−−−−− tnin

p

nDDouttpDDin

DDout VV

k

kVVVVV

VV

( )22)()()( tnin

p

ntpDDintpDDinDDout VV

k

kVVVVVVVV −−−−+−−=−

( )22)()( tnin

p

ntpDDintpinout VV

k

kVVVVVV −−−−+−=

Page 3: Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·  · 2009-03-03Drain I ds Operation Mode: nMOS V GS< Vtn Gate Source Drain Ids

3

3 March 2009 13

CMOS Inverter VTC

Vtn

VDD

Vout

Vout - |Vtp| Vout + Vtn

Vin

Vin Vout

VDD

S

S

D

D

G

G

3 March 2009 14

CMOS Inverter VTC

Vtn

VDD

Vout

Vout - |Vtp| Vout + Vtn

Vtn VDD - |Vtp| Vin

Vin Vout

VDD

S

S

D

D

G

G

3 March 2009 15

CMOS Inverter VTC

• Set nMOS Linear IDS equal to pMOSSaturation IDS

( )( )

−−=

−−

22

22

outouttninn

tpDDin

p

VVVVk

VVVk

( )( )

022

22

=−−

+−−tpDDin

n

p

outtninout

VVV

k

kVVV

V

( ) ( ) ( )22

tpDDin

n

p

tnintninoutVVV

k

kVVVVV −−−−−−=

3 March 2009 16

CMOS Inverter VTC

Vtn

VDD

Vout

Vout - |Vtp| Vout + Vtn

Vtn VDD - |Vtp| Vin

VDD

Vin Vout

VDD

S

S

D

D

G

G

3 March 2009 17

CMOS Inverter VTC

VDD

Vin

Vout

VDD

3 March 2009 18

CMOS Inverter(assume Vt = Vtn = |Vtp|)

Page 4: Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·  · 2009-03-03Drain I ds Operation Mode: nMOS V GS< Vtn Gate Source Drain Ids

4

3 March 2009 19

Switching Threshold

• The point (Vm) at which the inverter has both transistors in saturation (Vin = Vout)

22)(

2)(

2tpDDM

p

tnMn VVV

kVV

k−−=−

)()(tpDDM

n

p

tnMVVV

k

kVV −−−=−

)()1(tpDDtnM

VVrVrV ++=+

r

VVrVV

tpDDtn

M+

++=

1

)(

r is the relative driving strengths of the PMOS and NMOS transistors

r

3 March 2009 20

Switching Threshold

• When Vtn = -Vtp and r = 1,

• When Vtn = -Vtp and r > 1,

r

VVrVV

tpDDtn

M+

++=

1

)(

2

DDM

VV =

2

DDM

VV > Stronger PMOS

3 March 2009 21

00.5

1

1.52

2.5

0 0.5 1 1.5 2 2.5Vin (V)

Vo

ut(V

)

Balanced

Strong PMOS

Strong NMOS

Switching Threshold

3 March 2009 22

Noise Margin

• A measure of the acceptable noise at a gate input so that the output is not affected.

• Noise margin is closely related to the DC voltage characteristics

• Sources: supply noise, crosstalk, interference

3 March 2009 23

Noise Margin

VOLmax: Maximum low

output voltage produced

by the driving gate

VILmax: Maximum low input

voltage recognized by the

receiving gate

Low Noise Margin

High Noise Margin

Logical Low Input Voltage

Logical Low Output Voltage

Output Characteristics

Input Characteristics

3 March 2009 24

Noise Margins

• Voltage Transfer Function

• Voltage Transfer Function with Noise

• Perturbed voltage is the sum of the nominal output plus the gain times the noise

• Keep the gain less than 1

)( inout VfV =

)( noiseinout VVfV ∆+=

noisein

outinout

VdV

dVVfV ∆+≈ )(

Page 5: Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·  · 2009-03-03Drain I ds Operation Mode: nMOS V GS< Vtn Gate Source Drain Ids

5

3 March 2009 25

Noise Margins

VDD

Vin

Vout

VDD

VOH

VOL

Undefined region

VIL

VIH

3 March 2009 26

Static Load Inverter

3 March 2009 27

Static Load Inverter

3 March 2009 28

Static Load Inverter

Linear

Mode

3 March 2009 29

Static Load Inverter

• Transistor is in linear region

−−=

2)(

2

DSDSTGSnDS

VVVVkI

−−−=

2)(

2

OUTOUTTINnDDOUT

VVVVRkVV

0)1)((2

2=++−− DDOUTTINnOUT

n VVVVRkVRk

( )n

DD

n

TIN

n

TINOUTRk

V

RkVV

RkVVV 2

11)(

2

+−−+−=

3 March 2009 30

Static Load Inverter

Page 6: Operation Mode: nMOS - University of Connecticut School …tehrani/teaching/ece3421/Lec-03.… ·  · 2009-03-03Drain I ds Operation Mode: nMOS V GS< Vtn Gate Source Drain Ids

6

3 March 2009 31

Static Load Inverter

• Transistor is in saturation

)1(2

)( 2

DSTGS

nDS VVV

kI λ+−

=

)1(2

)( 2

OUTTIN

nDDOUT VVV

RkVV λ+−

−=

2

2

)(2

)(2

TINn

TINnDDOUT

VVRk

VVRkVV

−+

−−=

λ

3 March 2009 32

Static Load Inverter

VOH

VOL

Undefined region

3 March 2009 33

Static Load Inverter

• Does not go down all the way to 0 due to the resistance path between VDD and ground when nMOS is on

• Static power

• Noise margins are tighter

• Switching threshold is not centered

• To get high gain in the transition region, bigger resistors are needed