NTC Siemens

164
Selector Guide 11 Applications 19 General Technical Information 23 Data Sheets 45 Standardized R/T Characteristics 107 Mounting Instructions 139 Quality 145 Environmental Protection, Climatic Conditions 151 , 153 Taping and Packing 155 Symbols and Terms 161 Subject Index 163 Contents 5 Index of Types 9

description

ccccccccccccccccccccccccccccccc

Transcript of NTC Siemens

Selector Guide 11Applications 19

General Technical Information 23

Data Sheets 45

Standardized R/T Characteristics 107

Mounting Instructions 139Quality 145Environmental Protection, Climatic Conditions 151, 153

Taping and Packing 155Symbols and Terms 161Subject Index 163

Contents 5Index of Types 9

Creatingnewlinks

As of now you can tie upwith Passive Componentsand Electron Tubes Groupplus Siemens Matsushita Components on the Internet. On our home page under

http://www.siemens.de/pr/index.htm

you’ll find the latest short form cata-logs, data books, technical articlesand more subjects too. You can viewthe documents on-line, or downloadthem to your PC. The “Installation“menu item tells you how to do it.Thanks to the integrated search function, you only have to enter keyterms to go straight to the right document. And of course, you canget in touch with us direct by E mailat any time.

Wo

rld

Wide Web Ser

vic

e

SCS – dependable, fast and competent

SCS on the Internet

NTC Thermistors

SCS – dependable, fast and competent

Now order even more

We’ve reallygot things in storeWhen you need bigger batches thanusual, we don’t leave you with emptyhands. We’ve pushed up maximumorder quantities quite a bit, all of tentimes for ceramic chip capacitors forexample. But we’ve got lots more in

store for you, like SCS depots rightthere in our plants, extra stock withdistributors, and experienced salesengineers on the spot around theworld. An extensive range of non-SCScomponents is available too – justcontact us.

Co

nten

ts

Contents

Index o f types 9

Selector gu ide 11

App lications 19

General technical information 23

1 Definition 23

2 Manufacture 23

3 Characteristics 23

3.1 Unloaded NTC thermistors 243.1.1 Temperature dependence of resistance 243.1.2 B value 243.1.3 Tolerance 253.1.4 Temperature coefficient α 273.1.5 Zero-power measurement 273.2 Electrically loaded NTC thermistors 273.2.1 Voltage/current characteristic 283.2.2 Behavior in different media 303.2.3 Maximum power rating P 303.2.4 Dissipation factor δth 303.2.5 Heat capacity Cth 303.2.6 Thermal cooling time constant τc 313.2.7 Thermal time constant τa 313.2.8 Ageing and stability 31

4 App lication no tes 324.1 Applications utilizing the influence of ambient temperature

on resistance (self-heating negligible!) 324.1.1 Temperature measurement 324.1.2 Linearizing the R/T characteristic 324.1.3 Temperature compensation 344.2 Applications utilizing the non-linear voltage/current characteristic

(in self-heated mode) 354.2.1 Inrush current limiting 354.2.2 Series and parallel connection 364.2.3 Self-heating 374.2.4 Load derating 384.2.5 Restart 384.2.6 Dependence of NTC resistance on current 384.2.7 Pulse strength 394.2.8 Applications 404.3 Applications utilizing the influence of the disspation factor

on the voltage/current characteristic 414.3.1 Liquid level sensors 414.3.2 Flow rate and vacuum measurement 424.4 Applications utilizing the current/time characteristic 43

Siemens Matsushita Components 5

Contents

Data sheets 45

Temperature measurement 45

SMDs 45Leadless disks 49Glass-encapsulated NTC thermistors 52Leaded disks 57Miniature sensors 69Probe assemblies 82

Inrush current limit ing 99

Standardized R/T characteristics 107

1 Introduc tion 107

2 Resistance tolerance 108

3 Temperature tolerance 109

4 Characteristics 110

Mount ing instruct ions 139

1 Solder ing 139

1.1 Leaded NTC thermistors 1391.2 Leadless NTC thermistors 1391.3 SMD NTC thermistors 1391.3.1 Wettability test 1391.3.2 Soldering heat resistance test 1401.3.3 Recommended soldering temperature profiles 1401.3.4 Notes 142

2 Cond uct ive adhe sion 142

3 Clamp co ntacting 142

4 Robu stness of terminations 142

5 Sealing and p otting 143

6 Cleaning 143

7 Storage 143

Quali ty 145

1 Manufacturing p rocess and qu al ity ass urance 145

2 General 146

3 Sequen ce of qua li ty assu rance measures 146

3.1 Incoming inspection 1463.2 Process assurance 1463.3 Product assurance 1463.4 Final inspection 146

6 Siemens Matsushita Components

Contents

4 Delivery qua li ty 146

5 Sampling inspec tion 147

6 Classificat ion o f defects 147

7 AQL va lues 147

8 Inco ming inspec tion by the cus tomer 148

9 Reliabil ity 149

10 Iden tif ication and traceabili ty 149

11 Supp lementary information 150

Env ironmental p rotection measures 151

Climat ic cond itions 153

1 Reliabil ity data 153

2 Operating temperature range / ambient temperatures 153

Taping and pack ing 155

1 Taping of SMD thermistors 155

2 Taping of radial-lead NTC thermistors 157

3 Taping of M 87 NTC thermistors 160

4 Pack ing codes 160

Symbols and terms 161

Sub ject index 163

Siemens Matsushita Components 7

SCS – dependable, fast and competent

Now twice as many

Siemens Matsushita ComponentsCOMPONENTS

+S M

2,000 PTC thermistors at once

A hot tip in PTCs for overloadprotection: our new maximum orderlevel of 2,000 pieces. And withmore than 50 different models,we’ve got a lot more to offer too.Maximum operating voltages from12 to 550 V, rated currents up to 2.5A, maximum switching currents of15 A, plus a broad selection of lea-ded versions and SMDs.

Siemens Matsushita Components 9

Type Page Type Page

CC 620 45C 621 47, 48

KK 17 52K 19 53K 45 82, 83K 150 49K 153 57K 164 58, 59K 220 50K 227 90K 276 86K 277 88

MM 85 54M 87 56M 185 55M 703 84M 820 51M 831 92M 891 61, 62M 912 95M 1891 60M 2020 94

SS 153 99S 234 100S 235 101S 236 102S 237 103S 364 104S 464 105S 861 69, 71S 863 75S 867 74S 869 81S 891 63

ZZ 10 97

Index of Types

Ind

ex of T

yp

es

SCS – dependable, fast and competent

A whole lot of ring core chokes

Siemens Matsushita ComponentsCOMPONENTS

+S M

Chokes to your choice

You urgently need particular ringcore chokes? That’s no problem, wehave 200,000 pieces in stock anddeliver reliably through SCS. Ourautomated production guarantees

the best of reliability too. It turns outchokes in different versions: flat andupright, with current rated from 0.4to 16 A. UL and VDE approved, andcomplying with the latest EMC stan-dards of course.

Selecto

r Gu

ide

Selector Guide

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

Surface-mount NTC thermistors

B57620(C 620)

– 55/125 2,2 k … 220 k 25 ± 5 %;± 10 %;± 20 % 45

B57621(C 621)

– 55/125 2,2 k … 680 k 25 ± 5 %;± 10 %;± 20 % 47

Leadless disks for automotive applications

B57150(K 150)

– 55/155 12,5 100 ± 5 %49

B57220(K 220)

– 55/250 2,5 k 20 ± 5 %50

B57820(M 820)

– 55/155 39,60 … 144 100 ± 5 %51

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

Glass-encapsulated NTC thermistors with short response time for measuring high temperatures

B57017(K 17)

– 55/250 2,5 k … 100 k 20 ± 5 %;± 10 %;± 20 % 52

Siemens Matsushita Components 11

Selector Guide

Glass-encapsulated NTC thermistors with short response time for measuring high temperatures

B57019(K 19)

– 55/200 12 k 20 ± 5 %;± 10 %;± 20 % 53

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

Glass-encapsulated NTC thermistors with short response time for measuring high temperatures

B57085(M 85)

– 55/200 4,7 k … 100 k 25 ± 5 %;± 10 %;± 20 % 54

B57185(M 185)

– 55/200 47 k, 100 k 25 ± 3 %± 5 % 55

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

12 Siemens Matsushita Components

Selector Guide

Glass-encapsulated NTC thermistors with short response time for measuring high temperatures

B57087(M 87)

– 55/300 2 k … 100 k 25 ± 10 %56

Leaded disks for temperature compensation and measurement

B57153(K 153)

– 55/125 4,7 … 10 25 ± 5 %;± 10 % 57

B57164(K 164)

– 55/125 15 … 470 k 25 ± 5 %;± 10 %; 58

B57891(M 1891)

– 55/155 1 k … 100 k 25 ± 5 %;± 10 % 60

B57891(M 891)

– 55/125 1 k … 470 k 25 ± 5 %;± 10 % 61

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

Siemens Matsushita Components 13

Selector Guide

Leaded disks for high-precision temperature measurement

B57891(S 891)

– 55/155 2,2 k … 100 k 25 ∆T = ± 0,5 K;± 1 K;± 2 K 63

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆TK

∆RN/RN Page

Miniature sensors for high-accuracy measurement

B57861(S 861)

– 55/155 3 k …30 k

25 ± 1 %;± 3 %; ± 5 % 69

– 40/100 5 k 25 ± 0,1 71

B57867(S 867)

– 55/155 3 k …30 k

25 ± 1 %;± 3 %; ± 5 % 74

B57863(S 863)

– 55/155 3 k …30 k

25 ± 0,2;± 0,5 75

B57869(S 869)

– 55/155 3 k …30 k

25 ± 0,2;± 0,5 81

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

14 Siemens Matsushita Components

Selector Guide

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

Probe assemblies

B57045(K 45)

– 55/125 1 k … 150 k 25 ± 10 %82

B57703(M 703)

– 55/125 10 k 25 ± 2 %84

B57276(K 276)

– 10/100 1704 80 ± 2 %86

Siemens Matsushita Components 15

Selector Guide

Probe assemblies

B57277(K 277)

– 40/100 2 k 5 ± 2,5 %88

B57227(K 227)

– 55/155 1,8 k 100 ± 10 %90

B57831(M 831)

– 10/100 359,3 k 50 ± 2,5 %92

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

16 Siemens Matsushita Components

Selector Guide

Probe assemblies

B57020(M 2020)

– 40/60 16330 0 –94

B57912(M 912)

– 40/100 9 k 0 ± 2 %95

B57010(Z 10)

– 25/100 10 k 25 ± 2 %97

NTC thermistors for temperature measurement

Type TA°C

RNΩ

TN°C

∆RN/RN Page

Siemens Matsushita Components 17

Selector Guide

NTC thermistors for inrush current limiting

Type TA°C

R25Ω

P25W

ImaxA

Page

B57153(S 153)

– 55/170 4,7 … 33 1,4 1,3 … 3,099

B57234(S 234)

– 55/170 1,0 … 60 3,6 3,3 … 11,5100

B57235(S 235)

– 55/170 5,0 … 10,0 1,8 3,0 … 4,2101

B57236(S 236)

– 55/170 2,5 … 80 2,1 1,6 … 5,5102

B57237(S 237)

– 55/170 1,0 … 33 3,1 2,5 … 9,0103

B57364(S 364)

– 55/170 1,0 … 10 5,1 7,5 … 16,0104

B57464(S 464)

– 55/170 1,0 6,7 20105

18 Siemens Matsushita Components

Ap

plications

Applications

S+M offers a broad range of NTC thermistors for temperature measurement and inrush currentlimiting. To facilitate selection of the right thermistor for your application we have compiled thefollowing tables and charts.

Temperature measurement

Temperatures can be determined by point-matching or uni curve NTC thermistors. While point-matching thermistors feature their highest accuracy in a tight range around the rated temperature,uni curve thermistors exhibit a high measuring accuracy over a wide temperature range.

The chart for point-matching thermistors on page 20 assigns the different models and their ratedresistances RN to rated temperatures TN.

With the table below you can select uni curve thermistors by resistance ratings (at 25 °C) and tem-perature tolerances .

Uni curve NTC thermistors

Inrush current limiting

NTC thermistors can limit excessive inrush currents effectively and at attrative cost. Fields of appli-cation are electric motors, transformers and switch-mode power supplies. The chart on page 22correlates sizes, maximum permissible currents Imax and typical NTC resistances R25.

R25 Temperature tolerancePage

Ω ± 0,1 K ± 0,2 K ± 0,5 K ± 1 K ± 2 K

2,2 k 63 63 63

3 k 7581

7581

5 k 71 75 75

10 k7581

637581

63 63

20 k 63 63 63

30 k 7581

7581

100 k 63 63 63

Siemens Matsushita Components 19

Temperature MeasurementPoint-Matching NTC Thermistors

20 Siemens Matsushita Components

Temperature MeasurementPoint-Matching NTC Thermistors

Siemens Matsushita Components 21

Inrush Current Limiting

22 Siemens Matsushita Components

Gen

eral Tech

nic

al Info

rmatio

n

General Technical Information

1 Definition

As defined by IEC 539, CECC 43 000 and DIN 44 070, NTC (Negative Temperature Coefficient)thermistors are thermally sensitive semiconductor resistors which show a decrease in resistance astemperature increases. With – 2%/K to – 6 %/K, the negative temperature coefficients of resistanceare about ten times greater than those of metals.

Changes in the resistance of the NTC thermistor can be brought about either externally by a changein ambient temperature or internally by self-heating resulting from a current flowing through the de-vice. All practical applications are based on this behavior.

NTC thermistors are made of polycrystalline mixed oxide ceramics. The conduction mechanisms inthis material are quite complex, i.e. either extrinsic or intrinsic conduction may occur. In many casesNTC thermistors have a spinell structure and then show valence conduction effects.

2 Manufacture

S + M thermistors are produced from carefully selected and tested raw materials. The starting ma-terials are different oxides of metals such as manganese, iron, cobalt, nickel, copper and zinc, towhich chemically stabilizing oxides may be added to achieve better reproducibility and stability ofthe thermistor characteristics.

The oxides are milled to a powdery mass, mixed with a plastic binder and then compressed into thedesired shape. Standard shapes are:

Disks: The thermistor material is compressed under very high pressure on pelleting machines toproduce round, flat pieces.

Wafers: The ceramic material is compression-molded or drawn and then cut to the required shape.

Beads: The oxide/binder mixture is deposited in the form of small ellipsoids on two fine parallelwires made of platinum alloy.

The blanks are then sintered at high temperatures (between 1000 and 1400 °C) to produce the poly-crystalline thermistor body. Disks are contacted by baking a silver paste onto the flat surfaces. Withbeads the wires embedded in the sintered body serve as contacts. Depending on the application,the thermistors are fitted with leads or tab connectors, coated or additionally incorporated in differ-ent kinds of housing. Finally the thermistors are subjected to a special ageing process to ensurehigh stability of the electrical values. Otherwise the NTC resistance would possibly change even atroom temperature due to solid-state reactions in the polycrystalline material.

A flow chart in the quality section of this book (see page 145) shows the individual processing stepsin detail. The chart also illustrates the extensive quality assurance measures taken during manu-facture to guarantee the constantly high quality level of our thermistors.

3 Characteristics

A current flowing through a thermistor may cause sufficient heating to raise the thermistor’s temper-ature above the ambient. As the effects of self-heating are not always negligible (or may even beintended), a distinction has to be made between the characteristics of an electrically loaded ther-mistor and those of an unloaded thermistor. The properties of an unloaded thermistor are alsotermed “zero-power characteristics”.

Siemens Matsushita Components 23

24

3.1 Unloaded NTC

3.1.1 Temperature d

The dependence of the

RT NTC resistanc

RN NTC resistanc

T, TN Temperature i

B B value, mater

e Base of natura

The actual characteristponential relation, as thproach is only suitable with sufficient accuracy

For practical applicatiocomplicated approacherelation is given in tabuR/T curves (page 110 fmost accuracy; they ar

3.1.2 B value

As already mentioned portant to know to whicsurement at temperatu

The B value for a partic(R1) and 100 ˚C (R2) a

RT RN eB 1

T---

1TN-------–

⋅=

BT1 T2⋅T2 T1–------------------ ln

R1

R2-------⋅ -= =

General Technical

thermistors

ependence of resistance

resistance on temperature can be approximated by the following equation:

e in Ω at temperature T in K

e in Ω at rated temperature TN in K

n K

ial-specific constant of the NTC thermistor

l logarithm (e = 2,71828)

ic of an NTC thermistor can, however, only be roughly described by the ex-e material parameter B in reality also depends on temperature. So this ap-for describing a restricted range around the rated temperature or resistance.

ns a more precise description of the real R/T curve is required. Either mores (e.g the Steinhart-Hart equation) are used or the resistance/temperaturelated form. Subsequent to the data sheet section you will find tables for realf). These standardized curves have been experimentally determined with ut-e also available for temperature increments of 1 degree.

in the paragraph above, the B value depends on temperature. Thus it is im-h temperature B is referred. The specifications in this data book refer to mea-res of 25 ˚C (T1) and 100 ˚C (T2). Symbol: B25/100.

ular NTC thermistor can be determined by measuring the resistance at 25 ˚Cnd inserting these resistance values into the following equation:

(1)

25( 273,15 )+ 100( 273,15 )+⋅75

--------------------------------------------------------------------------------------------- lnR25

R100------------⋅ 1483,4 ln

R25

R100------------⋅ = (2)

Information

Siemens Matsushita Components

Siemens Matsushita C

The B values for commdependence of the R/T

3.1.3 Tolerance

The rated resistance Rance of the B value, aabove or below the rate

With regard to the tolethermistor:

a) Point-matching NTC

With point-matchingperature point, whicto other temperaturematching NTC thermformed within a tight

b) Uni curve NTC therm

Uni curve NTC thertemperature range which measuring acteed over a temperameasure different temini-sensors (S 861

on NTC materials range from 2000 through 6000 K. Figure 1 illustrates the characteristic on the B value.

Figure 1

Resistance/temperature characteristics(Parameter: B value)

General Technical Information

omponents 25

N and the B value are subject to manufacturing tolerances. Due to this toler-n increase in resistance spread must be expected for temperatures that lied temperature TN.

rance of resistance a distinction is made between two basic types of NTC

thermistors

NTC thermistors a particular resistance tolerance is specified for one tem-h is usually 25 ˚C. In principle, NTC thermistors can also be point-matcheds than those specified in the data sheets (upon customer request). Point-istors are ideal for applications where exact measurements are to be per-

range around the rated values. Example: refrigerator sensor at 5 ˚C (K277).

istors

mistors are used when a high measuring accuracy is required over a wide(T1 … T2). For this kind of application we offer several standard types forcuracies between 0,2 and 2 K (depending on requirements) can be guaran-ture range of 0 through 70 ˚C. Thus only one NTC thermistor is required tomperatures with the same accuracy. Uni curve thermistors are available as, S863, S867, S869) and as leaded disks (S891).

26

Typical curves for the t

Generally, the resistan

If the third temperaturfollows:

In this formula ∆RB den

As can be seen from thby two variables: the mvalue with temperature

For a practical estimateerance tables (

Figure 2a

Point-matching NTC th

RT∆ R T( )∂RN∂------------------ RN∆⋅ +=

RT∆RT

----------RN∆RN

-----------RB∆RT

-----------+=

General Technical

emperature tolerances of point-matching and uni curve thermistors

Information

Siemens Matsushita Components

ce tolerance can be expressed by the following relation:

e-dependent term in (3) is neglected, the equation can be simplified as

otes the resistance tolerance resulting from the spread of the B value.

e equation, the resistance tolerance at a certain temperature is influencedanufacturing tolerance of the rated resistance and the variation of the B

.

of resistance and temperature tolerances please refer to the resistance/tol-).

ermistors

Figure 2b

Uni curve NTC thermistors

R T( )∂B∂------------------ B∆⋅ R T( )∂

T∂------------------ T∆⋅+ (3)

(4)

Siemens Matsushita C

3.1.4 Temperature c

The temperature coeffithe change in tempera

By means of this equatperature intervals.

For practical applicatioused; the temperature imation formulae given

3.1.5 Zero-power m

The zero-power resistatrical load kept so smather decreased. At tooeffect (see 3.2). Whenmeasuring lines must b

Example: For S861, R2

3.2 Electrically loa

When a current flows thtion. This self-heating etion factor δ and the ge

The general rule is:

The smaller the devicepower).

α 1R----·

dRdT--------=

T∆ 1α R⋅------------ R∆⋅=

oefficien t αcient of resistance is defined as the relative change in resistance referred toture.

ion resistance and temperature tolerances can be calculated for small tem-

n we recommend that the standardized R/T curves (see page 107 ff) aresteps tabulated there are small enough to permit calculation by the approx- above.

easurement

nce is the resistance value measured at a given temperature T with the elec-ll that there is no noticeable change in the resistance value if the load is fur- high a measuring load the test results will be distorted by the self-heating a low-resistance NTC thermistor is to be measured, the resistance of thee taken into account.

5 = 10 kΩ the measuring current IMeas is ≤ 100 µA.

ded NTC thermistors

rough the thermistor, the device will heat up more or less by power dissipa-ffect depends not only on the load applied, but also on the thermal dissipa-ometry of the thermistor itself.

, the smaller is the permissible maximum load and the measuring load (zero

(5)

R∆ α R T∆⋅ ⋅= (6)

General Technical Information

omponents 27

28

The following general r

P Electrical powV InstantaneousI InstantaneousdH/dt Change of stoδ Dissipation facT InstantaneousTA Ambient tempCth Heat capacity dT/dt Change of tem

3.2.1 Voltage/curren

If a constant electrical erably, but this changepower is dissipated by

In case of thermal equi

and with V = R · I :

or

This is the socalled parature-dependent NTC lated for different ambi

P V I Hdtd

-------=⋅ δth ⋅= =

V I⋅ δth T TA–( )⋅=

Iδth T TA–( )⋅

R T( )-----------------------------------=

V δth T TA–( ) R⋅ ⋅=

General Technical

ule applies to self-heating of an NTC thermistor by an electrical load:

er applied value of NTC voltage value of NTC currentred thermal energy with timetor of NTC thermistor temperature of NTC thermistoreratureof NTC thermistorperature with time

t characteristic

power is applied to the thermistor, its temperature will first increase consid- declines with time. After some time a steady state will be reached where thethermal conduction or convection.

librium dT/dt equals 0 and thus one obtains

ametric description of the voltage/current curve with R (T) being the temper-resistance. With the aid of the above equations these curves can be calcu-ent temperatures.

T TA–( ) CthTdtd

-------⋅+ (7)

(8)

(9a)

T( ) (9b)

Information

Siemens Matsushita Components

Siemens Matsushita C

By plotting the voltagethe voltage/current cha

Measurement at consta

On a log-log scale thestraight line.

The voltage/current ch

1. The section of straigVoltage and current arexclusively determinedthermistors are employ(dV/dI = R = constant)

2. The section of non-lAt maximum voltage ththe relative increase in(R > dV/dI ≥ 0)

3. The falling-edge seccurrent.(dV/dI ≤ 0)

Figure 3

Current/voltage charac

values obtained at constant temperature as a function of current one getsracteristic of the NTC thermistor.

Water

Air

General Technical Information

omponents 29

nt ambient temperature, still air

curves for constant power and constant resistance take the shape of a

aracteristic of an NTC thermistor has three different sections:

ht rise where the dissipation power only produces negligible self-heating.e proportional to each other and follow Ohm’s law. The resistance value is by the ambient temperature. Use of this curve section is made when NTCed as temperature sensors.

inear rise up to maximum voltage where resistance already begins to drop.e relative decrease in resistance ∆R/R resulting from self-heating is equal to current ∆I/I.

tion where the decrease in resistance is greater than the relative increase in

teristic

30

3.2.2 Behavior in dif

As shown by equationresistance R (T) but alsize, shape and leads

The voltage/current cuthe dissipation factor inrent. The opposite app

The voltage/current cumeans that NTC thermmeasurement or for ga

3.2.3 Maximum pow

P is the maximum powature with its own tempambient temperature, m

With known dissipation

Pmax = δth (Tmax – TA)

3.2.4 Dissipation fac

The dissipation factor δchange in the thermistothe load which causes the dissipation factor, t

δth = dP/dT

For measuring δth the tue measured at T2 = 8

T2 Body temperaT1 Ambient temp

3.2.5 Heat capacity

The heat capacity Cth perature by 1 K. Cth is

The relationship betweby:

Cth = δth · τth

δthV I⋅

T2 T1–------------------

PT2 T–---------------= =

CthH∆T∆--------

=

General Technical

ferent media

s (9a) and (9b) the voltage/current curve is influenced not only by the NTCso by the dissipation factor δth. The dissipation factor, in turn, depends onof the the device as well as on the medium surrounding the thermistor.

rves specified in the data sheets apply to still air. In stirred air or in a liquidcreases and the V/I curve shifts towards higher values of voltage and cur-

lies when the thermistor is suspended in a vacuum.

rve thus indicates by which medium the thermistor is surrounded. Thisistors can be used for sensing the flow rate of gases or liquids, for vacuums analysis.

er rating P

er an NTC thermistor is capable of handling at a particular ambient temper-erature not exceeding the maximum category temperature. In addition to the

ainly the dissipation factor δth determines the power handling capability.

factor δth the maximum power handling capability can be calculated by:

(10)

tor δth

th is defined as the ratio of the change in power dissipation and the resultantr’s body temperature. It is expressed in mW/K and serves as a measure fora thermistor in steady state to raise its body temperature by 1 K. The higherhe more heat is dissipated by the thermistor to the environment.

(11)

hermistor is loaded such that the ratio V/I corresponds to the resistance val-5 ˚C.

ture of the NTC thermistor (85 ˚C)erature

C

1--- (12)

Information

Siemens Matsushita Components

th

is a measure for the amount of heat required to raise the NTC’s mean tem-stated in mJ/K.

en heat capacity, dissipation factor and thermal time constant is expressed

(14)

(13)

General Technical Information

3.2.6 Thermal cooling time constant τc

The thermal cooling time constant refers to the time necessary for an unloaded thermistor to varyits temperature by 63,2% of the difference between its mean temperature and the ambient temper-ature.

τc depends to a large extent on the component design. The values of τc specified in this data bookhave been determined in still air at an ambient temperature of 25 °C.

The NTC thermistor is internally heated to 85 °C to measure subsequently the time it requires tocool down to 47,1 °C at an ambient temperature of 25 °C. This adjustment to the ambient is asymp-totic and occurs all the faster, the smaller the device is.

3.2.7 Thermal time constant τa

The thermal time constant refers to the time it takes an unloaded thermistor to raise its body tem-perature from 25 °C to 62,9 °C when it is immersed in a medium having a temperature of 85 °C.Equally to thermal cooling time constant, τa depends on the medium surrounding the device. Themedium used for measuring τa (e.g. water) is specified in the data sheets.

Determining the thermal time constant:

a) The zero-power-resistance is measured at 25 °C.The zero-power resistance is measured at 62,9 °C.

b) The NTC thermistor is immersed in a liquid bath with a temperature of (25 ± 0,1)°C until it hasassumed the same temperature as the liquid.

c) The NTC thermistor is then immediately transferred into a second bath with a temperature of(85 ± 0,1)°C. Subsequently the time is measured it takes the thermistor to reach again the zero-power resistance measured under a) for 62,9 °C.

The resulting time is the thermal time constant for an external temperature change.

3.2.8 Ageing and stability

At room temperature the polycrystalline material NTC thermistors are made of shows solid-state re-actions which lead to an irreversible change in the characteristics (usually resistance increase,change of B value etc).

Physical reasons for this may be thermal stress causing a change in concentration of lattice imper-fections, oxygen exchange with the environment (with unprotected, non-glass-encapsulated ther-mistors) or diffusion in the contact areas of metallized surface contacts. At low temperatures thesereactions slow down, but at high temperatures they accelerate and finally decline with time. Toenhance long-term stability, our NTC thermistors are subjected to an ageing process directly aftermanufacture.

Siemens Matsushita Components 31

General Technical Information

4 Application notes

4.1 Applications utilizing the influence of ambient temperature on resistance(self-heating negligible!)

4.1.1 Temperature measurement

The high sensitivity of an NTC thermistor makes it an ideal candidate for temperature sensingapplications. These low-cost NTC sensors are usually employed for a temperature range of – 40to + 300 °C.

Selection criteria for NTC thermistors are– temperature range– resistance range– measuring accuracy– environment (surrounding medium)– response time– dimensional requirements.

One of the circuits suitable for temperature measurement is a Wheatstone bridge with an NTCthermistor used as one bridge leg.

With the bridge being balanced, any change in temperature will cause a resistance change in thethermistor and a significant current will flow through the ammeter. It is also possible to use a variableresistor R3 and to derive the temperature from its resistance value (in balanced condition).

4.1.2 Linearizing the R/T characteristic

NTC thermistors exhibit a distinctly non-linear R/T characteristic. If a fairly linear curve is requiredfor measurements over a (wide) temperature range, e.g. for a scale, series-connected or paralleledresistors are quite useful. The temperature range to be covered should, however, not exceed 50to 100 K.

Figure 4

Wheatstone bridge circuit

32 Siemens Matsushita Components

Siemens Matsushita C

Linearization of the K27dissipation curves of th

The combination of an with a turning point. Thoperating temperature exponential approxima

Figure 5

Rp RTM

B 2TM–

B 2TM+---------------------⋅=

6/12k NTC thermistor by a paralleled resistor (a). Signal voltage and powere linearized NTC thermistor (b).

General Technical Information

omponents 33

NTC thermistor and a paralleled resistor has an S-shaped R/T characteristice best linearization is obtained by laying the turning point in the middle of therange. The resistance of the paralleled resistor can then be calculated by thetion:

Figure 6

Resistance/temperature characteristiclinearized by a paralleled resistor

34

The total resistance of

RTM Resistance va(in K ≅ temper

B B value of the

The rate of rise of the (

The circuit sensitivity h

Figure 7

Linearization of the R/Ta) simple amplifier circb) output voltage at the

4.1.3 Temperature c

Virtually all semiconduOwing to their high pocompensating this undtion of power transistorable voltage dividers annetwork.

RRp RT⋅Rp RT+--------------------=

RdTd

-------RT

1RT

Rp-------+

2--------------------------–

BT2------⋅=

(a)

General Technical

RT || Rp is:

lue of the NTC thermistor at mean temperature TMature in ˚C + 273,15)

NTC thermistor

linearized) R/T characteristic is:

owever decreases with linearization.

characteristic

(b)

Information

Siemens Matsushita Components

uit load resistor as a function of temperature

ompensation

ctors and the circuits comprised of them exhibit a temperature coefficient.sitive temperature coefficient, NTC thermistors are particularly suitable foresired response to temperature changes (examples: working point stabiliza-s, brightness control of LC displays). Resistors in series or shunt plus suit-d bridge circuits provide an excellent and easy-to-implement compensation

General Technical Information

It is important to match the temperature of the compensating NTC thermistor to that of the compo-nent causing the temperature response. Temperature-compensating thermistors are therefore notonly available in conventional leaded styles, but also incorporated in screw-type housings for at-tachment to heat sinks and as chip version for surface mounting.

Figure 8 shows a simple circuit configuration for a thermostat.

NTC thermistors for temperature measurment are suitable for a large variety of applications

in household electronics: in refrigerators and deep freezers, washing machines, electric cookers,hair-driers, etc.

in automotive electronics: for measuring the temperature of cooling water or oil, for monitoringthe temperature of exhaust gas, cylinder head or braking system, for controlling the temperaturein the passenger compartment, …

in heating and air conditioning: in heating cost distributors, for room temperature monitoring, inunderfloor heating and gas boilers, for determining exhaust gas or burner temperature, as out-door temperature sensors, …

in industrial electronics: for temperature stabilization of laser diodes and photoelements, for tem-perature compensation in copper coils or reference point compensation in thermoelements, etc.

4.2 Applications utilizing the non-linear voltage/current characteristic (in self-heated mode)

4.2.1 Inrush current limiting

Many items of equipment like switch-mode power supplies, electric motors or transformers exhibitexcessive inrush currents when they are turned on, meaning that other components may be dam-aged or fuses may be tripped. With NTC thermistors it is possible to effectively limit these currents,at attractive cost, by connecting a thermistor in series with the load.

The NTC thermistors specially developed for this application limit the current at turn-on by their rel-atively high cold resistance. As a result of the current load the thermistor heats up and reduces itsresistance by a factor of 10 to 50; the power it draws reduces accordingly.

Figure 8

Circuit for a temperature controller

Relay

Siemens Matsushita Components 35

General Technical Information

NTC thermistors are able to effectively handle higher inrush currents than fixed resistors with thesame power consumption.

The NTC thermistor thus provides protection from undesirably high inrush currents, while its resis-tance remains negligibly low during continuous operation.

4.2.2 Series and parallel connection

An NTC thermistor is always connected in series with the load to be protected. If the inrush current can-not be handled by one thermistor alone, two or more thermistor elements can be connected in series.

Paralleling several NTC thermistors is inadmissible, since the load will not be evenly distributed.The thermistor carrying the largest portion of current will heat up until it finally receives the entirecurrent (which may result in destruction of the device), while the other paralleled thermistors remaincold.

Figure 9

Typical current curve of a loadafter turn-on (envelope curve)without NTC

with NTC

Turn-on instant

Figure 10

Basic circuit diagram for diode protection

36 Siemens Matsushita Components

General Technical Information

Figure 11 shows a typical example of an inrush protection circuit:

Figure 11

Mounting positions for NTC thermistors in a protective circuit

Selection of the most appropriate NTC thermistor is the precondition for effective circuit protection.The first and most important criterion is the maximum current during continuous operation, which isdetermined by the load. The rated resistance of the thermistor results from this current value.

4.2.3 Self-heating

The self-heating of a thermistor during operation depends on the load applied. Although some heatis being dissipated, the NTC thermistor may in extreme cases reach a mean temperature of up to250 °C. The dissipation factor δth specified in the data sheets has been measured in still air atTA = 25 °C on devices with clamp contacts. A change in the measuring conditions (e.g. stirred air =blower increases the dissipation factor ) will influence the dissipation factor.

The heat developed during operation will also be dissipated through the lead wires. When mountingNTC thermistors it should therefore be considered that the contact areas may become quite hot atmaximum load.

Load

Alternative mounting positions

Siemens Matsushita Components 37

General Technical Information

4.2.4 Load derating

The power handling capability of an NTC thermistor cannot be fully utilized over the entire temper-ature range. For circuit dimensioning the derating curve given below provides information on theextent to which the current must be reduced at a certain ambient temperature.

Figure 12

Derating curve

The Imax values specified in the data sheets denote the maximum permissible continuous current(dc or rms values for sine-shaped ac) in the temperature range 0 °C to 65 °C.

4.2.5 Restart

When the load has been switched off the thermistor slowly cools down. Its resistance increasessteadily, but the full resistance value is only reached after 1 to 2 minutes (depending on ambienttemperature and type).

It may therefore be useful in some applications to bypass the thermistor during restart. Operationcan thus be faster resumed and system performance will not be affected by the thermistor.

4.2.6 Dependence of NTC resistance on current

The resistance effective in the usual current range can be approximated as follows:

RNTC Resistance value to be determined at current I [ Ω ]k, n Fit parameter, see individual data sheetsI Current flowing through the NTC (insert numerical value in A)

RNT C k In⋅= 0,3 Imax⋅ I Imax≤<

38 Siemens Matsushita Components

General Technical Information

The calculated values only serve as an estimate for operation in still air at an ambient temperatureof 25 °C.

Note: With the equation above sufficiently accurate results are only obtained for the limited currentrange stated above.

4.2.7 Pulse strength

The currents during turn-on are much higher than the rated currents during continuous operation.To test the effects of these current surges S+M uses the following standard procedure:

Figure 13

Test circuit for evaluating the pulse strength of an NTC thermistor

VL Load voltage [ V ]CT Test capacitance [ µF ]RS Series resistance [ RS = 1 Ω ]VNTC Voltage drop across the NTC under test [ V ]

In the pulse test the capacitor CT is discharged via the series resistor RS and the NTC thermistor.The load voltage is chosen such that the voltage applied to the thermistor at the start of dischargeis VNTC = 345 V (corresponds to (230 V + ∆V ) × ).

Thyristorswitch

√2

Siemens Matsushita Components 39

40

Figure 14

Pulse strength test : typ

The maximum capacitagiven in the data sheet

4.2.8 Applications

Inrush current limiters acation examples are:

Inrush current limitingkitchen machines, soft

S+M thermistors are aapplication. The produthrough to the at presecurrents of 20 A are re

General Technical

Information

Siemens Matsushita Components

ical curves

nces that can be switched depend on the individual thermistor type and ares.

re primarily used in industrial electronics and equipment engineering. Appli-

in fluorescent, projector and halogen lamps, rotational speed limiting instart of motors and switch-mode power supplies etc.

vailable in a variety of sizes and rated resistances to optimally match yourct line ranges from the small-size S153 with a maximum power of 1.4 Wnt largest S464 with a maximum power of 6,7 W. Maximum continuous acached. Inrush current limiters are presented on pages 99 to 105.

General Technical Information

4.3 Applications utilizing the influence of the disspation factor on the voltage/current characteristic

4.3.1 Liquid level sensors

The temperature of an electrically loaded NTC thermistor depends on the medium surrounding thedevice. When the thermistor is immersed in a liquid the dissipation factor increases, the temperaturedecreases and the voltage lying across the NTC rises. Owing to this effect NTC thermistors are ableto sense the presence or absence of a liquid.

Glass-encapsulated beads are particularly suitable for level sensing. On the one hand the glasscoat protects the thermistor from the liquid to be monitored, and on the other hand it is thin enoughto ensure good thermal contact.

Examples of suitable types: K17, M85.

Figure 15

Circuit for liquid level sensing

Siemens Matsushita Components 41

General Technical Information

4.3.2 Flow rate and vacuum measurement

Here too, the thermistor is operated by means of an electrical load. Its temperature and resistanceare influenced by the surrounding medium. Stirred air lowers the NTC’s temperature and thus in-creases its resistance. A vacuum, in contrast, increases the NTC’s temperature and thus causes adecrease in resistance. Hence NTC thermistors can be used to monitor ventilators, to measure theflow rate of gases or for vacuum measurement.

Examples of suitable types K17, K19.

Figure 16

Experimental circuit for flow rate measurement

Application examples are found in

physics and chemistry: level control of various liquids, as for example liquid nitrogen, measure-ment of the thermal conductivity or flow rate of gases, vacuum and radiation measurement

in automotive electronis for tank content indication

etc.

Heater

Direction of flow

42 Siemens Matsushita Components

Siemens Matsushita C

4.4 Applications

If an NTC thermistor issured as a function of t

At first the thermistor isthe device. But this cursistance value of the thbecomes faster and fassistance the wattage wvalue. The entire watta

Relay delay

To delay relay pick-up the current flowing throcold resistance of the tcurrent rises until the p

To delay relay drop-ou

The operating sequencmistor. The thermistor unloaded for a time t =the time for the secondshort-circuit or switch oficient time to cool dow

Figure 17

Delay of relay pick-up

utilizing the current/time characteristic

connected to a voltage source via a series resistor and the current is mea-ime, an increase in current will be observed.

cold, i.e. in high-resistance mode, and only a low current is flowing throughrent starts to heat up the thermistor and the wattage increases with the re-ermistor approaching that of the series resistor. Thus the increase in currentter till the two resistance values are equal. With further decreasing NTC re-

ill also decrease due to the growing mismatch and the current reaches a finalge is consumed in maintaining the overtemperature.

thermistor and relay are connected in series. When applying a voltage Vopugh the relay coil is limited to a fraction of the pick-up current by the highhermistor. With the thermistor heating up, its resistance decreases and theick-up value is reached.

t relay and thermistor are connected in parallel.

General Technical Information

omponents 43

e of a relay delayed by a thermistor depends on the recovery time of the ther-has to cool down before it can cause second delay. If the thermistor remains 3 · τth (3 times the thermal cooling time constant) between two operations, delay will be 80 % to 90 % of that for the first delay. It is therefore useful toff the thermistor by additional relay contacts, so that the thermistor has suf-n (see dashed section in figure 17).

Figure 18

Delay of relay drop-out

Siemens Matsushita ComponentsCOMPONENTS

+S M

SCS – dependable, fast and competent

EMI suppression capacitors

Play it safe

Whether video recorder, television,refrigerator or toaster – our EMI sup-pression capacitors do a grand job inevery possible kind of entertainmentand consumer electronics appliance.They’ve also proven their worth inswitch-mode power supplies for PCs.No wonder, because the advantagesof film technology are there to beseen: low cost, no risk of failurethrough damp, and optimum self-

healing capability. The result – lessdestruction of equipment and ensuingfires. Plus the line is safeguardedagainst surges. In this way our ca-pacitors satisfy the user’s need forsafety, and the new EMC standardstoo of course.

Temperature MeasurementSMDs

B57620C 620

Da

ta S

he

ets

App lications

Temperature compensation Hybrid circuits Data systems Telecom systems Automotive electronics Crystal oscillators LC displays

Features

Small dimensions, EIA size 0805 Silver palladium terminations Cost-effective Suitable for automatic placement Suitable for wave and reflow soldering Available on tape (PU: 4000 pcs)

Options

Alternative resistance ratings and tolerance < 5% available on request

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %M for ∆R/RN = ± 20 %

1) Depends on mounting situation

Climatic category (IEC 68-1)Max. power at 25 °C (on PCB) P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (on PCB) δth 1)Thermal cooling time constant (on PCB) τc

1)Heat capacity Cth 1)

55/125/21210± 5 %, ± 10 %, ± 20 %25± 3 %approx. 3,5approx. 10approx. 35

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/T characteristic

B25/100

K

Ordering code

C 620/2,2 k/+ 2,2 k 1304 3300 B57620-C222-+62

C 620/4,7 k/+ 4,7 k 1307 3560 B57620-C472-+62

C 620/10 k/+ 10 k 1011 3730 B57620-C103-+62

C 620/22 k/+ 22 k 2003 3980 B57620-C223-+62

C 620/47 k/+ 47 k 2101 4100 B57620-C473-+62

C 620/100 k/+ 100 k 2004 4100 B57620-C104-+62

C 620/220 k/+ 220 k 2904 4300 B57620-C224-+62

Termination

Dimensions in mmApprox. weight 13 mg

Siemens Matsushita Components 45

B57620C 620

Reliability data

Tested on standardized PCB in accordance with DIN draft 45 924

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 125 °Ct: 1000 h

< 3 %

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 21 days

< 3 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 125 °CNumber of cycles: 10

< 3 %

EnduranceDIN draft45 924 Pmax: 210 mW

Duration: 1000 h< 5 %

Solderability IEC68-2-58

Solderability: 215 °C/4 s235 °C/2 s

Resistance to soldering heat:260 °C/10 s

< 5 % 95 % of termina-tions wetted

Robustness ofterminations

DIN draft45 924

Bending of carrier(2 mm bending)

< 5 % No visibledamage

46 Siemens Matsushita Components

Temperature MeasurementSMDs

B57621C 621

App lications

Temperature compensation Hybrid circuits Data systems Telecom systems Automotive electronics LC displays

Features

Small dimensions, EIA size 1206 Silver palladium terminations Cost-effective Suitable for automatic placement Suitable for wave and reflow soldering Available on tape (PU: 4000 pcs)

Options

Alternative resistance ratings and tolerance < 5% available on request

1) Depends on mounting situation

Climatic category (IEC 68-1)Max. power at 25 °C (on PCB) P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (on PCB) δth 1)Thermal cooling time constant (on PCB) τc

1)Heat capacity Cth 1)

55/125/21300± 5 %, ± 10 %, ± 20 %25± 3 %approx. 5approx. 10approx. 50

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

C 621/2,2 k/+ 2,2 k 1308 3060 B57621-C222-+62

C 621/3,3 k/+ 3,3 k 1309 3520 B57621-C332-+62

C 621/4,7 k/+ 4,7 k 1309 3520 B57621-C472-+62

C 621/10 k/+ 10 k 1010 3530 B57621-C103-+62

C 621/15 k/+ 15 k 1008 3560 B57621-C153-+62

C 621/22 k/+ 22 k 1008 3560 B57621-C223-+62

C 621/33 k/+ 33 k 2003 3980 B57621-C333-+62

C 621/47 k/+ 47 k 2001 3920 B57621-C473-+62

C 621/68 k/+ 68 k 2001 3920 B57621-C683-+62

Termination

Dimensions in mmApprox. weight 18 mg

Siemens Matsushita Components 47

B57621C 621

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %M for ∆R/RN = ± 20 %

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

C 621/100 k/+ 100 k 4901 3950 B57621-C104-+62

C 621/150 k/+ 150 k 2004 4100 B57621-C154-+62

C 621/220 k/+ 220 k 2903 4200 B57621-C224-+62

C 621/330 k/+ 330 k 1014 4250 B57621-C334-+62

C 621/470 k/+ 470 k 1014 4250 B57621-C474-+62

C 621/680 k/+ 680 k 4002 4250 B57621-C684-+62

Reliabil ity data

Tested on standardized PCB in accordance with DIN draft 45 924

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 125 °Ct: 1000 h

< 3 %

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 21 days

< 3 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 125 °CNumber of cycles: 10

< 3 %

EnduranceDIN draft45 924 Pmax: 300 mW

Duration: 1000 h< 5 %

Solderability IEC68-2-58

Solderability: 215 °C/4 s235 °C/2 s

Resistance to soldering heat:260 °C/10 s

< 3 % 95 % of termina-tions wetted

Robustness ofterminations

DIN draft45 924

Bending of carrier(2 mm bending)

< 3 % No visibledamage

48 Siemens Matsushita Components

Temperature MeasurementLeadless Disks

B57150K 150

App lications

Automotive electronics Measurement of cooling water

and oil temperature

Features

Thermistor disk with lapped, coplanarfront surfaces

Front surfaces silver-plated For clamp contacting

Options

Alternative resistance ratings,rated temperatures and tolerancesavailable on request

1) Depends on mounting situation

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δth 1)Thermal cooling time constant (in air) τc

1)Heat capacity Cth 1)

55/155/21450± 5 %100± 1,5 %approx. 5approx. 7approx. 35

mW

°C

mW/KsmJ/K

Type R100

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 150/130/A1 12,5 127,9 1306 3450 B57150-K131-A1

D = 6,5 – 7,2 mmL = 0,9 – 1,5 mm

Approx. weight 0,3 g

Termination

Siemens Matsushita Components 49

Temperature MeasurementLeadless Disks

B57220K 220

App lications

Automotive electronics Measurement of cooling water

and oil temperature

Features

Thermistor disk with lapped, coplanarfront surfaces

Front surfaces silver-plated For clamp contacting

Options

Alternative resistance ratings,rated temperatures and tolerancesavailable on request

1) Depends on mounting situation

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δth 1)Thermal cooling time constant (in air) τc

1)Heat capacity Cth 1)

55/250/21180± 5 %20± 1,5 %approx. 1approx. 5approx. 5

mW

°C

mW/KsmJ/K

Type R20

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 220/2,1 k/A3 2,5 k 2056,9 1008 3560 B57220-K212-A3

D = 2,9 ± 0,3 mmL = 1,3 ± 0,3 mm

Approx. weight 50 mg

Termination

50 Siemens Matsushita Components

Temperature MeasurementLeadless Disks

B57820M 820

App lications

Automotive electronics Measurement of cooling water

and oil temperature

Features

Thermistor disk with lapped, coplanarfront surfaces

Front surfaces silver-plated For clamp-contacting

Options

Alternative resistance ratings,rated temperatures and tolerancesavailable on request

1) Depends on mounting situation

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δth 1)Thermal cooling time constant (in air) τc

1)Heat capacity Cth 1)

55/155/21180± 5 %100± 1,5 %approx. 3approx. 30approx. 100

mW

°C

mW/KsmJ/K

Type R100

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 820/560/A5 39,60 560,2 1009 3930 B57820-M561-A5

M 820/840/A4 77,00 843,2 1006 3550 B57820-M841-A4

M 820/2,1 k/A1 144,00 2052,6 2002 3940 B57820-M212-A1

Approx. weight 0,1 g

RN (Ω) D (mm) L (mm)

39,60 5,1–1,1 2,2–1,4

77,00 5,3± 0,3 1,3± 0,2

144,00 5,5–1,1 2,0–1,4

Termination

Siemens Matsushita Components 51

Temperature MeasurementGlass-Encapsu lated NTC Thermistors

B57017K 17

App lications

For high temperatures and short response times

Features

Fast response Thermistor bead hermetically sealed

in glass body Glass body provides protection from

hostile environments and makes the NTCsuitable for use in many different media

Silver-plated Fe/Ni leads

Options

Paired characteristic available

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %M for ∆R/RN = ± 20 %

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity CthInsulation resistance (V = 100 Vdc) Ris

55/250/56140± 5 %, ± 10 %, ± 20 %20± 3 %approx. 0,8approx. 3approx. 2,4> 100

mW

°C

mW/KsmJ/KMΩ

Type R20

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 17/2,1 k/+ 2,5 k 2,067 k 1018 3430 B57017-K212-+

K 17/3,3 k/+ 4 k 3,307 k 1101 3430 B57017-K332-+

K 17/8,2 k/+ 10 k 8,268 k 1101 3430 B57017-K822-+

K 17/80,0 k/+ 100 k 80,380 k 4005 3950 B57017-K803-+

Dimensions in mmApprox. weight 0,3 g

52 Siemens Matsushita Components

Temperature MeasurementGlass-Encapsu lated NTC Thermistors

B57019K 19

App lications

For small measuring points Measurement of gas flow rates Measurement in vacuum

Features

Extremely fast response For high temperatures Smallest size available Glass-coated thermistor bead Platinum leads

Options

Also available with radial leadsand paired characteristic

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %M for ∆R/RN = ± 20 %

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/200/5618± 5 %, ± 10 %, ± 20 %20± 3 %approx. 0,14approx. 0,4approx. 56

mW

°C

mW/KsµJ/K

Type R20

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 19/9,9 k/+ 12 k 9,921 k 1101 3430 B57019-K992-+

Dimensions in mmApprox. weight 0,3 g

Siemens Matsushita Components 53

Temperature MeasurementGlass-Encapsu lated NTC Thermistors

B57085M 85

Not for new des ign (replaced by M185)

App lications

For high temperatures and short response times

Features

Fast response Thermistor bead hermetically

sealed in glass body Glass body provides protection from hostile

environments and makes the NTC suitablefor use in many different media

Silver-plated Fe/Ni leads

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %M for ∆R/RN = ± 20 %

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity CthInsulation resistance (V = 100 Vdc) Ris

55/200/5695± 5 %, ± 10 %, ± 20 %25± 3 %approx. 0,7approx. 14approx. 10> 100

mW

°C

mW/KsmJ/KMΩ

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 85/4,7 k/+ 4,7 k 1101 3430 B57085-M472-+

M 85/10,0 k/+ 10,0 k 1101 3430 B57085-M103-+

M 85/47,0 k/+ 47,0 k 4005 3950 B57085-M473-+

M 85/100,0 k/+ 100,0 k 4005 3950 B57085-M104-+

Dimensions in mmApprox. weight 40 mg

54 Siemens Matsushita Components

Temperature MeasurementGlass-Encapsu lated NTC Thermistors

B57185M 185

App lications

For high temperatures and short response times

Features

Thermistor bead hermeticallysealed in glass body

Glass body provides protection from hostileenvironments and makes the NTC suitablefor use in many different media

Silver-plated Fe/Ni leads

Options

Alternative resistance ratings andtolerances available on request

+: J for ∆R/RN = ± 5 %H for ∆R/RN = ± 3 %

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity CthInsulation resistance (V = 100 Vdc) Ris

55/200/5695± 3 %, ± 5 %25± 1,5 %approx. 0,9approx. 13approx. 12> 100

mW

°C

mW/KsmJ/KMΩ

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 185/ 47 k 47 k 2910 3950 B57185-M473-+

M 185/100 k 100 k 2910 3950 B57185-M104-+

Dimensions in mmApprox. weight 40 mg

Siemens Matsushita Components 55

Temperature MeasurementGlass-Encapsu lated NTC Thermistors

B57087M 87

App lications

Automotive electronics Industrial electronics

Features

For high temperatures Cost-effective Thermistor bead hermetically

sealed in glass body Axial lead version Tinned FeNi leads Only available on tape (PU: 1000 pcs);

see chapter on taping, page 160

Options

Alternative resistance ratings andtolerances available on request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/300/56400± 10 %25see table belowapprox. 2,5approx. 4approx. 10

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

∆B/B

%

Ordering code

M 87/2 k/K100 2 k 8010 3474 2,5 B57087-M202-K100

M 87/3 k/K100 3 k 8010 3474 2,5 B57087-M302-K100

M 87/5 k/K100 5 k 8010 3474 2,5 B57087-M502-K100

M 87/10 k/K100 10 k 8010 3474 2,5 B57087-M103-K100

M 87/20 k/K100 20 k 8016 3988 1,5 B57087-M203-K100

M 87/50 k/K100 50 k 8016 3988 1,5 B57087-M503-K100

M 87/100 k/K100 100 k 8016 3988 1,5 B57087-M104-K100

Dimensions in mmApprox. weight 0,2 g

56 Siemens Matsushita Components

Temperature MeasurementLeaded Disks

B57153K 153

App lications

Temperature compensation

Features

Lacquer-coated thermistor disk Tinned copper leads Low resistance values Marked with resistance and tolerance Available on tape (PU: 1500 pcs)

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %

For reliability data refer to K 164, page 59.

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/125/21500± 5 %, ± 10 %25± 3 %approx. 8approx. 30approx. 240

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 153/4,7/+ 4,7 1202 2800 B57153-K479-+

K 153/10/+ 10,0 1202 2800 B57153-K100-+

*May be free of lacquer

Dimensions in mmApprox. weight 0,6 g

Siemens Matsushita Components 57

Temperature MeasurementLeaded Disks

B57164K 164

App lications

Temperature compensation Temperature measurement Temperature control

Features

Wide resistance range Cost-effective Lacquer-coated thermistor disk Tinned copper leads Marked with resistance and tolerance Available on tape (PU: 1500 pcs)

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/125/21450± 5 %, ± 10 %25± 3 %approx. 7,5approx. 20approx. 150

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 164/15/+ 15 1203 2900 B57164-K150-+

K 164/22/+ 22 1203 2900 B57164-K220-+

K 164/33/+ 33 1203 2900 B57164-K330-+

K 164/47/+ 47 1302 3000 B57164-K470-+

K 164/68/+ 68 1303 3050 B57164-K680-+

K 164/100/+ 100 1305 3200 B57164-K101-+

K 164/150/+ 150 1305 3200 B57164-K151-+

K 164/220/+ 220 1305 3200 B57164-K221-+

K 164/330/+ 330 1306 3450 B57164-K331-+

K 164/470/+ 470 1306 3450 B57164-K471-+

K 164/680/+ 680 1307 3560 B57164-K681-+

*May be free of lacquer

Dimensions in mmApprox. weight 0,4 g

58 Siemens Matsushita Components

B57164K 164

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %

K 164/1 k/+ 1 k 1011 3730 B57164-K102-+

K 164/1,5 k/+ 1,5 k 1013 3900 B57164-K152-+

K 164/2,2 k/+ 2,2 k 1013 3900 B57164-K222-+

K 164/3,3 k/+ 3,3 k 4001 3950 B57164-K332-+

K 164/4,7 k/+ 4,7 k 4001 3950 B57164-K472-+

K 164/6,8 k/+ 6,8 k 2903 4200 B57164-K682-+

K 164/10 k/+ 10 k 2904 4300 B57164-K103-+

K 164/15 k/+ 15 k 1014 4250 B57164-K153-+

K 164/22 k/+ 22 k 1012 4300 B57164-K223-+

K 164/33 k/+ 33 k 1012 4300 B57164-K333-+

K 164/47 k/+ 47 k 4003 4450 B57164-K473-+

K 164/68 k/+ 68 k 2005 4600 B57164-K683-+

K 164/100 k/+ 100 k 2005 4600 B57164-K104-+

K 164/150 k/+ 150 k 2005 4600 B57164-K154-+

K 164/220 k/+ 220 k 2007 4830 B57164-K224-+

K 164/330 k/+ 330 k 2006 5000 B57164-K334-+

K 164/470 k/+ 470 k 2006 5000 B57164-K474-+

Reliabil ity data

Test Standard Test conditions ∆R25/R25 (typ.) Remarks

Storage indry heat

IEC68-2-2

Storage at upper category tem-perature T: 125 °C

t: 1000 h< 3 %

No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 21 days

< 3 %No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature: – 55 °CUpper test temperature: 125 °CNumber of cycles: 5

< 3 %No visibledamage

Endurance Pmax: 450 mWDuration: 1000 h

< 3 % No visibledamage

Long-term stability(empirical value)

Temperature: 125 °CDuration: 10 000 h < 5 %

No visibledamage

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

Siemens Matsushita Components 59

Temperature MeasurementLeaded Disks

B57891M 1891

App lications

Temperature compensation Temperature measurement

Features

Uncoated thermistor disk Leads: copper-clad Fe wires, tinned

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/155/21200± 5 %, ± 10 %25± 1,5 %approx. 3,5approx. 12approx. 42

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 1891/1 k/+ 1 k 1010 3530 B57891-M1102-+

M 1891/10 k/+ 10 k 4901 3950 B57891-M1103-+

M 1891/47 k/+ 47 k 2904 4300 B57891-M1473-+

M 1891/100 k/+ 100 k 4003 4450 B57891-M1104-+

Dimensions in mmApprox. weight 0,2 g

60 Siemens Matsushita Components

Temperature MeasurementLeaded Disks

B57891M 891

App lications

Temperature compensation Temperature measurement Temperature control

Features

Wide resistance range Cost-effective Lacquer-coated thermistor disk Leads: copper-clad Fe wire, tinned Marked with resistance and tolerance Available on tape (PU: 1500 pcs)

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/125/21200± 5 %, ± 10 %25± 3 %approx. 3,5approx. 12approx. 40

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 891/1 k/+ 1 k 1009 3930 B57891-M102-+

M 891/1,5 k/+ 1,5 k 1008 3560 B57891-M152-+

M 891/2,2 k/+ 2,2 k 1013 3900 B57891-M222-+

M 891/3,3 k/+ 3,3 k 2003 3980 B57891-M332-+

M 891/4,7 k/+ 4,7 k 2003 3980 B57891-M472-+

M 891/6,8 k/+ 6,8 k 2003 3980 B57891-M682-+

M 891/10 k/+ 10 k 4901 3950 B57891-M103-+

M 891/15 k/+ 15 k 2004 4100 B57891-M153-+

M 891/22 k/+ 22 k 2904 4300 B57891-M223-+

M 891/33 k/+ 33 k 2904 4300 B57891-M333-+

M 891/47 k/+ 47 k 4002 4250 B57891-M473-+

M 891/68 k/+ 68 k 4002 4250 B57891-M683-+

Dimensions in mmApprox. weight 0,2 g

Siemens Matsushita Components 61

B57891M 891

+: J for ∆R/RN = ± 5 %K for ∆R/RN = ± 10 %

M 891/100 k/+ 100 k 4003 4450 B57891-M104-+

M 891/150 k/+ 150 k 2005 4600 B57891-M154-+

M 891/220 k/+ 220 k 2005 4600 B57891-M224-+

M 891/330 k/+ 330 k 2007 4830 B57891-M334-+

M 891/470 k/+ 470 k 2006 5000 B57891-M474-+

Reliabil ity data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at upper category temperatureT: 125 °Ct: 1000 h

< 3 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 21 days

< 2 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 125 °CNumber of cycles: 5

< 2 % No visibledamage

Endurance Pmax: 200 mWDuration: 1000 h

< 3 % No visibledamage

Long-term stability(empirical value)

Temperature: 125 °CDuration: 10 000 h

< 5 % No visibledamage

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

62 Siemens Matsushita Components

Temperature MeasurementLeaded Disks

B57891S 891

App lications

Heating and air conditioning systems Automotive electronics

Features

High accuracy between 0 °C and 70 °C Favorable price/performance ratio Curve-tracking multipoint sensor Rugged design, epoxy resin encapsulation Leads: copper-clad Fe wire, tinned Available on tape (PU: 1500 pcs)

+: G for ∆T = ± 0,5 KH for ∆T = ± 1 KJ for ∆T = ± 2 K

Climatic category (IEC 68-1)Max. power at 25 °C P25Temperature tolerance (0 … 70 °C) ∆TRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/155/56200± 0,5, ± 1, ± 225approx. 4,0approx. 15approx. 60

mWK°CmW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

S 891/2,2 k/+9 2,2 k 1008 3560 B57891-S222-+9

S 891/10 k/+9 10 k 4901 3950 B57891-S103-+9

S 891/20 k/+9 20 k 2904 4300 B57891-S203-+9

S 891/100 k/+9 100 k 4003 4450 B57891-S104-+9

Dimensions in mmApprox. weight 0,2 g

Siemens Matsushita Components 63

B57891S 891

R/T characteristics

Number 1008 4901 2904 4003

T (°C) R25 = 2,2 kΩ R25 = 10 kΩ R25 = 20 kΩ R25 = 100 kΩRT (Ω) RT (Ω) RT (Ω) RT (Ω)

– 55,0– 50,0

– 45,0– 40,0– 35,0– 30,0– 25,0

– 20,0– 15,0– 10,0– 5,0– 0,0

– 1,0– 2,0– 3,0– 4,0– 5,0

– 6,0– 7,0– 8,0– 9,0– 10,0

– 11,0– 12,0– 13,0– 14,0– 15,0

– 16,0– 17,0– 18,0– 19,0– 20,0

– 21,0– 22,0– 23,0– 24,0– 25,0

11683086499

6451548466366662793121395

165381283810051

7931,06306,3

6026,15760,25507,65267,65039,6

4822,84616,64420,54233,94056,3

3886,03723,93569,63422,53282,5

3148,93021,72900,32784,52674,0

2570,52471,62377,02286,52200,0

878900617590

439340316180230060169150125550

9414371172543084150532014

3045228976275802626025011

2382822708216482064319691

1878817932171201635015618

1492314236136361304012474

1192811409109151044610000

24292001688800

1184900838770598950431350312810

229310169020125850

9415371126

6732463749603855721854237

5142948783462894393841719

3964037676358203406732409

3084129358279542662525367

2417623047219772096220000

103810007370700

52723003798800275650020142001480100

1097600817440614070463310352430

333930316490300050284560269950

256160243150230870219270208310

197960188170178920170170161890

154060146640139620132970126660

120760115160109840104790100000

64 Siemens Matsushita Components

B57891S 891

26,027,028,029,030,0

31,032,033,034,035,0

36,037,038,039,040,0

41,042,043,044,045,0

46,047,048,049,050,0

51,052,053,054,055,0

56,057,058,059,060,0

61,062,063,064,065,0

2118,62040,61965,81894,21825,5

1756,61690,81627,91567,61510,0

1454,81401,91351,31302,71256,3

1213,01171,51131,61093,21056,3

1020,9986,76953,94922,37891,98

861,61832,45804,46777,57751,75

726,93703,09680,17658,13636,93

616,88597,56578,95576,10543,71

9577,79175,68792,68427,78080,0

7748,57432,47131,06843,46569,0

6307,06057,05818,15590,05372,0

5165,14967,34778,04596,94423,5

4257,64098,73946,53800,73661,0

3525,83396,23272,23153,23039,3

2930,02825,22724,82628,42535,9

2447,62362,92281,52203,42128,3

1908918225174041662415884

1516914491138471323512654

1210111575110761060010148

9721,19314,58926,98557,58205,3

7869,37548,97243,16951,26672,6

6404,66148,95904,65671,45448,6

5235,75032,34837,84651,84473,9

4303,64140,53984,43835,03691,8

9517890617863028221878351

7482271469682826525362372

5963257026545465218549937

4780145767438284198040218

3853836936354083394932557

3120729919286912752026402

2533524317233442241521527

2069119890191251839317693

R/T characteristics

Number 1008 4901 2904 4003

T (°C) R25 = 2,2 kΩ R25 = 10 kΩ R25 = 20 kΩ R25 = 100 kΩRT (Ω) RT (Ω) RT (Ω) RT (Ω)

Siemens Matsushita Components 65

B57891S 891

66,067,068,069,070,0

75,080,085,090,095,0

100,0105,0110,0115,0120,0

125,0130,0135,0140,0145,0

150,0155,0

527,03510,95495,43480,47466,03

400,27344,97299,02260,09227,47

199,63175,21154,22136,16120,53

107,1595,51385,18876,15468,306

61,40255,425

2056,11986,71920,01855,91794,2

1518,31290,11100,2

941,79808,96

697,22603,97524,93457,33399,63

350,59308,44271,92240,34212,85

188,95168,13

3554,73423,33297,43176,63060,9

2551,02135,51798,61521,41290,5

1098,8940,06807,17694,85600,13

520,13452,17394,41345,01302,77

266,42235,08

1702316381157671517914616

1209710053

8376,17003,95893,7

4977,74214,63580,33050,42606,7

2233,21918,61651,51425,31236,7

1075,8939,33

R/T characteristics

Number 1008 4901 2904 4003

T (°C) R25 = 2,2 kΩ R25 = 10 kΩ R25 = 20 kΩ R25 = 100 kΩRT (Ω) RT (Ω) RT (Ω) RT (Ω)

66 Siemens Matsushita Components

Siemens Matsushita C

Resistance and tempe

Resistance and tempe

rature tolerances versus temperature (∆T = 0,5 K)

rature tolerances versus temperature (∆T = 1 K)

B57891S 891

omponents 67

68

Resistance and tempe

Reliability data

Test S

Storage indry heat

I6

Storage in dampheat, steady state

I6

Rapid temperaturecycling

I6

Long-term stability(empirical value)

B57891S 891

rature tolerances versus temperature (∆T = 2 K)

Siemens Matsushita Components

tandard Test conditions ∆R25/R25(typical)

Remarks

EC8-2-2

Storage at uppercategory temperatureT: 155 °Ct: 1000 h

< 3 % No visibledamage

EC8-2-3

Temperature of air: 40 ˚CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

EC8-2-14

Lower test temperature:– 55 ˚CUpper test temperature: 155 ˚CNumber of cycles: 5

< 1 % No visibledamage

Temperature: 70 °CDuration: 10 000 h

< 3 % No visibledamage

Temperature MeasurementMiniature Senso rs

B57861S 861

App lications

Heating and air conditioning systems Industrial electronics Automotive electronics

Features

Fast response High measuring accuracy Different tolerances available Epoxy resin encapsulation PTFE-insulated leads of

nickel wire, AWG 30

Options

Non-standard lead lengths

+: F for ∆R/RN = ± 1 %H for ∆R/RN = ± 3 %J for ∆R/RN = ± 5 %

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/155/5660± 1 %, ± 3 %, ± 5 %25approx. 1.5approx. 15approx. 22,5

mW

°CmW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

∆B/B

%

Ordering code

S 861/3 k/+ 40 3 k 8016 3988 ± 1,0 B57861-S302-+40

S 861/5 k/+ 40 5 k 8016 3988 ± 1,0 B57861-S502-+40

S 861/10 k/+ 40 10 k 8016 3988 ± 1,0 B57861-S103-+40

S 861/30 k/+ 40 30 k 8018 3964 ± 1,0 B57861-S303-+40

Dimensions in mmApprox. weight 60 mg

Siemens Matsushita Components 69

B57861S 861

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 155 °Ct: 1000 h

< 1 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 155 °CNumber of cycles: 5

< 0,5 % No visibledamage

Long-term stability(empirical value)

Temperature: + 70 °CDuration: 10 000 h

< 2 % No visibledamage

70 Siemens Matsushita Components

Temperature MeasurementMiniature Senso rs

B57861S 861

App lications

High-precision measuring Medical engineering

Features

Fast response High measuring accuracy Excellent long-term stability Epoxy resin encapsulation PTFE-insulated leads of

nickel wire, AWG 30

Options

Non-standard lead lengths

Climatic category (IEC 68-1)Max. power at 25 °C P25Temperature tolerance (30 … 50 °C) ∆TRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

40/100/5660± 0,125approx. 1,5approx. 15approx. 22,5

mWK°CmW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

S 861/5 k/C1 5 k 8016 3988 B57861-S502-C1

Dimensions in mmApprox. weight 60 mg

Siemens Matsushita Components 71

B57861S 861

R/T characteristic

Number 8016(R25 = 5 kΩ)

T (°C) RT T (°C) RT T (°C) RT

– 40,0– 35,0– 30,0– 25,0

– 20,0– 15,0– 10,0– 5,0– 0,0

– 1,0– 2,0– 3,0– 4,0– 5,0

– 6,0– 7,0– 8,0– 9,0– 10,0

– 11,0– 12,0– 13,0– 14,0– 15,0

– 16,0– 17,0– 18,0– 19,0– 20,0

168250121290

8850065185

4853536465276652115816325

1551414747140241334012694

12083115051095810440

9950,0

9484,59043,58625,68229,57853,9

7497,67159,66838,86534,26245,0

21,022,023,024,025,0

26,027,028,029,030,0

31,032,033,034,035,0

36,037,038,039,040,0

41,042,043,044,045,0

46,047,048,049,050,0

5970,15708,95460,65224,55000,0

4786,04582,54388,74204,24028,5

3860,93701,23549,13404,03265,7

3133,73007,82887,72773,02663,5

2558,72458,72363,12271,72184,4

2100,82021,01944,61871,51801,5

51,052,053,054,055,0

56,057,058,059,060,0

61,062,063,064,065,0

66,067,068,069,070,0

75,080,085,090,095,0

100,0

1734,41670,11608,51549,61493,1

1439,01387,11337,41289,71244,0

1200,11158,01117,61078,81041,5

1005,7971,33938,29906,53876,00

740,69629,00536,17458,85394,26

340,00

72 Siemens Matsushita Components

Siemens Matsushita C

Resistance and tempe

Reliability data

Test S

Storage indry heat

I6

Storage in dampheat, steady state

I6

Rapid temperaturecycling

I6

Long-term stability(empirical value)

rature tolerances versus temperature

tandard Test conditions ∆R25/R25(typical)

Remarks

EC8-2-2

Storage at uppercategory temperatureT: 100 °Ct: 1000 h

< 0,5 % No visibledamage

ECTemperature of air: 40 ˚CRelative humidity of air: 93 % < 1 % No visible

B57861S 861

omponents 73

8-2-3 Duration: 56 days damage

EC8-2-14

Lower test temperature:– 40 ˚CUpper test temperature: 100 ˚CNumber of cycles: 5

< 0,5 % No visibledamage

Temperature: + 50 °CDuration: 10 000 h

< 1,5 % No visibledamage

Temperature MeasurementMiniature Senso rs

B57867S 867

App lications

Heating and air conditioning systems Industrial electronics Automotive electronics

Features

Fast response High measuring accuracy Different tolerances available Epoxy resin encapsulation Silver-plated MONEL leads

Options

Non-standard lead lengths

+: F for ∆R/RN = ± 1 %H for ∆R/RN = ± 3 %J for ∆R/RN = ± 5 %

For reliability data refer to S 861, page 70.

Climatic category (IEC 68-1)Max. power at 25 °C P25Temperature tolerance ∆R/RNRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/155/5660± 1 %, ± 3 %, ± 5 %25approx. 1approx. 15approx. 15

mW

°CmW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

∆B/B

%

Ordering code

S 867/3 k/+ 40 3 k 8016 3988 ± 1,0 B57867-S302-+40

S 867/5 k/+ 40 5 k 8016 3988 ± 1,0 B57867-S502-+40

S 867/10 k/+ 40 10 k 8016 3988 ± 1,0 B57867-S103-+40

S 867/30 k/+ 40 30 k 8018 3964 ± 1,0 B57867-S303-+40

Dimensions in mmApprox. weight 60 mg

74 Siemens Matsushita Components

Temperature MeasurementUni Curve Miniature Senso rs

B57863S 863

App lications

Heating and air conditioning systems Industrial electronics Automotive electronics

Features

Fast response Accuracy of 0,2 K between 0 °C and 70 °C Excellent long-term stability Uni curve sensor Epoxy resin encapsulation PTFE-insulated leads of nickel

wire, AWG 30

+: F for ∆T = 0,2 KG for ∆T = 0,5 K

Climatic category (IEC 68-1)Max. power at 25 °C P25Temperature tolerance (0 … 70 °C) ∆TRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/155/5660± 0,2, ± 0,525approx. 1,5approx. 15approx. 22,5

mWK°CmW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

S 863/3 k/+ 40 3 k 8016 3988 B57863-S302-+40

S 863/5 k/+ 40 5 k 8016 3988 B57863-S502-+40

S 863/10 k/+ 40 10 k 8016 3988 B57863-S103-+40

S 863/30 k/+ 40 30 k 8018 3964 B57863-S303-+40

Dimensions in mmApprox. weight 60 mg

Siemens Matsushita Components 75

B57863S 863

R/T characteristics

Number 8016 8016 8016 8018

T (°C) R25 = 3 kΩ R25 = 5 kΩ R25 = 10 kΩ R25 = 30 kΩRT (Ω) RT (Ω) RT (Ω) RT (Ω)

– 55,0– 50,0

– 45,0– 40,0– 35,0– 30,0– 25,0

– 20,0– 15,0– 10,0– 5,0– 0,0

– 1,0– 2,0– 3,0– 4,0– 5,0

– 6,0– 7,0– 8,0– 9,0– 10,0

– 11,0– 12,0– 13,0– 14,0– 15,0

– 16,0– 17,0– 18,0– 19,0– 20,0

– 21,0– 22,0– 23,0– 24,0– 25,0

288910201030

141510100950

727775310039111

29121218791659912695

9795,0

9308,18848,58414,38004,07616,3

7249,66902,86574,76264,15970,0

5690,75426,15175,44937,74712,3

4498,64295,84103,33920,63747,0

3582,13425,33276,43134,73000,0

481520335050

235840168250121290

8850065185

4853536465276652115816325

1551414747140241334012694

12083115051095810440

9950,0

9484,59043,58625,68229,57853,9

7497,67159,66383,86534,26245,0

5970,15708,95460,65224,55000,0

963000670100

471700336500242600177000130400

9707072930553304232032650

3103029490280502668025390

2417023010219202088019900

1897018090172501646015710

1500014320136801307012490

1194011420109201045010000

––

–907200663000489600365100

274590208350159390122910954490

9087086490823507842074730

7122067890647106174058890

5619053640512104890046710

4464042660408003903037320

3570034170327303132030000

76 Siemens Matsushita Components

B57863S 863

26,027,028,029,030,0

31,032,033,034,035,0

36,037,038,039,040,0

41,042,043,044,045,0

46,047,048,049,050,0

51,052,053,054,055,0

56,057,058,059,060,0

61,062,063,064,065,0

2871,62749,52633,22522,52417,1

2316,52220,72129,42042,41959,4

1880,21804,71732,61663,81598,1

1535,21475,21417,81363,01310,6

1260,51212,61166,71122,91080,9

1040,61002,0

965,12929,75895,86

863,40832,28802,44773,84746,40

720,07694,81670,56647,27624,91

4786,04582,54388,74204,24028,5

3860,93701,23549,13404,03265,7

3133,73007,82887,72773,02663,5

2558,72458,72363,12271,72184,4

2100,82021,01944,61871,51801,5

1734,41670,11608,51549,61493,1

1439,01387,11337,41289,71244,0

1200,11158,01117,61078,81041,5

95729165877784088057

77227402709868086531

62676016577555465327

51174917472645434369

42024042388937433603

34693340321730992986

28782774267525792488

24002316223521582083

2873727531263852529024249

2325622305214022053819716

1892718177174601677316119

1549514895143251377613254

1275012273118111137310950

1054510158

9786,09429,09090,0

8760,08448,08148,07857,07581,0

7314,07059,06818,06579,06354,0

R/T characteristics

Number 8016 8016 8016 8018

T (°C) R25 = 3 kΩ R25 = 5 kΩ R25 = 10 kΩ R25 = 30 kΩRT (Ω) RT (Ω) RT (Ω) RT (Ω)

Siemens Matsushita Components 77

B57863S 863

66,067,068,069,070,0

75,080,085,090,095,0

100,0105,0110,0115,0120,0

125,0130,0135,0140,0145,0

150,0155,0

603,43582,80562,97543,92525,60

444,41377,40321,70275,31236,56

204,00176,58153,36133,62116,79

102,5190,27079,63370,44062,496

55,59049,604

1005,7971,33938,29906,53876,00

740,69629,00536,17458,85394,26

340,00294,30255,60222,70194,65

170,85150,45132,72117,40104,16

92,65082,674

20111943187718131752

148112581072

917,7788,5

680,0588,6511,2445,4389,3

341,7300,9265,4234,8208,3

185,3165,3

6135,05928,05727,05535,05349,0

4524,03840,03273,02799,02404,8

2073,01792,21554,91353,61182,0

1035,0909,60801,60708,30627,30

557,10–

R/T characteristics

Number 8016 8016 8016 8018

T (°C) R25 = 3 kΩ R25 = 5 kΩ R25 = 10 kΩ R25 = 30 kΩRT (Ω) RT (Ω) RT (Ω) RT (Ω)

78 Siemens Matsushita Components

Siemens Matsushita C

Resistance and tempe

Resistance and tempe

rature tolerances versus temperature (∆T = 0,2 K)

rature tolerances versus temperature (∆T = 0,5 K)

B57863S 863

omponents 79

B57863S 863

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 155 °Ct: 1000 h

< 1 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 155 °CNumber of cycles: 5

< 0,5 % No visibledamage

Long-term stability(empirical value)

Temperature: + 70 °CDuration: 10 000 h

< 2 % No visibledamage

80 Siemens Matsushita Components

Temperature MeasurementUni Curve Miniature Senso rs

B57869S 869

App lications

Heating and air conditioning systems Industrial electronics Automotive electronics

Features

Fast response Accuracy of 0,2 K between 0 °C and 70 °C Excellent long-term stability Uni curve sensor Epoxy resin encapsulation Silver-plated MONEL leads

+: F for ∆T = 0,2 KG for ∆T = 0,5 K

For R/T characteristics, resistance and temperature tolerance curves and reliability data refer toS863, page 76 ff.

Climatic category (IEC 68-1)Max. power at 25 °C P25Temperature tolerance (0 … 70 °C) ∆TRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

55/155/5660± 0,2, ± 0,525approx. 1approx. 15approx. 15

mWK°CmW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

S 869/3 k/+ 40 3 k 8016 3988 B57869-S302-+40

S 869/5 k/+ 40 5 k 8016 3988 B57869-S502-+40

S 869/10 k/+40 10 k 8016 3988 B57869-S103-+40

S 869/30 k/+40 30 k 8018 3964 B57869-S303-+40

Dimensions in mmApprox. weight 60 mg

Siemens Matsushita Components 81

Temperature MeasurementProbe Assemblies

B57045K 45

App lications

Temperature compensation (chassis mounting) Temperature measurement (chassis mounting) Temperature control (chassis mounting)

Features

Cost-effective Good thermal coupling through

screw-type case (thread M3) Electrically isolated aluminum case

Ris > 100 MΩ (V = 100 V dc)Vis = 2500 V (test duration: 1 s)

Tinned copper leads

Options

Closer resistance tolerance available on request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthDissipation factor (on chassis) δthThermal cooling time constant (in air) τcThermal cooling time constant (on chassis) τcTorque

55/125/56450± 10 %25± 3 %approx. 9approx. 20approx. 75approx. 15approx. 0,5

mW

°C

mW/KmW/KssNm

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 45/1 k/K 1 k 1011 3730 B57045-K102-K

K 45/2,2 k/K 2,2 k 1013 3900 B57045-K222-K

K 45/4,7 k/K 4,7 k 4001 3950 B57045-K472-K

K 45/6,8 k/K 6,8 k 2903 4200 B57045-K682-K

K 45/10 k/K 10,0 k 2904 4300 B57045-K103-K

Dimensions in mmApprox. weight 1 g

82 Siemens Matsushita Components

B57045K 45

K 45/33 k/K 33 k 1012 4300 B57045-K333-K

K 45/47 k/K 47 k 4003 4450 B57045-K473-K

K 45/68 k/K 68 k 2005 4600 B57045-K683-K

K 45/100 k/K 100 k 2005 4600 B57045-K104-K

K 45/150 k/K 150 k 2005 4600 B57045-K154-K

Reliabil ity data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 125 °Ct: 1000 h

< 3 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 3 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 125 °CNumber of cycles: 5

< 3 % No visibledamage

Endurance Pmax: 450 mWDuration: 1000 h

< 3 % No visibledamage

Long-term stability(empirical value)

Temperature: 125 °CDuration: 10 000 h

< 5 % No visibledamage

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

Siemens Matsushita Components 83

Temperature MeasurementProbe Assemblies

B57703M 703

App lications

Surface temperature measurement,e.g. on housings and pipes

Features

High accuracy Easy mounting Good thermal coupling through metal tag Thermistor encapsulated in metal-tag case PTFE-insulated leads of nickel wire,

AWG 30, ∅ 0,25 mm

Options

Alternative resistance ratings,rated temperatures, tolerancesand lead lengths available on request

1) Depends on mounting situation

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δth 1)Thermal cooling time constant (in air) τc

1)Heat capacity Cth 1)Test voltage (t = 1 s)

55/125/56150± 2 %25± 1 %approx. 2,6approx. 28approx. 731

mW

°C

mW/KsmJ/KkV

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 703/10 k/G 10 k 2001 3920 B57703-M103-G

Dimensions in mmApprox. weight 0,8 g

84 Siemens Matsushita Components

B57703M 703

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 125 °Ct: 1000 h

< 1 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 0,5 % No visibledamage

Rapid temperature cycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 125 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 150 mWDuration: 1000 h

< 1 % No visibledamage

Long-term stability(empirical value)

Temperature: 125 °CDuration: 10 000 h

< 2 % No visibledamage

Siemens Matsushita Components 85

Temperature MeasurementProbe Assemblies

B57276K 276

App lications

Washing machines Dish washers Tumble-dryers Water boilers

Features

Suitable for use in corrosive environments Compact stainless steel case Tab connectors (DIN 46 244/2,8 × 0,8)

insulated from caseRis > 1000 MΩ (V = 100 V dc)Vis = 2500 V dc (t = 1 s)

Cost-effective ready-to-use sensor

Options

Alternative resistance ratings, rated temperatures,tolerances, 6,3 × 0,8 mm tab connectors orself-locking connectors on request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in water) δthThermal cooling time constant (in water) τcThermal time constant τaHeat capacity Cth

10/100/56500± 2 %80± 1,5 %approx. 20approx. 5approx. 15approx. 100

mW

°C

mW/KssmJ/K

Type R0

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 276/12 k/A3 1704 11982 2901 3760 B57276-K123-A3

Dimensions in mmApprox. weight 8 g

86 Siemens Matsushita Components

B57276K 276

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 100 °Ct: 1000 h

< 2 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 10 °CUpper test temperature: 100 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 500 mWDuration: 1000 h

< 2 % No visibledamage

Long-term stability(empirical value)

Temperature: 100 °CDuration: 10 000 h

< 3 % No visibledamage

Robustness of terminations

DIN46 249

Pull-out force(both connectors together)F = 50 N

— No visibledamage

Siemens Matsushita Components 87

Temperature MeasurementProbe Assemblies

B57277K 277

App lications

Refrigerators Deep freezers

Features

Encapsulated in compact plastic case Tab connectors (DIN 46 244/2,8 × 0,8)

insulated from caseRis > 1000 MΩ (V = 100 V dc)Vis = 2500 V dc (t = 1 s)

Internal construction conforms toVDE 007/protection class II

Options

Alternative resistance ratings, rated temperatures,tolerances and 6,3 × 0,8 mm connectors availableon request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

40/100/56420± 2,5 %5± 1,5 %approx. 12approx. 130approx. 1560

mW

°C

mW/KsmJ/K

Type R0

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 277/880/A1 2,0 k 883,1 1010 3530 B57277-K881-A1

Dimensions in mmApprox. weight 5 g

88 Siemens Matsushita Components

B57277K 277

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 100 °Ct: 1000 h

< 2 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 40 °CUpper test temperature: 100 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 420 mWDuration: 1000 h

< 2 % No visibledamage

Long-term stability(empirical value)

Temperature: 100 °CDuration: 10 000 h

< 3 % No visibledamage

Robustnesssof terminations

DIN46 249

Pull-out force(both connectors together)F = 50 N

— No visibledamage

Siemens Matsushita Components 89

Temperature MeasurementProbe Assemblies

B57227K 227

App lications

Electric motors Transformers

Features

Coated thermistor disk with shrunksleeve insulation

PTFE-insulated wires, AWG 26

Options

Alternative resistance ratings, rated temperatures,tolerances and wire lengths availableon request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity CthInsulation resistance (V = 100 Vdc) RisTest voltage (t = 1 s)

55/155/56200± 10 %100± 1,5 %approx. 5approx. 30approx. 150> 1002,5

mW

°C

mW/KsmJ/KMΩkV

Type R0

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

K 227/33 k/A1 1,8 k 32,762 k 2904 4300 B57227-K333-A1

Dimensions in mmApprox. weight 5 g

90 Siemens Matsushita Components

B57227K 227

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 125 °Ct: 1000 h

< 2 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 155 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 200 mWDuration: 1000 h

< 2 % No visibledamage

Long-term stability(empirical value)

Temperature: 155 °CDuration: 10 000 h

< 3 % No visibledamage

Siemens Matsushita Components 91

Temperature MeasurementProbe Assemblies

B57831M 831

App lications

Heating and air conditioning systems

Features

Aluminum case PVC-insulated connecting cable

H03VV-F2 × 0,7 (DIN 57 281) With cable end sleeves PVC cable withstands temperatures

of up to 105 °C

Options

Alternative resistance ratings, rated temperatures,tolerances and cable lengths availableon request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

10/100/56380± 2,5 %50± 1,5 %approx. 11approx. 150approx. 1600

mW

°C

mW/KsmJ/K

Type R0

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 831/870/A3 359,3 886,2 1008 3560 B57831-M871-A3

Dimensions in mmApprox. weight 80 g

92 Siemens Matsushita Components

B57831M 831

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 100 °Ct: 1000 h

< 1,5 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 1 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 10 °CUpper test temperature: 100 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 380 mWDuration: 1000 h

< 2 % No visibledamage

Long-term stability(empirical value)

Temperature: 100 °CDuration: 10 000 h

< 2 % No visibledamage

Robustness ofterminations

DIN46 249

Pull-out forceF = 50 N

— No visibledamage

Siemens Matsushita Components 93

Temperature MeasurementProbe Assemblies

B57020M 2020

App lications

Refrigerators Deep freezers Air conditioning systems Underfloor heating

Features

Thermistor in molded plastic case PVC-insulated connecting cable Conductor cross section: 2 × 0,5 mm2

Options

Alternative resistance ratings, rated temperaturesand cable lengths available on request

Climatic categoryMax. power at 25 °C P25Temperature tolerance ∆TRated temperature TNRated resistance RNB value tolerance ∆B/BDissipation factor (in air) δthThermal time constant (oil)(T1 = 0 °C, T2 = 25 °C) τaInsulation resistance Ris

40/60/56350± 1016330± 1,5 %approx. 10

approx. 50> 1000

mWK°CΩ

mW/K

sMΩ

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 2020/5 k/A1 5000 2003 3980 B57020-M2502-A1

Reliabil ity data

Test Test conditions ∆R25/R25(typical)

Storage in waterStorage at room temperaturet: 1000 h < 1 %

Rapid temperature cyclingLower test temperature:– 40 °CUpper test temperature: 60 °CNumber of cycles: 100

< 1 %

Dimensionsin mm

94 Siemens Matsushita Components

Temperature MeasurementProbe Assemblies

B57912M 912

App lications

Air conditioning systems (automobiles) Heating systems (automobiles)

Features

For temperature measurement in liquids Metal case with injection-molded upper section Compact design Two-wire connecting cable (2 × 0,75 mm2)

with insulating sleeve

Options

Also available with connectorsand other cable lengths

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

40/100/56100± 2 %0± 1,5 %approx. 3approx. 20approx. 60

mW

°C

mW/KsmJ/K

Type R0

Ω

R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

M 912/2,7 k/A3 9,0 k 2,758 k 1106 3950 B57912-M272-A3

Dimensions in mmApprox. weight 10 g

Siemens Matsushita Components 95

B57912M 912

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 100 °Ct: 1000 h

< 1 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 0,5 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 40 °CUpper test temperature: 100 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 100 mWDuration: 1000 h

< 2 % No visibledamage

Long-term stability(empirical value)

Temperature: 100 °CDuration: 10 000 h

< 2 % No visibledamage

Robustness of terminations

DIN46 249

Pull-out forceF = 100 N

— No visibledamage

96 Siemens Matsushita Components

Temperature MeasurementProbe Assemblies

B57010Z 10

App lications

Heating systems Water boilers

Features

For temperature measurement in liquids Stainless steel case (a); the NTC is incorporated

in the injection-molded plastic base (c) Tab connectors 2,8 × 0,8 With O sealing ring (b) Fast response

Options

Cable connectors, customized case styles,alternative resistance ratings, rated temperaturesand tolerances available on request

Climatic category (IEC 68-1)Max. power at 25 °C P25Resistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal time constant (in water) τaHeat capacity Cth

25/100/56100± 2 %25± 1,5 %approx. 9approx. 2,5approx. 20

mW

°C

mW/KsmJ/K

Type R25

Ω

No. of R/Tcharacteristic

B25/100

K

Ordering code

Z 10/10 k/G 10 k 2001 3920 B57010-Z103-G

Dimensions in mmApprox. weight 4,5 g

Siemens Matsushita Components 97

B57010Z 10

Reliability data

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 100 °Ct: 1000 h

< 1 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 56 days

< 0,5 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 25 °CUpper test temperature: 100 °CNumber of cycles: 10

< 1 % No visibledamage

Endurance Pmax: 100 mWDuration: 1000 h

< 2 % No visibledamage

Long-term stability(empirical value)

Temperature: 100 °CDuration: 10 000 h

< 2 % No visibledamage

Robustness of terminations

DIN46 249

Pull-out force(both connectors together)F = 50 N

— No visibledamage

98 Siemens Matsushita Components

Inrush Current Limiting B57153S 153

App lications

Switch-mode power supplies

Features

Useable in series connectionsup to 265 Vrms

Coated thermistor disk Cost-effective NTC for low-power applications Kinked leads of tinned, nickel-plated

copper wire Small size Available on tape UL approval (E69802)

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1701,4± 20 %25± 3 %approx. 8approx. 30approx. 240

°CW

°C

mW/KsmJ/K

Type R25

Ω

Imax(0 … 65 °C)A

No. ofR/T char-acteristic

B25/100

K

CT 1)

µF

Parametersfor R(I) 1)

Ordering code

k n

S 153/4,7/M 4,7 3,0 1202 2800 100 0,644 – 1,30 B57153-S479-M

S 153/10/M 10 2,0 1202 2800 100 0,838 – 1,30 B57153-S100-M

S 153/15/M 15 1,8 1203 2900 100 0,934 – 1,32 B57153-S150-M

S 153/33/M 33 1,3 1302 3000 100 1,180 – 1,33 B57153-S330-M

Dimensions in mmApprox. weight 0,6 g

Siemens Matsushita Components 99

Inrush Current Limiting B57234S 234

Not for new des ign (replaced by S 237)

App lications

Switch-mode power supplies Soft-start motors, e.g. in vacuum cleaners

Features

Useable in series connections up to 265 Vrms Coated thermistor disk for line applications Kinked leads of tinned, nickel-plated

copper wire Wide resistance range Available on tape UL approval (E69802)

Options

Resistance tolerance < 20 % available on request

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1703,6± 20 %25± 3 %approx. 17approx. 90approx. 1530

°CW

°C

mW/KsmJ/K

Type R25

Ω

Imax(0 … 65 °C)A

No. ofR/T char-acteristic

B25/100

K

CT 1)

µF

Parametersfor R(I) 1)

Ordering code

k n

S 234/1,0/M 1,0 11,5 1201 2600 700 0,622 – 1,27 B57234-S109-MS 234/2,2/M 2,2 9,0 1202 2800 700 0,806 – 1,30 B57234-S229-MS 234/2,5/M 2,5 8,4 1202 2800 700 0,843 – 1,30 B57234-S259-MS 234/4,7/M 4,7 6,6 1203 2900 700 1,03 – 1,32 B57234-S479-MS 234/5,0/M 5,0 6,4 1203 2900 700 1,05 – 1,32 B57234-S509-MS 234/7,0/M 7,0 6,0 1302 3000 700 1,16 – 1,33 B57234-S709-MS 234/10/M 10 5,0 1308 3060 700 1,29 – 1,34 B57234-S100-MS 234/15/M 15 4,0 1302 3000 700 1,49 – 1,33 B57234-S150-MS 234/22/M 22 4,0 1304 3300 700 1,57 – 1,37 B57234-S220-MS 234/33/M 33 3,3 1304 3300 900 1,78 – 1,37 B57234-S330-MS 234/40/M 40 3,4 1306 3450 400 1,82 – 1,38 B57234-S400-MS 234/60/M 60 4,0 1103 4000 400 1,77 – 1,44 B57234-S600-M

Dimensions in mmApprox. weight 2 g

100 Siemens Matsushita Components

Inrush Current Limiting B57235S 235

App lications

Switch-mode power supplies

Features

Useable in series connections up to 265 Vrms Coated thermistor disk Kinked leads of tinned, nickel-plated

copper wire Wide resistance range Small space requirement Cost-effective Available on tape UL approval (E69802)

Options

Resistance tolerance < 20 % available

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1701,8± 20 %25± 3 %approx. 9approx. 60approx. 540

°CW

°C

mW/KsmJ/K

Type R25

Ω

Imax(0 … 65 °C)A

No. ofR/T char-acteristic

B25/100

K

CT 1)

µF

Parametersfor R(I) 1)

Ordering code

k n

S 235/5,0/M 5,0 4,2 1202 2800 200 0,710 – 1,30 B57235-S509-M

S 235/6,0/M 6,0 4,0 1202 2800 200 0,757 – 1,30 B57235-S609-M

S 235/8,0/M 8,0 3,5 1203 2900 200 0,814 – 1,32 B57235-S809-M

S 235/10/M 10,0 3,0 1203 2900 200 0,879 – 1,32 B57235-S100-M

Dimensions in mmApprox. weight 0,8 g

Siemens Matsushita Components 101

Inrush Current Limiting B57236S 236

App lications

Switch-mode power supplies

Features

Useable in series connections up to 265 Vrms Coated thermistor disk Kinked leads of tinned, nickel-plated

copper wire Wide resistance range Available on tape UL approval (E69802)

Options

Resistance tolerance < 20 % available on request

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1702,1± 20 %25± 3 %approx. 10approx. 70approx. 700

°CW

°C

mW/KsmJ/K

Type R25

Ω

Imax(0 … 65 °C)A

No. ofR/T char-acteristic

B25/100

K

CT 1)

µF

Parametersfor R(I) 1)

Ordering code

k n

S 236/2,5/M 2,5 5,5 1201 2600 200 0,621 – 1,27 B57236-S259-M

S 236/5,0/M 5,0 4,5 1202 2800 300 0,761 – 1,30 B57236-S509-M

S 236/10/M 10 3,5 1203 2900 300 0,942 – 1,32 B57236-S100-M

S 236/12/M 12 3,2 1203 2900 300 1,00 – 1,32 B57236-S120-M

S 236/16/M 16 2,9 1207 2965 300 1,08 – 1,33 B57236-S160-M

S 236/20/M 20 2,8 1208 3065 300 1,13 – 1,34 B57236-S200-M

S 236/25/M 25 2,5 1208 3065 300 1,22 – 1,34 B57236-S250-M

S 236/50/M 50 1,9 1209 3165 300 1,44 – 1,38 B57236-S500-M

S 236/80/M 80 1,6 1304 3300 400 1,64 – 1,37 B57236-S800-M

Dimensions in mmApprox. weight 1 g

102 Siemens Matsushita Components

Inrush Current Limiting B57237S 237

Replacement for S 234

App lications

Switch-mode power supplies Soft-start motors, e.g. in vacuum cleaners

Features

Useable in series connections up to 265 Vrms Coated thermistor disk Kinked leads of tinned, nickel-plated

copper wire Wide resistance range Available on tape UL approval (E69802)

Options

Resistance tolerance < 20 % available on request

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1703,1± 20 %25approx. 17approx. 90approx. 1530

°CW

°CmW/KsmJ/K

Type R25

Ω

Imax(25 °C)A

RMin

Ω

CT 1)

µF

Parametersfor R(I) 1)

Ordering code

k n

S 237/1,0/M 1,0 9,0 0,04 700 0,622 – 1,27 B57237-S109-M

S 237/2,2/M 2,2 7,0 0,06 700 0,806 – 1,30 B57237-S229-M

S 237/2,5/M 2,5 6,5 0,07 700 0,843 – 1,30 B57237-S259-M

S 237/4,7/M 4,7 5,1 0,12 700 1,03 – 1,32 B57237-S479-M

S 237/5,0/M 5,0 5,0 0,12 700 1,05 – 1,32 B57237-S509-M

S 237/7,0/M 7,0 4,2 0,17 700 1,16 – 1,33 B57237-S709-M

S 237/10/M 10 3,7 0,22 700 1,29 – 1,34 B57237-S100-M

S 237/15/M 15 3,0 0,34 700 1,49 – 1,33 B57237-S150-M

S 237/22/M 22 2,8 0,39 700 1,57 – 1,37 B57237-S220-M

S 237/33/M 33 2,5 0,50 900 1,78 – 1,37 B57237-S330-M

Dimensions in mmApprox. weight 2 g

Siemens Matsushita Components 103

Inrush Current Limiting B57364S 364

App lications

Switch-mode power supplies Soft-start motors, e.g. in vacuum cleaners

Features

Useable in series connections up to 265 Vrms Coated thermistor disk Kinked leads of tinned, nickel-plated

copper wire Wide resistance range Available on tape UL approval (E69802)

Options

Resistance tolerance < 20 % available on request

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1705,1± 20 %25± 3 %approx. 24approx. 100approx. 2400

°CW

°C

mW/KsmJ/K

Type R25

Ω

Imax(0 … 65 °C)A

No. ofR/T char-acteristic

B25/100

K

CT 1)

µF

Parametersfür R(I) 1)

Ordering code

k n

S 364/1,0/M 1,0 16,0 1202 2800 1000 0,766 – 1,30 B57364-S109-M

S 364/2,0/M 2,0 12,0 1203 2900 1000 0,966 – 1,32 B57364-S209-M

S 364/2,5/M 2,5 11,0 1203 2900 1000 1,04 – 1,32 B57364-S259-M

S 364/4,0/M 4,0 9,5 1308 3060 1000 1,20 – 1,34 B57364-S409-M

S 364/5,0/M 5,0 8,5 1308 3060 1000 1,29 – 1,34 B57364-S509-M

S 364/10/M 10 7,5 1304 3300 1000 1,55 – 1,37 B57364-S100-M

Dimensions in mmApprox. weight 4 g

104 Siemens Matsushita Components

Inrush Current Limiting B57464S 464

App lications

Switch-mode power supplies Soft-start motors, e.g. in vacuum cleaners

Features

Useable in series connections up to 265 Vrms Coated thermistor disk Kinked leads of tinned, nickel-plated

copper wire High energy absorption capability

Options

Additional resistance ratings andtolerances < 20 % available on request

1) For details on the capacitance CT as well as on the parameters k and n refer to pages 38–40.

Lower/upper category temperatureMax. power at 25 °C PmaxResistance tolerance ∆R/RNRated temperature TNB value tolerance ∆B/BDissipation factor (in air) δthThermal cooling time constant (in air) τcHeat capacity Cth

– 55/+ 1706,7± 20 %25± 3 %approx. 30approx. 130approx. 3900

°CW

°C

mW/KsmJ/K

Type R25

Ω

Imax(0 … 65 °C)A

No. ofR/T char-acteristic

B25/100

K

CT 1)

µF

Parametersfür R(I) 1)

Ordering code

k n

S 464/1,0/M 1,0 20 1202 2800 2500 0,886 – 1,30 B57464-S109-M

Dimensions in mmApprox. weight 9 g

Siemens Matsushita Components 105

Inrush Current LimitingS 153 … S 464

Reliability data – ICL

Test Standard Test conditions ∆R25/R25(typical)

Remarks

Storage indry heat

IEC68-2-2

Storage at uppercategory temperatureT: 170 °Ct: 1000 h

< 10 % No visibledamage

Storage in dampheat, steady state

IEC68-2-3

Temperature of air: 40 °CRelative humidity of air: 93 %Duration: 21 days

< 5 % No visibledamage

Rapid temperaturecycling

IEC68-2-14

Lower test temperature:– 55 °CUpper test temperature: 170 °CNumber of cycles: 5

< 10 % No visibledamage

Endurance I = ImaxDuration: 1000 h

< 10 % No visibledamage

Cyclicendurance

I = Imax, 1000 cyclesOn-time = 1 minCooling time = 6 min

< 10 % No visibledamage

106 Siemens Matsushita Components

Siemens Matsushita C

1 Introduction

The R/T characteristicsat 25 C. The actual resratio RT/R25 (tabulated

Resistance values at interval can be calcuated

α is inserted in the follo

RT Resistance vaRTx Resistance vaTx Temperature iT Temperature oαx Temperature c

Example:

Given: Curve 10R25 = 4,7α5 = 4,4

Unknown: Resistanc

a) Calculation of the re(Tx = 5 °C):

b) Substituting this val

RT

RTR25--------- R25⋅=

RT RTxexp

αx100---------- ⋅⋅=

RTxR5 2,2739 4⋅= =

R7 R5 expα5

100---------- (⋅⋅=

R7 10,6873 kΩ ex⋅=

R7 10,6873 kΩ ex⋅=

R7 9,7932 kΩ=

Standardized R/T

tabulated in the following have been standardized for the resistance valueistance values of a particular NTC thermistor are obtained by multiplying the value) by the resistance value at 25 C (specified in the data sheets).

termediate temperatures within the range of the subsequent temperature in- by means of the temperature coefficient α.

wing equation:

lue at temperature Tlue at the beginning of the relevant temperature intervaln ˚C at the beginning of the relevant temperature intervalf interest in C (Tx < T < Tx+1)oefficient at temperature Tx

06 kΩ

e at 7 C (R7)

sistance value at the beginning of the relevant temperature interval

ue into equation (2) yields:

(1)

Tx 273,15+( ) 2 1T 273,15+---------------------------- 1

Tx 273,15+-------------------------------–

⋅ (2)

,7 kΩ 10,6873 kΩ=

5 273,15+ ) 2 17 273,15+---------------------------- 1

5 273,15+----------------------------–

Standardized R

/T C

haracteristics

Characteristics

omponents 107

p 4,4100---------- 278,152 1

280,15------------------ 1

278,15------------------–

⋅ ⋅

p 0,08737–[ ] 10,6873 0,9163⋅=

108

2 Resistance tol

The tolerance range ofcorresponding rated re

In practice, the followin

|∆RT/RT| Maximum sp|∆RN/RN| Rated tolera|∆B/B| Rated toleraB B25/100 valuT, TN Temperatur

Example:

Given: NTC B57Curve 10B25/100 =B value tRated temRated resResistanc

Unknown: ResistancResistanc

a) Calculation of referethe rated temperatu

(0,070690 = Factor of c

b) Calculation of resist

(0,65726 = Factor of cu

∆RT

RT-----------

∆RN

RN-----------

∆BB

-------- ⋅+=

R100

R100

R25------------ R25⋅=

R251

0,070690------------------------- 39,6⋅=

R35

R35

R25--------- R25⋅ 0,6= =

Standardized R/T

erance

resistance can be calculated proceeding from the rated temperature and thesistance tolerance (see also chapter 3.1.3).

g equation is used:

read of resistance at temperature T in %nce of resistance value at temperature TN (given in data sheet) in %nce of B value (given in data sheet) in %e (given in data sheet) in Kes in K

820-M561-A509 3930olerance |∆B/B| = 1,5 %

perature TN = 100 Cistance RN = R100 = 39,6 Ωe tolerance at 100 C |∆RN/RN| = 5 %

e value at 35 C (RT = R35)e tolerance at 35 C (|∆RT/RT| = |∆R35/R35|)

nce resistance R25 (required for working with the standardized R/T curve; ifre is 25 ˚C this step is omitted) by means of equation (1):

B1T--- 1

TN-------–

⋅ (3)

R25

R100

R25------------

1–

R100⋅=

Ω 560,2 Ω=

Characteristics

Siemens Matsushita Components

urve 1009 at 100 C)

ance value at 35 C:

rve at 35 C)

5726 560,2 Ω⋅ 368,2 Ω=

Siemens Matsushita C

c) Calculation of resist

If the R/T characteristibe easily determined b

3 Temperature t

With given resistance t

α Temperatur|∆RT/RT| Resistance

The following applies to

The calculation mode gtemperature-dependenaccurate for practical a

∆ R35

R35--------------- 5 1,5 39⋅+=

5 5895 ⋅+=

5 5895 0⋅+(=

5,0 % + 3,3=

∆ T 1α---

∆ RT

RT-------------⋅=

∆T 100 ˚C( ) 12,9-------- 5⋅=

∆T 35 ˚C( ) 14,1-------- 8,3⋅=

ance tolerance by means of equation (3):

cs are computer-stored, the resistance tolerances for all temperatures cany an appropriate calculation program.

olerance

olerance, the temperature tolerance is determined as follows:

e coefficient at T in %/K (see R/T characteristic) tolerance in % at T

the example given under point 2:

iven here is to be regarded as an approximation of actual conditions (B valuet, tolerances symmetrical); nevertheless, the results obtained are sufficientlypplications.

301

35 273,15+( )-------------------------------------- 1100 273,15+( )-----------------------------------------–

⋅ %

1308,15------------------ 1

373,15------------------– %

,00056529) %

% = 8,3 %

(4)

K = 1,72 K

K = 2,02 K

Standardized R/T Characteristics

omponents 109

Standardized R/T Characteristics

4 Characteristics

Number 1006 1008 1009 1010

T (°C) B25/100 = 3550 K B25/100 = 3560 K B25/100 = 3930 K B25/100 = 3530 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

48,50336,52427,63921,021

16,06912,348

9,53137,41855,7780

4,53733,57622,84092,27391,8330

1,48831,21601,00000,826270,68600

0,572540,480500,405140,342130,29036

0,248380,213420,183710,158730,13756

0,119610,104350,0913140,0802650,070764

0,0625440,0554310,0492520,0438720,039254

5,85,75,65,5

5,45,35,15,14,9

4,94,74,54,44,2

4,14,03,93,83,7

3,63,53,43,33,2

3,13,03,02,92,8

2,82,72,62,62,5

2,42,42,32,32,2

53,10439,31829,32522,030

16,66612,696

9,72517,51715,8353

4,56863,60502,86652,29071,8438

1,49201,21541,00000,829760,68635

0,571030,480150,405450,341700,28952

0,247140,211830,181940,156800,13592

0,118220,103400,0907410,0796420,070102

0,0618890,0547850,0487060,0434150,038722

6,16,05,85,7

5,55,45,25,14,9

4,84,74,54,44,3

4,14,03,93,83,7

3,63,53,43,33,2

3,13,13,02,92,8

2,82,72,62,62,5

2,42,42,32,32,2

85,42360,78143,65031,629

23,11817,04012,649

9,48647,1545

5,44794,17323,22562,51471,9763

1,56491,24811,00000,809560,65726

0,536970,441690,365340,303270,25313

0,212710,179620,152190,129490,11067

0,0949520,0817800,0706900,0613830,053486

0,0467300,0409550,0360060,0317470,028097

7,06,86,66,4

6,26,15,95,85,6

5,45,25,14,94,8

4,64,54,34,24,1

4,03,93,83,73,5

3,43,43,33,23,1

3,03,02,92,82,7

2,72,62,52,52,4

52,82638,64328,57421,346

16,10012,256

9,40717,28625,6835

4,46983,53852,82222,26491,8300

1,48721,21611,00000,826770,68708

0,574010,481810,406380,344270,29296

0,250350,214780,185010,159950,13881

0,120880,105630,0925970,0814420,071842

0,0635710,0564070,0501960,0447830,040064

6,46,15,95,7

5,55,45,25,04,9

4,74,64,54,34,2

4,14,03,93,83,6

3,53,53,43,33,2

3,13,02,92,92,8

2,72,72,62,52,5

2,42,42,32,32,2

110 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0 185,0

190,0 195,0 200,0 205,0 210,0

215,0 220,0 225,0 230,0 235,0

240,0 245,0 250,0

0,0352090,0315810,0283890,0256140,023162

0,0209900,0190610,0173440,015813–

–––––

–––––

–––

2,22,22,12,02,0

1,91,91,91,9–

–––––

–––––

–––

0,0346150,0310480,0279100,0251930,022790

0,0206670,0187800,0170900,0155820,014227

0,0130120,0119340,0109640,0101000,0093191

0,00859490,00793840,00734110,00679800,0063087

0,00586230,00544870,0050705

2,22,12,12,02,0

2,01,91,91,81,8

1,81,71,71,71,6

1,61,61,51,51,5

1,51,41,4

0,0249350,0221760,0197720,0176830,015853

0,0142470,0128340,0115870,010483–

–––––

–––––

–––

2,42,32,32,22,2

2,12,12,02,0–

–––––

–––––

–––

0,0359280,0323020,0291070,0262910,023801

0,0215940,0196340,0178880,0163310,014931

0,0136810,0125580,011547––

–––––

–––

2,22,12,12,02,0

1,91,91,81,81,8

1,71,71,7––

–––––

–––

Number 1006 1008 1009 1010

T (°C) B25/100 = 3550 K B25/100 = 3560 K B25/100 = 3930 K B25/100 = 3530 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 111

Standardized R/T Characteristics

Number 1011 1012 1013 1014

T (°C) B25/100 = 3730 K B25/100 = 4300 K B25/100 = 3900 K B25/100 = 4250 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

70,01449,90636,01526,296

19,41114,47910,903

8,29236,3591

4,92043,82793,00292,37731,8959

1,52071,22801,00000,817790,67341

0,557470,463570,387400,323680,27200

0,230410,196040,167350,143420,12347

0,106680,0927340,0809030,0706160,061826

0,0542820,0477930,0422490,0374500,033244

6,96,76,46,2

6,05,85,65,45,2

5,14,94,84,64,5

4,34,24,13,93,8

3,73,63,63,53,4

3,33,23,13,03,0

2,82,82,82,72,6

2,62,52,42,42,4

87,23762,26444,85432,599

23,89317,65413,098

9,80597,4266

5,66774,32133,32082,58422,0238

1,58581,25071,00000,796400,64053

0,517720,419580,341720,278770,22861

0,188720,156450,130120,108630,091115

0,0767000,0648670,0550470,0467970,039904

0,0342550,0294980,0254480,0220160,019038

6,86,76,56,3

6,16,05,85,75,5

5,45,35,15,04,9

4,84,74,54,44,3

4,24,14,14,03,9

3,83,73,63,63,5

3,43,33,33,23,1

3,13,03,02,92,8

77,28554,93839,50728,722

21,09915,65211,715

8,85416,7433

5,18154,00993,12832,45691,9438

1,54751,24031,00000,811040,66146

0,542540,447270,370670,308650,25825

0,217070,183230,155350,132230,11302

0,0969510,0834870,0721390,0625590,054425

0,0475080,0415940,0365320,0321750,028423

7,06,76,56,3

6,15,95,75,65,4

5,25,14,94,84,6

4,54,44,34,14,0

3,93,83,73,63,5

3,43,33,33,23,1

3,03,02,92,82,8

2,72,62,62,52,5

83,93560,22843,59331,815

23,40417,34912,946

9,74397,3737

5,62474,30633,32212,57792,0144

1,58481,25471,00000,799130,64287

0,519910,422990,345730,282980,23277

0,192620,160050,133490,111750,093934

0,0792310,0670540,0569320,0485910,041605

0,0356530,0306360,0264540,0229050,019867

6,86,66,46,3

6,16,05,85,75,5

5,45,35,25,04,9

4,84,64,64,44,3

4,24,14,14,03,8

3,83,73,63,53,5

3,43,33,23,13,1

3,13,02,92,92,8

112 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,0295820,0264060,0236250,0211930,019057

0,0171760,0155160,0140460,012742

2,32,32,22,12,1

2,12,02,02,0

0,0165020,0143550,0125140,0109320,0095681

0,00839030,00737060,00657180,0058179

2,82,72,72,62,6

2,52,52,52,4

0,0251730,0223580,0199070,0177700,015901

0,0142630,0128240,0115560,010436

2,42,42,32,22,2

2,22,12,12,1

0,0172740,0150270,0131010,0114530,010031

0,00880120,00773590,00681090,0060061

2,82,82,72,72,6

2,62,62,52,5

Number 1011 1012 1013 1014

T (°C) B25/100 = 3730 K B25/100 = 4300 K B25/100 = 3900 K B25/100 = 4250 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 113

Standardized R/T Characteristics

Number 1018 1101 1103 1106

T (°C) B25/100 = 3430 K B25/100 = 3430 K B25/100 = 4000 K B25/100 = 3950 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

45,96633,98825,40519,182

14,61911,240

8,71496,81035,3620

4,25193,39482,72822,20631,7950

1,46891,20871,00000,831600,69502

0,583680,492460,417360,355260,30366

0,260620,224550,194210,168590,14687

0,128380,112600,0990760,0874490,077419

0,0687400,0612080,0546510,0489260,043914

6,25,95,75,5

5,35,25,04,94,7

4,64,44,34,24,1

4,03,83,73,63,5

3,43,43,33,23,1

3,02,92,92,82,7

2,72,62,52,52,4

2,32,32,22,22,1

46,9534,7525,9719,58

14,9011,43

8,8456,8975,419

4,2883,4182,7422,2151,800

1,4711,2101,0000,83120,6944

0,58310,49190,41680,35480,3033

0,26040,22440,19410,16850,1468

0,12830,11260,099060,087440,07741

0,068730,061190,054620,048890,04387

6,26,05,85,6

5,45,25,14,94,8

4,64,54,34,24,1

4,03,93,73,63,5

3,43,43,33,23,1

3,02,92,92,82,7

2,72,62,52,52,4

2,42,32,22,22,1

91,1865,0946,8133,91

24,7418,1813,4610,06

7,532

5,6944,3303,3232,5712,006

1,5791,2531,0000,80280,6503

0,53000,43430,35800,29600,2462

0,20610,17340,14670,12460,1062

0,090800,078110,067450,058540,05098

0,044520,039010,034210,030100,02664

6,76,66,56,4

6,36,16,05,85,7

5,55,35,25,04,9

4,74,64,44,34,2

4,13,93,83,73,6

3,53,43,33,23,1

3,13,02,92,82,8

2,72,62,62,52,4

96,67667,11747,22833,656

24,27417,70613,050

9,72377,3106

5,55054,23603,26292,53371,9841

1,56801,24841,00000,806410,65453

0,534570,439420,363200,301540,25166

0,211190,178080,150790,128240,10940

0,0936900,0806750,0697280,0604050,052497

0,0457650,0400130,035083––

7,37,16,96,7

6,46,26,05,85,6

5,45,35,14,94,8

4,64,54,44,24,1

4,03,93,83,73,6

3,53,43,33,23,1

3,03,02,92,82,8

2,72,62,6––

114 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0 185,0

190,0 195,0 200,0 205,0 210,0

215,0 220,0 225,0 230,0 235,0

240,0 245,0 250,0

0,0395150,0356420,0322250,0292020,026521

0,0241380,0220160,0201200,0184240,016903

0,0155360,0143060,0131960,0121930,011285

0,0104610,00971280,00903160,00841060,0078435

0,00732490,00684990,0064141

2,12,02,01,91,9

1,91,81,81,71,7

1,71,61,61,61,5

1,51,51,41,41,4

1,41,31,3

0,039450,035570,032140,029110,02642

0,024030,021900,019990,018290,01676

0,015390,014150,013040,012030,01112

0,010290,0095400,0088560,0082330,007665

0,0071450,0066690,006233

2,12,12,02,01,9

1,91,81,81,81,7

1,71,71,61,61,6

1,51,51,51,41,4

1,41,41,3

0,023640,021010,018720,016740,01501

0,013490,012160,010980,009935–

–––––

–––––

–––

2,42,32,32,22,2

2,12,12,02,0–

–––––

–––––

–––

–––––

–––––

–––––

–––––

–––

–––––

–––––

–––––

–––––

–––

Number 1018 1101 1103 1106

T (°C) B25/100 = 3430 K B25/100 = 3430 K B25/100 = 4000 K B25/100 = 3950 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 115

Standardized R/T Characteristics

Number 1201 1202 1203 1206

T (°C) B25/100 = 2600 K B25/100 = 2800 K B25/100 = 2900 K B25/100 = 2915 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

21,44516,72013,15910,457

8,37826,77015,51124,52073,7332

3,10412,59662,18561,84981,5744

1,34691,15781,00000,867610,75598

0,661470,581020,512310,453330,40255

0,358650,320550,287370,258380,23298

0,210650,190950,173530,158080,14434

0,132100,121150,111350,102540,094615

5,14,94,74,5

4,44,24,03,93,8

3,63,53,43,33,2

3,13,02,92,82,7

2,62,62,52,42,3

2,32,22,22,12,0

2,01,91,91,81,8

1,81,71,71,61,6

27,11920,74816,03512,521

9,86337,84156,28365,07684,1312

3,38662,79442,32111,93951,6303

1,37791,17091,00000,858160,73986

0,640740,557210,486570,426520,37530

0,331410,293640,261050,232800,20826

0,186830,168090,151640,137150,12436

0,113040,102990,0940400,0860550,078918

5,55,35,14,9

4,74,54,44,24,1

3,93,83,73,53,4

3,33,23,13,02,9

2,82,82,72,62,5

2,52,42,32,32,2

2,12,12,02,01,9

1,91,81,81,81,7

30,25222,96617,61213,650

10,6718,42166,70015,37574,3443

3,53762,89952,39291,98661,6596

1,39411,17771,00000,853370,73170

0,630320,545340,473840,413360,36201

0,318220,280730,248500,220690,19663

0,175720,157500,141570,127600,11531

0,104470,0948810,0863710,0787990,072059

5,65,45,25,0

4,84,74,54,34,2

4,13,93,83,73,5

3,43,33,23,13,0

2,92,92,82,72,6

2,52,52,42,32,3

2,22,22,12,12,0

2,01,91,91,81,8

30,2122,9817,6513,68

10,708,4396,7135,3834,349

3,5402,9012,3931,9871,660

1,3941,1781,0000,85340,7317

0,63020,54520,47350,41300,3615

0,31760,28000,24760,21970,1955

0,17450,15620,14020,12620,1138

0,10290,093280,084730,077130,07035

5,65,45,25,0

4,84,74,54,34,2

4,13,93,83,73,5

3,43,33,23,13,0

2,92,92,82,72,6

2,62,52,42,42,3

2,22,22,12,12,0

2,01,91,91,91,8

116 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,0874640,0811030,0751480,0698380,065007

0,0606070,0565900,0529200,049557

1,61,51,51,51,4

1,41,41,31,3

0,0725160,0667660,0615860,0569120,052685

0,0488570,0453800,0422210,039341

1,71,61,61,61,5

1,51,51,41,4

0,0660320,0606290,0557760,0514150,047481

0,0439270,0407080,0377920,035140

1,71,71,61,61,6

1,51,51,51,5

0,064300,058880,054010,049640,04570

0,042140,038920,036010,03336

1,81,71,71,71,6

1,61,61,51,5

Number 1201 1202 1203 1206

T (°C) B25/100 = 2600 K B25/100 = 2800 K B25/100 = 2900 K B25/100 = 2915 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 117

Standardized R/T Characteristics

Number 1207 1208 1209 1210

T (°C) B25/100 = 2965 K B25/100 = 3065 K B25/100 = 3165 K B25/100 = 3265 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

31,6824,0118,3714,19

11,068,7026,9015,5174,445

3,6072,9482,4262,0081,673

1,4021,1811,00000,85110,7279

0,62540,53960,46760,40680,3553

0,31140,27390,24170,21400,1900

0,16930,15120,13540,12160,1095

0,098820,089400,081060,073650,06706

5,75,55,35,1

4,94,74,64,44,3

4,14,03,83,73,6

3,53,43,33,23,1

3,02,92,82,82,7

2,62,52,52,42,3

2,32,22,22,12,1

2,02,01,91,91,9

34,6526,1019,8515,24

11,819,2377,2835,7894,637

3,7433,0422,4892,0501,699

1,4161,1871,00000,84700,7208

0,61640,52940,45660,39540,3438

0,30000,26270,23080,20350,1800

0,15970,14210,12670,11340,1017

0,091410,082380,074420,067370,06113

5,85,65,45,2

5,04,84,74,54,4

4,24,14,03,83,7

3,63,53,43,33,2

3,13,02,92,82,8

2,72,62,62,52,4

2,42,32,32,22,2

2,12,12,02,01,9

37,6528,2121,3416,30

12,569,7707,6626,0594,828

3,8763,1342,5522,0911,724

1,4301,1931,00000,84290,7139

0,60760,51940,44590,38440,3327

0,28900,25200,22050,19350,1704

0,15050,13340,11850,10560,09431

0,084460,075820,068230,061530,05562

5,95,75,55,3

5,14,94,84,64,5

4,34,24,13,93,8

3,73,63,53,43,3

3,23,13,02,92,9

2,82,72,62,62,5

2,52,42,32,32,2

2,22,12,12,02,0

41,6230,9823,2817,66

13,5210,44

8,1376,3925,061

4,0373,2442,6252,1381,753

1,4461,1991,0000,83840,7065

0,59820,50890,43470,37300,3213

0,27790,24120,21010,18360,1610

0,14160,12500,11060,098130,08731

0,077880,069650,062440,056100,05052

6,05,85,65,4

5,35,14,94,84,6

4,44,34,24,03,9

3,83,73,63,53,4

3,33,23,13,02,9

2,92,82,72,72,6

2,52,52,42,42,3

2,32,22,22,12,1

118 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,061190,055940,051240,047020,04322

0,039790,036700,033910,03137

1,81,81,71,71,7

1,61,61,61,5

0,055570,050630,046210,042260,03871

0,035530,032660,030070,02773

1,91,81,81,81,7

1,71,71,61,6

0,050380,045730,041590,037900,03460

0,031640,028990,026600,02445

2,01,91,91,81,8

1,81,71,71,7

0,045600,041240,037370,033930,03087

0,028140,025690,023490,02152

2,02,02,01,91,9

1,81,81,81,7

Number 1207 1208 1209 1210

T (°C) B25/100 = 2965 K B25/100 = 3065 K B25/100 = 3165 K B25/100 = 3265 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 119

Standardized R/T Characteristics

Number 1301 1302 1303 1304

T (°C) B25/100 = 2600 K B25/100 = 3000 K B25/100 = 3050 K B25/100 = 3300 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

21,4516,7213,1610,46

8,3786,7705,5114,5213,733

3,1042,5972,1861,8501,574

1,3471,1581,0000,86760,7560

0,66150,58100,51230,45330,4025

0,35870,32060,28740,25840,2330

0,21070,19100,17350,15810,1443

0,13210,12120,11140,10250,09462

5,14,94,74,5

4,34,24,03,93,8

3,63,53,43,33,2

3,13,02,92,82,7

2,62,62,52,42,3

2,32,22,22,12,0

2,01,91,91,81,8

1,81,71,71,61,6

33,70125,25219,14914,684

11,3808,90677,03575,60654,5044

3,64712,97462,44292,01941,6797

1,40531,18231,00000,850070,72608

0,623000,536850,464530,403570,35193

0,307990,270470,238320,210670,18677

0,166070,148050,132330,118620,10660

0,0960090,0866670,0783980,0710670,064544

5,95,75,45,2

5,04,84,64,54,3

4,24,03,93,83,6

3,53,43,33,23,1

3,02,92,92,82,7

2,62,62,52,42,4

2,32,32,22,22,1

2,12,02,01,91,9

34,36325,82719,63515,089

11,7129,17747,25525,78354,6467

3,76113,05472,49862,05751,7051

1,42101,19101,00000,850530,72386

0,618970,531340,458140,396370,34439

0,300810,263720,232120,205010,18150

0,161170,143300,127750,114580,10306

0,0927520,0836770,0757390,0687100,062431

5,85,65,45,2

5,04,84,64,54,3

4,24,14,03,83,7

3,63,63,33,33,2

3,13,02,92,92,7

2,72,62,52,52,4

2,42,32,22,12,1

2,12,02,01,91,9

39,32630,12123,16417,888

13,87410,810

8,45126,66125,2540

4,17773,33092,67672,16801,7683

1,45381,20251,00000,837520,70362

0,594170,504530,430350,367980,31608

0,273240,237180,206350,180160,15843

0,139840,122770,108040,0959960,085543

0,0763800,0683780,0613860,0552450,049926

5,55,45,35,2

5,15,04,94,84,7

4,64,54,34,14,0

3,93,83,63,53,4

3,33,23,23,13,0

2,92,82,72,72,6

2,52,52,42,32,3

2,22,22,12,12,0

120 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,087460,081000,075150,069840,06501

0,060610,056590,052920,04956

1,61,51,51,41,4

1,41,41,31,3

0,0587330,0535610,0489330,0447930,041077

0,0377360,0347260,0320090,029553

1,91,81,81,81,7

1,71,61,61,6

0,0568440,0518490,0473840,0433830,039788

0,0365520,0336320,0309930,028604

1,91,81,81,81,7

1,71,71,61,6

0,0452270,0410080,0372620,0339610,031019

0,0283890,0260340,0239200,022018

2,01,91,91,81,8

1,81,71,71,7

Number 1301 1302 1303 1304

T (°C) B25/100 = 2600 K B25/100 = 3000 K B25/100 = 3050 K B25/100 = 3300 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 121

Standardized R/T Characteristics

Number 1305 1306 1307 1308

T (°C) B25/100 = 3200 K B25/100 = 3450 K B25/100 = 3560 K B25/100 = 3060 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

42,13131,12923,27317,592

13,43810,366

8,10056,38565,0364

4,00673,22172,60972,12601,7438

1,44151,19871,00000,841850,71080

0,603170,514190,440370,378240,32636

0,283330,246970,215730,189080,16649

0,147090,130210,115600,103010,092038

0,0824420,0740350,0667010,0602380,054515

6,25,95,75,5

5,35,04,94,84,7

4,44,34,24,03,9

3,83,73,53,43,3

3,23,13,13,02,9

2,82,72,72,62,5

2,52,42,32,32,2

2,22,12,12,02,0

49,93536,64027,18020,370

15,41611,775

9,06987,04975,5187

4,35583,46092,77052,23131,8098

1,47621,21161,00000,829840,69220

0,580420,488990,413950,351970,30060

0,257800,221970,191890,166480,14498

0,126690,111090,0977170,0862350,076325

0,0677600,0603200,0538520,0482000,043256

6,36,15,95,7

5,55,35,15,04,8

4,74,54,44,34,1

4,03,93,83,73,6

3,53,43,33,23,1

3,03,02,92,82,7

2,72,62,52,52,4

2,42,32,22,22,1

51,11538,30028,84721,842

16,62712,725

9,78597,59025,8918

4,61243,62472,87172,29291,8442

1,49411,21831,00000,822460,68231

0,569090,476700,401330,338940,28769

0,245730,210810,181470,156820,13601

0,118380,103420,0906490,0796720,070236

0,0621180,0550930,0489010,0435130,038925

5,95,85,75,6

5,55,45,25,25,0

4,94,74,64,44,3

4,24,04,03,83,7

3,63,53,43,33,2

3,13,03,02,92,8

2,72,72,62,62,5

2,42,42,42,32,2

32,3324,5818,8514,58

11,388,9477,0915,6634,555

3,6893,0082,4682,0371,691

1,4121,1851,0000,84780,7221

0,61790,53090,45810,39680,3450

0,30110,26370,23170,20420,1806

0,16020,14250,12710,11360,1019

0,091580,082510,074510,067440,06117

5,65,45,25,0

4,94,74,64,44,3

4,14,03,93,83,7

3,63,53,43,33,2

3,13,02,92,82,8

2,72,62,62,52,4

2,42,32,32,22,2

2,12,12,02,01,9

122 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,0494460,0449440,0409370,0373620,034165

0,0313000,0287260,0264100,024322

1,91,91,81,81,8

1,71,71,71,7

0,0389110,0350910,0317160,0287330,026088

0,0237380,0216440,0197750,018104

2,12,02,02,01,9

1,81,81,61,6

0,0349080,0313490,0282160,0254770,023056

0,0209110,0190060,0173090,015796

2,22,12,12,02,0

1,91,91,91,9

0,055590,050630,046200,042240,03869

0,035500,032630,030030,02770

1,91,91,81,81,7

1,71,71,61,6

Number 1305 1306 1307 1308

T (°C) B25/100 = 3200 K B25/100 = 3450 K B25/100 = 3560 K B25/100 = 3060 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 123

Standardized R/T Characteristics

Number 1309 2001 2002 2003

T (°C) B25/100 = 3520 K B25/100 = 3920 K B25/100 = 3940 K B25/100 = 3980 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

48,46035,80026,69420,085

15,24711,674

9,01247,01365,5001

4,34513,45692,76882,23211,8105

1,47731,21221,00000,829240,69105

0,578610,486660,411100,348720,29699

0,253900,217860,187590,162080,14050

0,122170,106560,0932130,0817670,071922

0,0634280,0560780,0497020,0441550,039316

6,16,05,85,6

5,45,35,14,94,8

4,64,54,44,24,1

4,03,93,83,73,6

3,53,43,33,33,2

3,13,03,02,92,8

2,82,72,62,62,5

2,52,42,42,32,3

87,76261,92244,16831,833

23,17317,03012,621

9,45157,1273

5,42704,15223,20632,50191,9679

1,56231,24881,00000,811050,65930

0,539220,443450,366740,305130,25514

0,214570,181310,153600,130640,11155

0,0956060,0823470,0711800,0617790,053799

0,0469700,0411320,0361410,0318470,028153

7,16,96,76,5

6,36,15,95,85,6

5,55,35,14,94,7

4,64,54,34,24,1

4,03,93,73,63,5

3,43,43,33,23,1

3,03,02,92,82,8

2,72,62,62,52,4

88,46362,36844,46132,032

23,31217,13012,695

9,50687,1700

5,45954,17793,22632,51121,9707

1,56181,24651,00000,808680,65735

0,537540,442420,366050,303980,25373

0,213100,179820,152270,129480,11034

0,0943570,0812150,0701550,0608010,052869

0,0461090,0403360,0354080,0311700,027502

7,26,96,76,5

6,36,15,95,85,6

5,55,35,14,94,7

4,64,54,34,24,1

4,03,83,83,73,5

3,43,43,33,23,2

3,03,02,92,82,8

2,72,62,62,52,5

97,57867,65047,53833,831

24,35917,75313,067

9,72287,3006

5,53614,23323,26602,53921,9902

1,57091,24921,00000,805750,65326

0,532900,437150,360640,299080,24932

0,208860,175780,148630,126210,10763

0,0921590,0792250,0683560,0592470,051531

0,0449210,0392820,0343870,0301860,026650

7,57,27,06,7

6,56,36,05,85,6

5,55,35,15,04,8

4,74,54,44,34,1

4,03,93,83,73,6

3,53,43,33,23,1

3,13,02,92,82,8

2,72,72,62,52,5

124 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,0350860,0313770,0281190,0252500,022717

0,0204780,0184930,0167310,015162

2,32,22,22,12,1

2,12,02,02,0

0,0249550,0221580,0197220,0176070,015756

0,0141320,0127030,0114440,010331

2,42,42,32,22,2

2,22,12,12,1

0,0243290,0215630,0191570,0170740,015253

0,0136540,0122480,0110160,009927

2,42,42,32,32,2

2,22,12,12,1

0,0235940,0209310,0186160,0166120,014861

0,0133270,0119800,0107940,0097471

2,42,42,32,32,2

2,22,12,12,1

Number 1309 2001 2002 2003

T (°C) B25/100 = 3520 K B25/100 = 3920 K B25/100 = 3940 K B25/100 = 3980 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 125

Standardized R/T Characteristics

Number 2004 2005 2006 2007

T (°C) B25/100 = 4100 K B25/100 = 4600 K B25/100 = 5000 K B25/100 = 4830 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

99,55268,58247,96334,019

24,44817,78713,083

9,72517,3160

5,55454,25313,28362,55121,9973

1,57381,24881,00000,800800,64733

0,526280,432630,357080,294060,24342

0,202780,169640,142570,120280,10196

0,0867570,0738040,0629740,0542760,046943

0,0405760,0351740,0306370,0267600,023425

7,67,37,06,7

6,56,36,15,85,6

5,45,35,15,04,8

4,74,54,54,34,2

4,03,93,93,83,7

3,63,53,43,43,3

3,33,23,02,93,0

2,92,82,72,72,6

120,2285,48061,00443,712

31,45922,74616,49012,071

8,8455

6,54464,88523,67812,79442,1391

1,65071,28231,00000,783930,61822

0,490530,391160,313710,253380,20565

0,167620,137260,112790,0930530,077177

0,0642630,0536780,0449960,0379170,032063

0,0271610,0230790,0196800,0168310,014457

7,06,96,86,7

6,66,66,46,36,1

6,05,85,65,45,3

5,15,15,04,84,7

4,64,54,34,24,2

4,14,03,93,83,7

3,63,63,53,43,4

3,33,23,23,13,0

200,55131,02

87,17158,988

40,54528,27219,99714,29210,350

7,56145,53434,08603,03742,2760

1,71881,30741,00000,769880,59540

0,463410,363270,286360,226200,17974

0,143800,115600,0932960,0756230,061619

0,0504140,0415320,0343550,0285250,023774

0,0198520,0166320,0140160,0118500,010043

8,78,38,07,7

7,47,16,96,66,4

6,46,26,05,95,7

5,65,55,35,25,1

4,94,84,84,74,5

4,44,34,34,24,1

3,93,83,83,73,7

3,63,53,43,43,3

185,87123,23

82,88856,544

39,06127,32119,32613,82310,001

7,30675,34543,94842,95952,2358

1,70011,30211,00000,775600,60507

0,474980,375330,298230,237630,19041

0,153560,124420,101310,0828600,068004

0,0560320,0463790,0385330,0321690,026952

0,0226580,0191110,0162010,0137780,011742

8,48,17,87,6

7,37,16,86,66,4

6,46,25,95,75,6

5,45,45,25,04,9

4,84,74,64,54,4

4,34,24,14,03,9

3,83,83,73,63,5

3,43,33,33,23,2

126 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,0205590,0180970,0159690,0141290,012534

0,0111460,00993570,00887820,0079517

2,62,52,52,42,4

2,32,32,22,2

0,0124530,0107560,00931540,00809480,0070537

0,00616310,00539900,00474170,0041746

3,02,92,82,82,7

2,72,62,62,6

0,00853710,00727910,00622380,00533810,0045915

0,00396010,00342480,00296960,0025814

3,23,23,13,03,0

2,92,92,82,8

0,0100350,00858640,00736570,00672930,0054517

0,00472300,00410140,00357150,0031171

3,23,13,13,22,9

2,92,82,82,8

Number 2004 2005 2006 2007

T (°C) B25/100 = 4100 K B25/100 = 4600 K B25/100 = 5000 K B25/100 = 4830 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 127

Standardized R/T Characteristics

Number 2101 2901 2903 2904

T (°C) B25/100 = 4100 K B25/100 = 3760 K B25/100 = 4200 K B25/100 = 4300 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

104,0972,10150,57235,898

25,77418,70713,72010,163

7,5998

5,73514,36573,35112,59292,0216

1,58781,25581,00000,801450,64632

0,524330,427810,350990,289490,23998

0,199920,167330,140700,118820,10077

0,0858060,0733540,0629470,0542140,046858

0,0406380,0353610,0308660,0270270,023735

7,57,27,06,7

6,56,36,15,95,7

5,55,45,25,14,9

4,84,64,54,44,2

4,14,03,93,83,7

3,63,53,43,33,3

3,23,13,03,02,9

2,82,82,72,62,6

63,96946,17933,73824,927

18,61114,03310,679

8,19806,3123

4,90143,82103,00272,38011,9000

1,52571,23301,00000,816790,67166

0,555270,460950,384590,321840,27068

0,229070,194680,166070,142210,12218

0,105330,091230,0792840,0690620,060340

0,0528860,0464820,0409850,0362330,032101

6,76,46,26,0

5,85,65,45,35,2

5,14,94,74,64,5

4,34,34,14,03,9

3,83,83,73,63,5

3,33,23,13,13,0

2,92,82,82,72,7

2,62,52,52,52,4

120,0382,38057,24840,255

28,62720,57714,87610,880

8,0808

6,06124,56493,47082,66252,0599

1,60691,26311,00000,795930,63796

0,514670,418870,342720,280810,23141

0,192110,160270,134210,112880,095326

0,0808280,0689160,0589890,0507010,043735

0,0377780,0327360,0285130,0249120,021804

7,77,47,27,0

6,76,66,46,15,9

5,85,65,45,25,1

4,94,84,64,54,4

4,24,14,03,93,8

3,73,63,53,43,3

3,23,23,13,03,0

2,92,82,72,72,6

121,4684,43959,24341,938

29,94721,56715,64111,466

8,4510

6,29274,70773,55632,71192,0860

1,62041,26831,00000,794200,63268

0,507400,410260,333630,272430,22370

0,184590,153050,127550,106770,089928

0,0760680,0645240,0549410,0470030,040358

0,0347430,0300070,0260060,0226090,019720

7,47,27,16,9

6,76,66,36,26,0

5,95,75,55,35,1

5,04,84,74,64,5

4,34,24,14,03,9

3,83,73,63,53,4

3,33,33,23,13,0

3,02,92,82,82,7

128 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0

0,0209040,0184630,0163510,0145180,012923

0,0115320,0103150,00924800,0083098

2,52,52,42,42,3

2,32,22,22,1

0,0285100,0253730,0226330,0202310,018121

0,0162620,0146210,0131700,011883

2,42,32,32,32,2

2,22,12,12,1

0,0191360,0168480,0148720,0131650,011686

0,0104000,00927900,00829970,0074419

2,62,52,52,42,4

2,32,32,22,2

0,0172510,0151390,0133210,0117540,010399

0,00922380,00820170,00731040,0065312

2,62,62,52,52,4

2,42,32,32,3

Number 2101 2901 2903 2904

T (°C) B25/100 = 4100 K B25/100 = 3760 K B25/100 = 4200 K B25/100 = 4300 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 129

Standardized R/T Characteristics

Number 2910 3202 3204 3205

T (°C) B25/100 = 3950 K B25/100 = 3975 K B25/100 = 3250 K B25/100 = 3300 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

82,04058,01041,51030,040

21,97016,23012,100

9,10806,9140

5,29304,08403,17502,48601,9610

1,55701,24401,00000,808800,65800

0,538200,442600,365800,304000,25370

0,212800,179200,151600,128800,10990

0,0940600,0808400,0697400,0603600,052430

0,0456900,0399400,0350300,0308100,027180

7,16,86,66,4

6,26,05,85,65,4

5,35,15,04,84,7

4,64,44,34,24,1

4,03,93,83,73,6

3,53,43,33,23,1

3,13,02,92,92,8

2,72,72,62,52,5

81,25257,70441,43730,070

22,03916,30712,170

9,17106,9604

5,32964,10863,19302,49741,9680

1,56021,24541,00000,807740,65610

0,536040,440200,363450,301530,25140

0,210590,177180,149750,127080,10830

0,0926450,0795730,0685860,0593380,051506

0,0448690,0392070,0343740,0302240,026658

7,06,86,66,3

6,26,05,85,65,4

5,35,15,04,94,7

4,64,54,34,24,1

4,03,93,83,73,6

3,53,43,33,23,2

3,13,02,92,92,8

2,72,72,62,52,5

42,25331,77523,93718,124

13,82110,627

8,24536,45565,0997

4,06313,26322,64032,15081,7627

1,45251,20271,00000,843850,71266

0,603190,512160,436540,373670,32128

0,277500,240780,209850,183680,16142

0,142390,126060,111960,0997340,089081

0,0797570,0715610,0643270,0579180,052219

5,75,75,65,5

5,35,25,04,84,6

4,54,34,24,03,9

3,83,73,53,43,4

3,33,23,23,13,0

2,92,82,72,62,5

2,52,42,32,32,2

2,22,12,12,12,1

48,56935,50426,25219,625

14,82711,315

8,71916,78055,3194

4,20823,35572,69632,18221,7784

1,45881,20421,00000,835170,70132

0,592000,502210,428070,366540,31522

0,272220,236030,205430,179460,15733

0,138390,122130,108110,0959980,085486

0,0763370,0683500,0613580,0552180,049812

6,46,25,95,7

5,55,35,14,94,8

4,64,54,34,24,0

3,93,83,73,63,4

3,33,23,23,13,0

2,92,82,72,72,6

2,52,52,42,42,3

2,22,22,12,12,0

130 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0 185,0

190 195 200

0,0240400,0213200,0189600,0169100,015110

0,0135400,0121600,0109400,0098730,008925

0,0080850,0073390,006675

2,42,42,32,32,2

2,22,12,12,02,0

2,01,91,9

0,0235770,0209120,0185950,0165810,014823

0,0132850,0119350,0107490,0097026–

–––

2,42,42,32,32,2

2,22,12,12,1–

–––

0,0471360,0425870,0385060,0348370,031529

0,0285430,0258430,0233970,021180–

–––

2,02,02,02,02,0

2,01,91,91,9–

–––

0,0450390,0408150,0370670,0337330,030762

0,0281070,0257290,0235960,021678–

–––

2,02,01,91,91,8

1,81,81,71,7–

–––

Number 2910 3202 3204 3205

T (°C) B25/100 = 3950 K B25/100 = 3975 K B25/100 = 3250 K B25/100 = 3300 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 131

Standardized R/T Characteristics

Number 3206 3207 4001 4002

T (°C) B25/100 = 3450 K B25/100 = 3100 K B25/100 = 3950 K B25/100 = 4250 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

59,14742,65131,08822,903

17,05212,827

9,74617,74705,7897

4,52343,56432,83162,26711,8287

1,48551,21491,00000,828160,68985

0,577840,486580,411810,350200,29918

0,256720,221200,191360,166180,14484

0,126680,111170,0978700,0864280,076549

0,0679920,0605550,0540730,0484070,043439

6,76,46,26,0

5,85,65,45,25,0

4,94,74,54,44,2

4,14,03,83,73,6

3,53,43,33,23,1

3,02,92,92,82,7

2,72,62,52,52,4

2,32,32,22,22,1

36,78127,55920,85815,942

12,2999,57537,51945,95404,7520

3,82143,09542,52472,07281,7125

1,42331,18981,00000,844890,71742

0,612080,524600,451580,390360,33879

0,295150,258090,226470,199400,17614

0,156080,138710,123640,110510,099035

0,0889820,0801470,0723620,0654840,059391

5,95,75,55,3

5,14,94,84,64,4

4,34,14,03,93,8

3,63,53,43,33,2

3,13,03,02,92,8

2,72,62,62,52,4

2,42,32,32,22,2

2,12,12,02,01,9

88,05261,65043,72731,395

22,80216,74212,367

9,23537,0079

5,36544,12603,20002,49861,9662

1,55961,24571,00000,803550,65346

0,534560,439660,363570,301830,25189

0,211360,178190,150890,128330,10948

0,0937480,0807640,0698420,0604550,052498

0,0457400,0399720,0349840,0307000,027100

7,37,06,86,5

6,36,26,05,65,4

5,45,25,04,94,7

4,64,54,44,24,1

4,03,93,83,73,6

3,53,43,33,23,1

3,02,92,92,92,8

2,72,72,62,52,5

113,4177,69554,00838,056

27,15919,61514,36510,629

7,9249

5,96414,50983,44052,64342,0475

1,60051,26001,00000,795110,63773

0,514540,417640,340800,279700,23063

0,190820,158570,132420,111040,093483

0,0790040,0669800,0569820,0487540,041857

0,0360190,0310900,0270040,0235280,020474

7,77,47,16,9

6,66,46,26,05,8

5,65,55,35,15,0

4,94,74,64,54,4

4,24,14,03,93,8

3,73,63,63,53,4

3,33,23,23,13,0

3,02,92,82,82,7

132 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0 185,0

190,0 195,0 200,0

0,0390720,0352330,0318220,0288090,026135

0,0237540,0216310,0197340,018034–

–––

2,12,12,02,01,9

1,91,91,81,8–

–––

0,0539810,0491660,0448700,0410280,037586

0,0344940,0317130,0292050,026940–

–––

1,91,81,81,81,7

1,71,71,61,6–

–––

0,0239860,0212300,0188350,0167870,015002

0,0134430,0120770,0108770,0098217–

–––

2,52,42,32,32,2

2,22,12,12,1–

–––

0,0178630,0156430,0137320,0120950,010686

0,00946830,00841430,00749940,00670340,0059662

0,00534350,00479580,0043128

2,72,62,62,52,5

2,42,42,32,32,2

2,22,12,1

Number 3206 3207 4001 4002

T (°C) B25/100 = 3450 K B25/100 = 3100 K B25/100 = 3950 K B25/100 = 4250 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 133

Standardized R/T Characteristics

Number 4003 4005 4901 8001

T (°C) B25/100 = 4450 K B25/100 = 3950 K B25/100 = 3950 K B25/100 = 4284 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

103,8173,70752,72337,988

27,56520,14214,80110,976

8,1744

6,14074,63313,52432,69952,0831

1,61891,26661,00000,783510,62372

0,499370,402180,325570,264020,21527

0,176930,146160,120970,100530,083761

0,0700390,0589370,0497770,0421460,035803

0,0305040,0260670,0223320,0191860,016515

6,86,76,66,5

6,46,26,15,95,8

5,75,55,45,35,1

5,04,94,74,64,5

4,44,34,24,14,0

3,93,83,73,73,6

3,53,43,43,33,2

3,23,13,03,02,9

88,67462,08244,02531,598

22,93916,83412,4819,34377,0603

5,38234,13783,20682,50451,9704

1,56131,24551,00000,807930,65667

0,536800,441250,364630,302870,25280

0,212020,178620,151160,128450,10961

0,0938990,0807470,0696940,0603670,052469

0,0457550,0400290,0351280,0309200,027295

7,37,06,86,5

6,36,15,95,75,5

5,35,25,04,94,7

4,64,54,34,24,1

4,03,93,83,73,6

3,53,43,33,23,1

3,13,02,92,82,8

2,72,62,62,52,5

87,89061,75943,93431,618

23,00616,91512,555

9,41437,1172

5,43084,15053,20142,50111,9691

1,56181,24741,00000,808000,65690

0,537200,442350,366100,303930,25359

0,212830,179420,151830,129010,11002

0,0941790,0808960,0697220,0603970,052493

0,0457330,0399630,0350590,0308440,027192

7,16,96,76,5

6,36,15,95,75,5

5,45,25,04,94,7

4,64,54,34,24,1

4,03,93,83,73,6

3,53,43,33,23,1

3,13,02,92,92,8

2,72,72,62,62,5

–––– 40,70

28,9120,7815,0611,03

8,175

6,1194,6143,5102,6902,078

1,6171,2671,0000,79420,6347

0,51050,41290,33590,27470,2259

0,18670,15500,12930,10840,09122

0,077080,065400,055690,047640,04090

0,035230,030450,026400,022970,02004

–––7,0

6,76,66,36,15,9

5,85,65,45,35,1

5,04,84,74,64,4

4,34,24,14,03,9

3,83,73,63,53,4

3,33,33,23,13,0

3,02,92,62,82,7

134 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0 185,0

190,0 195,0 200,0 205,0 210,0

215,0 220,0 225,0 230,0 235,0

240,0 245,0 250,0 255,0 260,0

265,0 270,0 275,0 280,0 285,0

290,0 295,0 300,0 305,0 310,0

315,0 320,0 325,0 330,0 335,0

340,0 345,0 350,0

0,0142530,0123670,0107580,00939330,0082272

0,00722700,00636610,00562280,00497900,0043780

0,00387910,00344410,0030639––

–––––

–––––

–––––

–––––

–––––

–––

2,92,82,82,72,7

2,62,62,52,52,4

2,42,42,3––

–––––

–––––

–––––

–––––

–––––

–––

0,0241630,0214480,0190890,0170320,015235

0,0136600,0122770,0110580,00998240,0090304

0,00818610,00743550,00676690,00617000,0056361

0,00515760,00472780,00434120,00399270,0036780

0,00339340,00313550,00290150,00268880,0024951

0,00231850,00215720,00200980,00187470,0017509

0,00163720,00153260,00143640,00134770,0012658

0,00119010,00112010,00105530,000995210,00093943

0,000887600,000839390,00079450

2,42,42,32,32,2

2,22,12,12,02,0

1,91,91,91,81,8

1,81,71,71,71,6

1,61,61,51,51,5

1,51,41,41,41,4

1,31,31,31,31,2

1,21,21,21,21,1

1,11,11,1

0,0240340,0212850,0188950,0168130,014991

0,0133940,0119910,0107540,00966290,0087387

0,00789330,00714280,0064752––

–––––

–––––

–––––

–––––

–––––

–––

2,42,42,42,32,3

2,22,22,12,12,1

2,02,01,9––

–––––

–––––

–––––

–––––

–––––

–––

0,017540,015400,013550,011960,01059

0,0093980,0083590,0074530,0066590,005966

0,0053570,0048190,0043440,0039250,003553

0,0032220,0029270,0026650,0024300,002219

0,0020300,0018610,0017080,0015700,001445

0,0013320,0012300,0011380,0010530,0009764

0,00090650,00084250,0007840––

–––––

–––

2,62,62,52,52,4

2,42,32,32,22,2

2,12,12,02,02,0

1,91,91,91,81,8

1,81,71,71,71,6

1,61,61,61,51,5

1,51,51,5––

–––––

–––

Number 4003 4005 4901 8001

T (°C) B25/100 = 4450 K B25/100 = 3950 K B25/100 = 3950 K B25/100 = 4284 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 135

Standardized R/T Characteristics

Number 8010 8016 8018

T (°C) B25/100 = 3474 K B25/100 = 3988 K B25/100 = 3964 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

– 55,0– 50,0– 45,0– 40,0

– 35,0– 30,0– 25,0– 20,0– 15,0

– 10,0– 5,0– 0,0– 5,0– 10,0

– 15,0– 20,0– 25,0– 30,0– 35,0

– 40,0– 45,0– 50,0– 55,0– 60,0

– 65,0– 70,0– 75,0– 80,0– 85,0

– 90,0– 95,0 100,0 105,0 110,0

115,0 120,0 125,0 130,0 135,0

58,2542,1230,7022,66

16,8912,73

9,6837,4405,766

4,5103,5552,8252,2701,836

1,4891,2161,0000,82760,6869

0,57360,48170,40670,34550,2949

0,25280,21770,18820,16340,1424

0,12450,10920,096140,084910,07523

0,066850,059580,053250,047720,04288

6,66,56,26,0

5,85,65,45,25,0

4,84,74,54,34,3

4,14,03,83,83,7

3,53,43,33,23,1

3,03,02,92,82,7

2,72,62,52,52,4

2,32,32,22,22,1

96,3067,0147,1733,65

24,2617,7013,04

9,7077,293

5,5334,2323,2652,5391,990

1,5711,2491,0000,80570,6531

0,53270,43690,36030,29860,2488

0,20830,17520,14810,12580,1072

0,091770,078850,068000,058860,05112

0,044540,038930,034170,030090,02654

7,47,26,96,7

6,46,26,05,85,6

5,55,35,15,04,8

4,74,54,44,34,1

4,03,93,83,73,6

3,53,43,33,23,2

3,13,02,92,92,8

2,72,62,62,52,5

–––30,24

22,1016,3212,17

9,1536,945

5,3134,0973,1832,4911,963

1,5571,2441,0000,80830,6572

0,53730,44180,36500,30300,2527

0,21180,17830,15080,12800,1091

0,093300,080160,069100,059740,05183

0,045120,039400,034500,030320,02672

–––6,3

6,15,95,85,65,4

5,25,14,94,84,7

4,64,44,34,24,1

4,03,93,73,73,6

3,53,43,33,23,2

3,13,02,92,92,8

2,82,72,62,62,5

136 Siemens Matsushita Components

Standardized R/T Characteristics

140,0 145,0 150,0 155,0 160,0

165,0 170,0 175,0 180,0 185,0

190,0 195,0 200,0 205,0 210,0

215,0 220,0 225,0 230,0 235,0

240,0 245,0 250,0 255,0 260,0

265,0 270,0 275,0 280,0 285,0

290,0 295,0 300,0

0,038620,034870,031550,028620,02602

0,023710,021640,019790,018140,01665

0,015320,014110,013020,012040,01115

0,010340,0096020,0089310,0083190,007759

0,0072460,0067760,0063450,0059480,005583

0,0052470,0049360,0046490,0043830,004137

0,0039090,0036960,003499

2,12,02,01,91,9

1,81,81,81,71,7

1,71,61,61,61,5

1,51,51,41,41,4

1,41,31,31,31,3

1,21,21,21,21,1

1,11,11,1

0,023480,020830,018530,016530,01479

0,013260,011910,010730,0096810,008758

0,0079380,0072090,0065590,0059810,005463

0,0049980,0045810,0042060,0038680,003563

0,0032860,0030360,0028090,0026030,002415

0,0022440,0020880,0019450,0018140,001694

0,0015840,0014830,001390

2,42,42,32,32,2

2,22,12,12,02,0

1,91,91,91,81,8

1,81,71,71,71,6

1,61,61,51,51,5

1,51,41,41,41,4

1,31,31,3

0,023610,020910,01857––

–––––

–––––

–––––

–––––

–––––

–––

2,52,42,4––

–––––

–––––

–––––

–––––

–––––

–––

Number 8010 8016 8018

T (°C) B25/100 = 3474 K B25/100 = 3988 K B25/100 = 3964 K

RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K)

Siemens Matsushita Components 137

SCS – dependable, fast and competent

Ceramic chip capacitors from stock

Siemens Matsushita ComponentsCOMPONENTS

+S M

Small in size, big in performance

Our selection of capacitors rangesfrom standard sizes down to a mini-ature highlight in 0402 style. Mea-suring only 1 x 0.5 x 0.5 mm, it’s anideal solution for applications wherespace is tight, like in handies andcardiac pacemakers. At the sametime all our chips can boast excellentsoldering characteristics, with specialterminal variants for conductive ad-hesion. And we also thought aboutthe right packing for automatic place-ment. You get all sizes down to 1206in bulk case for example, plus voltageratings from 16 to 500 V. By the way,our leaded models have CECCapproval of course, in fact theywere certified more than tenyears ago.

More in the new short form catalog!

Mo

un

ting

Instru

ction

s

Mounting Instructions

1 Soldering

1.1 Leaded NTC thermistors

Leaded thermistors comply with the solderability requirements specified by CECC.

When soldering, care must be taken that the NTC thermistors are not damaged by excessive heat.The following maximum temperatures, maximum time spans and minimum distances have to beobserved:

Dip soldering Iron soldering

Bath temperature max. 260 °C max. 360 °CSoldering time max. 4 s max. 2 sDistance from thermistor min. 6 mm min. 6 mm

Under more severe soldering conditions the resistance may change.

1.2 Leadless NTC thermistors

In case of NTC thermistors without leads, soldering is restricted to devices which are provided witha solderable metallization. The temperature shock caused by the application of hot solder may pro-duce fine cracks in the ceramic, resulting in changes in resistance.

To prevent leaching of the metallization, solder with silver additives or with a low tin content shouldbe used. In addition, soldering methods should be employed which permit short soldering times.

1.3 SMD NTC thermistors

The notes on soldering leadless thermistors also apply to the SMD versions (see IEC 68-2-58).

1.3.1 Wettability test in accordance with IEC 68-2-58

Preconditioning: Immersion into flux F-SW 32.Evaluation criterion: Wetting of soldering areas ≥ 95 %.

Termination Solder Bath temperature (°C) Dwell time (s)

NTC AgPd SnPb60/40

215 ± 3 4

Siemens Matsushita Components 139

Mounting Instructions

1.3.2 Soldering heat resistance test in accordance with IEC 68-2-58

Preconditioning: Immersion into flux F-SW 32.Evaluation criterion: Leaching of side edges ≤ 1/3.

1.3.3 Recommended soldering temperature profiles

Vapor phase soldering

Temperature/time diagram for vapor phase soldering, in-line system with preheating. The temper-atures stated refer to the component terminals.

Termination Solder Bath temperature (°C) Dwell time (s)

NTC AgPd SnPb60/40

260 ± 5 10

140 Siemens Matsushita Components

Mounting Instructions

Wave soldering

Temperature on the component terminals during dual wave soldering

Infrared soldering

Temperature on the component terminals during infrared soldering

Siemens Matsushita Components 141

Mounting Instructions

1.3.4 Notes

Iron soldering should be avoided, hot air methods are recommended for repair purposes.

2 Conductive adhesion

An alternative to soldering is the gluing of thermistors with conductive adhesives. The benefit of thismethod is that it involves no thermal stress. The adhesives used must be chemically inert.

3 Clamp contacting

Pressure contacting by means of clamps is particularly suitable for applications involving frequentswitching and high turn-on powers.

4 Robustness of terminations

The leads meet the requirements of IEC 68-2-21. They may not be bent closer than 4 mm from thesolder joint on the thermistor body or from the point at which they leave the feed-throughs. Duringbending, any mechanical stress at the outlet of the leads must be removed. The bending radiusshould be at least 0,75 mm.

Tensile strength: Test Ua1:Leads ∅ ≤ 0,5 mm = 5 N

∅ > 0,5 mm = 10 N

Bending strength: Test Ub:Two 90°-bends in opposite directions at a weight of 0,25 kg.

Torsional strength: Test Uc: severity 2The lead is bent by 90° at a distance of 6 to 6,5 mm from the thermistor body.The bending radius of the leads should be approx. 0,75 mm. Two torsions of180° each (severity 2).

When subjecting leads to mechanical stress, the following should be observed:

Tensile stress on leads

During mounting and operation tensile forces on the leads are to be avoided.

Bending of leads

Bending of the leads directly on the thermistor body is not permissible.

A lead may be bent at a minimum distance of twice the wire’s diameter + 2 mm from the solder jointon the thermistor body. During bending the wire must be mechanically relieved at its outlet. Thebending radius should be at least 0,75 mm.

Twisting of leads

The twisting (torsion) by 180° of a lead bent by 90° is permissible at 6 mm from the bottom of thethermistor body.

142 Siemens Matsushita Components

Mounting Instructions

5 Sealing and potting

When thermistors are sealed or potted, there must be no mechanical stress through differing ther-mal expansion in the curing process and during later operation. In the curing process the upper cat-egory temperature of the thermistor must not be exceeded. It is also necessary to ensure that thepotting compound is chemically neutral.

6 Cleaning

If cleaning is necessary, mild cleaning agents such as freon, trichloroethane and perchloroethyleneare recommended. Ultrasonic cleaning methods are permissible.

7 Storage

In order to maintain their solderability, thermistors must be stored in a non-corrosive atmosphere.Humidity, temperature and container materials are critical factors.

If possible, the components should be left in the original packing. Touching the metallization of un-soldered thermistors may change their soldering properties.

Siemens Matsushita Components 143

Siemens Matsushita ComponentsCOMPONENTS

+S M

Ferrite cores and accessories

In place,in shape

With more than 4000 different ferrite cores we have the solutionto tackle every application. Straightfrom SCS stock we can supply you 12 core shopes in as many as26 materials, plus the matchingaccessories:

þ RM for transformers with high packing density

þ PM for power transformers þ P for transformers with

extremely low leakage field þ E cores

ETD, EC, ER with round center leg for compact transformers,EFD with flattened center leg for ultra flat transformers,wide range of standard E cores

þ U for storage chokes, split diode and line transformers

þ Ring for pulse, broadband and balun transformers plus chokes

þ Double-aperture for broadbandtransformers up into the GHz region

SCS – dependable, fast and competent

SBS-Layout Ferrite+Zu. 01.09.1996 17:24 Uhr Seite 2

Siemens Matsushita C

1 Manufacturing

Inco

Pr

G

M

Groupin

S

Coating,

Final

Conf

W

Tes

ting

and

final

insp

ectio

nP

repr

oduc

tion

Ass

embl

y

Manufac

Quality

process and quality assurance

Quality gate

ming goods Inspection of raw materials and parts

Milling Specific surface, grain size

Weighing

Quality gate

Quality gate

e-sintering Powder release (vis., mech., el. inspection)

ranulation Humidity, grain size distribution

Pressing Weight, dimensions

Sintering Sinter release (vis., mech., el. inspection)

etallization Resistance, layer thickness

g by resistance Resistance, B value

oldering Visual inspection, pull-off strength

assembly, finish Visual inspection, dimensions

measurement Resistance

turing process Quality assurance

Quality

omponents 145

Quality gate

ormance test Sampling inspection (mech., el. parameters)

Packing Identity

arehouse

Dispatch

Quality

2 General

S+M has set up extensive quality assurance systems in order to meet the stringent technical de-mands of an open world market. These systems follow the CECC ISO-9000 to ISO-9004 standards.Our QA system received the ISO 9001 certificate in September 1991.

3 Sequence of quality assurance measures

The quality department tested and released the thermistors described in this data book on the basisof the following criteria: compliance with type specifications, process capability of production equip-ment as well as accuracy of measuring and test methods and equipment.

To ensure a constantly high quality level, the following tests are carried out:

3.1 Incoming inspection

The parts and materials required for production are checked for dimensional accuracy and materialproperties in a prescribed sequence.

3.2 Process assurance

To achieve the objective of eliminating defects as efficiently as possible and at their very source,quite different measures are taken. Modern quality tools such as FMEA (Failure Mode and EffectAnalysis) are used already during the starting phase: A risk-priority figure is assigned to potentialdefects according to their significance as well as to the probability of occurrence and detection. Incase of high risk-priority figures, remedial measures are taken from the beginning. During produc-tion all essential processes are subject to statistical process control (SPC).

3.3 Product assurance

Each manufacturing stage is followed by a socalled “quality control gate”, i.e. the product is onlyreleased for the next stage after passing a corresponding test. The test results are constantly mon-itored and evaluated and are then used to assess the quality of the manufacturing process itself(refer to 3.2).

3.4 Final inspection

Final measurements and conformance tests ensure that delivery quality is kept constant within de-fined tolerances.

4 Delivery quality

The term delivery quality designates the conformance with agreed data at the time of delivery.

146 Siemens Matsushita Components

Quality

5 Sampling inspection

The customer may carry out incoming inspections which are subject to standardized sampling in-spection plans specifying the acceptance or rejection of a delivery lot in conjunction with agreedAQL values (AQL = acceptable quality level).

The scope and the maximum permissible number of defects of a sampling inspection are specifiedin IEC 410 (identical with MIL-STD 105 D and DIN ISO 2859-1), single sampling plan for normalinspection, inspection level II. The sampling instructions of this standard are such that a deliveredlot will be accepted with a high degree of probability (greater than 90 %), if the percentage of defec-tives does not exceed the specified AQL level.

Generally, the average defect percentage of our deliveries lies clearly below the AQL value. This isensured by appropriate quality assurance measures in the manufacturing plants and substantiatedby the final inspections.

6 Classification of defects

A component is considered defective if it does not comply with the specifications stated in the datasheets or in an agreed delivery specification. Defects which generally exclude the functional use ofthe component (inoperatives) are classified separately from less significant defects.

Inoperatives of thermistors are:

– Short circuit or open circuit– Component, case, terminals or encapsulation broken– Incorrect marking– Mixing of different types

Other defects are:

– Electrical defects (maximum ratings are exceeded)– Mechanical defects, e. g. incorrect dimensions, damaged housings, illegible marking, twisted

leads

7 AQL values

The following AQL values apply to the quoted defects

– for inoperatives (electrical and mechanical) 0,065– for the total number of electrical defectives 0,250– for the total number of mechanical defectives 0,250

The values for the total number of defectives include related inoperatives.

Siemens Matsushita Components 147

Quality

8 Incoming inspection by the customer

The quality of our products is ensured by the QA measures assigned to the individual productionstages as shown on page 145. Thus the customer can do away with cost-intensive incoming inspec-tions. If a customer wishes nevertheless to carry out an incoming inspection, we recommend thatthe inspection plan shown below is used. The inspection methods employed must in this case beagreed upon between customer and supplier. In many cases a stricter inspection method is agreedupon to the effect that the sample size corresponds to the plan, the required inspection, however,demands “zero defects”, i. e. a lot will only be accepted if the samples are free from defects. Re-gardless of that, all sample tests carried out at S+M are subject to these stricter test conditions (zerodefects).

The following information is required for the assessment of possible claims: test circuit, sample size,number of defectives found, sample defectives and packing slip, delivery note number, lot numberand/or label.

Sampling plan for normal inspection – inspection level II

in accordance with DIN 40 080 (contents correspond to MIL Std 105 LD and IEC 410)

Columns 2 to 5: Left figure = sample sizeRight figure = permissible defects

Additional condition:

As an acceptance number of 0 and a rejection number of 1 provides only limited information on theactual AQL, the next higher sample size should be taken.

Samplinginspection

planN = Lot size

AQL0,065

AQL0,100

AQL0,250

AQL0,400

2 … 50 N N N N or 32-0

51 … 90 N N 50-0 32-0

91 … 150 N N or 125-0 50-0 32-0

151 … 280 N or 200-0 125-0 50-0 32-0

281 … 500 200-0 125-0 50-0 32-0

501 … 1 200 200-0 125-0 50-0 125-1

1 201 … 3 200 200-0 125-0 200-1 125-1

3 201 … 10 000 200-0 125-0 200-1 200-2

10 001 … 35 000 200-0 500-1 315-2 315-3

35 001 … 150 000 800-1 500-1 500-3 500-5

150 001 … 500 000 800-1 800-2 800-5 800-7

> 500 000 1250-2 1250-3 1250-7 1250-10

148 Siemens Matsushita Components

Quality

9 Reliability

We conduct a large variety of endurance trials and environmental tests to assure the reliability ofPTC thermistors. These tests derive from the extremes of expected application conditions, with ex-tra tightening of the conditions so that significant results can be obtained within a reasonableamount of time.

The reliability testing programs of S + M are based on the test plans of relevant CECC standardsfor assessing the quality of electronic components. Environmental tests are conducted according toIEC 68-2 (Electrical Engineering, Basic Environmental Testing Procedures).

S + M performs reliability tests both in qualifying new component families as well as for periodicrequalification. Reliability figures for various component series can be found in the data sheets.

10 Identification and traceability

On the packaging of all shipped thermistors you will find a bar code label stating type, part number,quantity, date of manufacture and lot number. These details are necessary for speedy and informa-tive handling of returns.

This systematic and unmistakable form of identification means that each component can be tracedto a certain production lot. This in turn permits retracing back through the entire fabrication processas far as raw materials purchasing.

Example:

Siemens Matsushita Components 149

Quality

11 Supplementary information

The issuing of quality data – which always relate to a large number of components – is no assuranceof characteristics in a legal sense. But an agreement on such data does not exclude the customer’sright to claim replacement of individual defective NTC thermistors within the terms of delivery. Wecannot assume any further liability, especially for the consequences of component failure.

You should also remember that figures for failure rate refer to an average fabrication situation andare therefore to be understood as mean values (statistical expectations) for a large number of de-livery lots of homogeneous NTC thermistors. They are based on application experience as well ason data derived from preceding inspection under normal or – for the purpose of acceleration – tight-ened conditions.

150 Siemens Matsushita Components

Siemens Matsushita Components 151

Siemens Matsushita Components GmbH & Co. KG (S + M Components for short) is responsible forprotection of the environment in the development, fabrication and use of its products for the intend-ed purpose. S + M Components is very thorough in fulfilling the resulting obligations. Over andabove the legal prescriptions, our guiding principle here is the corporation’s responsibility towardsman and environment.

Responsibility for safety in working with materials that have a potential environmental impact is inthe hands of the various managers. This involves, in the first place, instructing and informing thestaff concerned. A specially trained environmental protection supervisor watches over adherenceto regulations, reports on the introduction of processes within an environmental context and on de-cisions relating to investment (e.g. he checks that all environmentally associated requirements likefilters and sumps have been considered). But advising and informing staff take on the highest pri-ority; this is the only way to ensure that all protective measures are known and observed.

All chemicals employed in development and fabrication are examined for environmental compati-bility or harmful effects before their use on the basis of DIN safety specifications. Alternatives aredevised if risks emerge. The result of this procedure is that today all CFCs as well as all highly toxicmaterials have been eliminated entirely from the fabrication process.

Dust and vapor generated during fabrication are filtered away for disposal. The emission figures ofthe filters are constantly examined; considerable efforts are undertaken to ensure that these figuresare well below the legally prescribed limits. The same applies to the water used in a plant. This beingcleansed in a special waste-water treatment process. Water consumption has been reduced sub-stantially in recent years through the use of cooling water circuits and water recycling.

Waste produced in the fabrication of components is sorted and collected on the spot and recycledby state-of-the-art methods.

The packaging material used for our components can be fully recycled.

All NTC thermistors can be disposed of on a dump for industrial waste that is similar to householdrefuse without any special precautions.

Of course, we are still by no means satisfied with what we have already achieved, and more stepsare due to follow in the interest of further reducing and ultimately eliminating entirely all environmen-tal impact created in the development and fabrication of our components.

En

viron

men

tal Pro

tectio

n M

easu

res

Environmental Protection Measures

New lab assortments in filmcapacitors

SCS – dependable, fast and competent

Five at a stroke

To save you the trouble of inquiringfor individual ratings to put into yourdesign, there are now five practicalsets of film capacitors:

þ Lead spacing 5: 525 types, 50 to 400 V, 1 nF to 3.3 µF

þ SilverCaps: the lowest-cost models, low in volume, 63 to 400 V, 1 nF to 10 µF

þ MKPs in wound technology: forRF applications, 250 to 2000 V, 1.5 nF to 0.68 µF

þ MKPs in stacked-film tech-nology: 300 types, 160 to 1000 V, 1.5 nF to 1 µF

þ Interference suppression: 150 types with a wide choice of ratings for different applications – X2 with small dimensions, Safe-X for maximum security against active flammability (X2) and Y for suppressing common-mode interference (Y2)

Siemens Matsushita ComponentsCOMPONENTS

+S M

SBS-15.4 01.09.1996 17:58 Uhr Seite 2

Siemens Matsushita Components 153

1 Reliability data

For most measuring NTCs and in particular for those featuring high measuring accuracy, reliabilitydata are given in the data sheets. These data provide information on the deviation of rated resis-tance under high thermal, electrical or mechanical stress.

These resistance tolerances are in the range of a few percent and have therefore no relevance forcoarsely tolerated NTC thermistors.

2 Operating temperature range / ambient temperatures

Thermistors are assigned to climatic categories according to the climatic conditions under whichthey have been tested.

The IEC climatic category is specified for all NTC thermistors in the data sheets. In accordance withIEC 68-1 (Appendix A) the climatic category is made up of three sets of digits, which are decodedas shown in the following example:

Example:

Climatic category 55/085/56

Test C: Damp heat (duration of test)56 days(in accordance with IEC 68-2-3)

Test B: Dry heat (upper category temperature)+ 85 °C(in accordance with IEC 68-2-2)

Test A: Cold (lower category temperature)– 55 °C(in accordance with IEC 68-2-1)

Clim

atic Co

nd

ition

s

Climatic Conditions

SCS – dependable, fast and competent

A whole lot of ring core chokes

Siemens Matsushita ComponentsCOMPONENTS

+S M

Chokes to your choice

You urgently need particular ringcore chokes? That’s no problem, wehave 200,000 pieces in stock anddeliver reliably through SCS. Ourautomated production guarantees

the best of reliability too. It turns outchokes in different versions: flat andupright, with current rated from 0.4to 16 A. UL and VDE approved, andcomplying with the latest EMC stan-dards of course.

Tap

ing and

Packin

g

Taping and Packing

Many of the components presented in this data book are suitable for processing on automaticinsertion or placement machines. These thermistors can be supplied on tape for easy handling byautomatic systems. The individual modes of taping and packing will be described in the following.

1 Taping of SMD thermistors (in accordance with IEC 286-3)

1) ≤ 0,2 mm over 10 sprocket holes

Dimension(mm)

Size(8 mm tape)

Tolerance

0805 1206

A0 × B0 The rated dimensions of the component compartment have been derived from the relevant component specification and are chosen such that the components cannot

change their orientation within the tape.K0

T2

D0D1

1,501,00

+ 0,10 / – 0min.

P0P2P1

4,002,004,00

± 0,101)± 0,05± 0,10

W 8,00 ± 0,30

E 1,75 ± 0,10

F 3,50 ± 0,05

G 0,75 min.

Direction of unreeling

Section A-A

Siemens Matsushita Components 155

Taping and Packing

Reel packing

8-mm tape

Dimension 180-mm reel

AW1W2

180 – 2/+ 08,4 + 1,5/– 014,4 max.

Dire

ctio

n of

unr

eelin

g

Tape

Reel

156 Siemens Matsushita Components

Taping and Packing

2 Taping of radial-lead NTC thermistors

Dimensions and tolerances (taping in accordance with IEC 286-2)

*) Depends on s

Dimen-sion(mm)

Leadspacing2,54 mm

Leadspacing5,08 mm

Tolerance oflead spacing2,54/5,08 mm

Leadspacing7,5 mm

Tolerance oflead spacing

7,5 mm

Remarks

b 11,0 11,5 max. 21 max.

s 5,0 6,0 max. 7 max.

d 0,5/0,6 0,5/0,6 ± 0,05 0,8/1,0 ± 0,05

P0 12,7 12,7 ± 0,2 12,7 ± 0,3 ± 1 mm/20 sprocket holes

P1 5,08 3,81 ± 0,7 8,95 ± 0,8

F 2,54 5,08 + 0,6/– 0,1 7,5 ± 0,8

∆h 0 0 ± 2,0 0 *) measured at topof component body

∆p 0 0 ± 1,3 0 ± 1,3

W 18,0 18,0 ± 0,5 18,0 ± 0,5

W0 5,5 5,5 min. 5,5 min. peel-off force ≥ 5 N

W1 9,0 9,0 ± 0,5 9,0 + 0,75/– 0,5

W2 2,0 2,0 max. 3,0 max.

H 18,0 18,0 + 2,0/– 0 18,0 + 2,0/– 0

H0 16,0 16,0 ± 0,5 16,0 ± 0,5

H1 32,2 32,2 max. 45,0 max.

D0 4,0 4,0 ± 0,2 4,0 ± 0,2

t 0,9 0,9 max. 0,9 max. without wires

L 11,0 11,0 max. 11,0 max.

L1 4,0 4,0 max. 4,0 max.

Section A-BDirection of unreeling

Siemens Matsushita Components 157

Taping and Packing

Modes of packing

AMMO packing

Reel packing

Number of pieces: 1000 … 2000

Number of pieces: 1000 … 2000

158 Siemens Matsushita Components

Taping and Packing

Cassette packing

Bulk packing

The components are packed in cardboard boxes, the size of which depends on the order quantity.

Number of pieces: 1000 … 2000

Siemens Matsushita Components 159

Taping and Packing

3 Taping of M 87 NTC thermistors

Packing

Reel packing of axial-lead NTC thermistors (with separating paper between tape layers)

4 Packing codes

The last two digits of the complete ordering code state the packing mode:

40 Bulk50 Radial leads, kinked Tape Cassette packing51 Radial leads, kinked Tape Reel packing 52 Radial leads, straight Tape Cassette packing53 Radial leads, straight Tape Reel packing54 Radial leads, kinked Tape AMMO packing55 Radial leads, straight Tape AMMO packing62 SMDs Tape Reel packing70 Radial leads Bulk Cardboard strips(If no packing code is indicated, this corresponds to 70)

Example: B57164-K102-J UntapedB57164-K102-J52 Taped

Tape length as required

LabelAlternativedesign

160 Siemens Matsushita Components

Sym

bo

ls and

Term

s

Symbols and Terms

A AreaB B valueB25/100 B value determined by resistance measurement at 25 °C and 100 °CCT Test capacitanceCth Heat capacityI CurrentImax Maximum current within stated temperature rangeIN Rated currentIrms Root-mean-square value of currentk Parameter for calculating the NTC resistance as a function of current

(specified for inrush current limiters)N Number (integer)n Parameter for calculating the NTC resistance as a function of current

(specified for inrush current limiters)P PowerP25 Maximum power at 25 °CPel Electrical powerPmax Maximum power within stated temperature range∆RB/RB Resistance tolerance caused by spread of B valueRN Rated resistance∆RN/RN Resistance toleranceRP Parallel resistanceRS Series resistanceRT Resistance at temperature T (e.g. R25 = resistance at 25 °C)RV Load resistanceT Temperaturet TimeTA Ambient temperatureta Thermal threshold timeTN Rated temperaturetS Switching timeTsurf Surface temperatureV VoltageVis Insulation test voltageVL Load voltageVMeas Measuring voltageVN Rated voltageVNTC Voltage drop across an NTC thermistorVop Operating voltageVp Pulse strengthVrms Root-mean-square value of voltageα Temperature coefficient∆ Tolerance, change

Siemens Matsushita Components 161

Symbols and Terms

δ th Dissipation factorτa Thermal time constantτc Thermal cooling time constantλ Failure rate

Abbreviations / Notes

Surface-mount devices

* To be replaced by a number in ordering codes, type designations etc.

+ To be replaced by a letter

All dimensions are given in mm.

The commas used in numerical values denote decimal points.

162 Siemens Matsushita Components

Subject Index

Su

bjec

t Ind

ex

A

ageing 31

B

B value 24brightness control 34bypassing 38

C

ceramics 23clamp contacting 142cleaning 143conductive adhesion 142

D

defects 147derating curve 38dissipation factor dth 30

F

fixed resistors 36flow rate 30, 42fuses 35

G

gas analysis 30

H

heat capacity Cth 30

I

inrush current limiting 35

L

liquid level sensors 41load derating 38load voltage 39

M

media 30

N

NTC 23NTC resistance 24

O

Ohm’s law 29

Pparallel connection 36point-matching thermistors 25potting 143power rating P 30pulse strength VP 39

Q

quality assurance 145

R

R/T characteristiclinearization 32

radiation measurement 42relay delay 43resistance tolerance 26resistance/temperature relation 24restart 38robustness of terminations 142

S

sealing 143self-heating 23, 37series connection 36soldering 139stability 31storage 143

T

tank content indication 42temperature coefficient α 27temperature compensation 34temperature controller 35temperature measurement 32temperature sensing 32temperature stabilization 35temperature tolerance 26

Siemens Matsushita Components 163

Subject Index

test capacitance 39thermal cooling time constant τc 31thermal time constant τa 31thermostat 35tolerance 25

Uuni curve thermistors 25

Vvacuum measurement 30, 42voltage/current characteristic 28

falling-edge section 29non-linear section 29straight-rise section 29

WWheatstone bridge 32working point stabilization 34

Zzero-power characteristics 23zero-power measurement 27

164 Siemens Matsushita Components