Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068,...

36
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, [email protected]
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    0

Transcript of Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068,...

Page 1: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Neutrino Physics - Lecture 2

Steve Elliott

LANL Staff Member

UNM Adjunct Professor

505-665-0068, [email protected]

Page 2: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

2

Lecture 2 Outline

• Neutrino detection• Sources of neutrinos

• Neutrino Mixing

• Discussion

Page 3: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

3

Neutrino detection

Targets

• H2O

• D2O

• Scintillator

• Ga

• Cl

• Emulsion

• Ice

• Iron

• Rock

ES on e-: x + e--> x + e-

CC on Nucleus: l + A-> A’+ l

NC on Nucleus: x + A-> A’+ x

Page 4: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

4

Cross sections

• 10,000 light years of Pb to stop half of solar neutrinos (few MeV e)

• Beta decay provides estimate of strength

n → p + e− + ν e

Γ =GF

2

2π 3

mc2

hMif

2f Z, E( )

or : const.

Mif2 = fτ

e + p → n + e+

σ 0 =2π 2h3

me5c7 fτ

pe Ee

= 0.0952Ee pe

1MeV2

⎛ ⎝ ⎜

⎞ ⎠ ⎟×10−42 cm2

Neutron beta decay Anti-neutrino absorption

Page 5: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

5

Cross Sections

The small size of these cross sections is what led early researchers to believe they had postulated an undetectable particle.

Page 6: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

6

Hard experiments

• Rates are very low– Big detectors

• Background difficulties– Signal may not be very distinct– Other more common processes can

mimic signal– Rare variations of common phenomena…

Page 7: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

7

Sources of neutrinos

Big BangRadioactive decaysStarsSupernovasCosmic raysReactorsAccelerators

Page 8: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

8

Big Bang

• Relic neutrinos contribute at least as much mass to the Universe as all the stars.

• There are as many leftover neutrinos as photons.– N ~420/cc

• Photon energy: 2.728 K• Neutrino energy: 2 K

– There are no viable ideas for detecting such low energy neutrinos.

– But they might have detectable effects for large scale structure

– Note that neutrinos are studied via their particle nature– The microwave background was discovered by the wave

nature of photons.

Page 9: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

9

Radioactive Decays

• MCi sources have been made• Mostly for use by solar neutrino radiochemical

experiments for efficiency measurements.• Proposals for other neutrino property

measurements• Electron capture isotopes provide a monoenergetic

neutrino.

51Cr37Ar

Page 10: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

10

Stars (our Sun)

FeaturesProduce only e through fusion reactionsVery long baseline, e disappearance, x appearanceLow energy, spectral shape well knownL/E is large so sensitive to small m2

Large FluxMatter enhancement

DataRates from several experimentsEnergy dependenceDay vs. NightSeasonal

Page 11: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

11

SupernovasFeatures

~ Very long baseline~ 's and 's~ Complicated and poorly understood source~ Target cross sections not all well understood

Data~ Not a common phenomenon

once ~30 years in our galaxy~ SN1987A provided little physics data~ SN1987A did give hope for the future

10

16

10

14

10

12

10

10

10

8

10

6

10

4

10

2

10

0

(/Flux cm

2

)sec MeV

10

6

10

4

10

2

10

0

( )Energy MeV

supernova

10 @ kpc

My personal prediction is that neutrinos will teach us a lot about supernovae, but the inverse will be much harder.

Page 12: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

12

Supernovas

By using various targets with different energy- and flavor-dependent cross sections, one may be able tode-convolute the various fluxes.

Its difficult to get a dedicated supernova neutrino experiment funded.

10

16

10

14

10

12

10

10

10

8

10

6

10

4

10

2

10

0

(/Flux cm

2

)sec MeV

10

6

10

4

10

2

10

0

( )Energy MeV

supernova

10 @ kpc

Some Estimated Rates (Burrows, Klein, Gandhi PR D45, 3361 (1992) Expt.

e p → e

+

n NC on deuterium CC on oxygen

K -II 355 5.5 MACRO 219 Super-K 5310 81.5 SNO 331 272 4

Page 13: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

13

Cosmic Rays

atmosphere

Detector

Primary

Cosmic Ray

~20 km

~10000 km

Expect Rμ / e =ν μ + ν μ

ν e + ν e≈ 2

Meas.Rμ / edata

Rμ / e MC

≈ 0.6 − 0.7

10

15

10

10

10

5

10

0

10

-5

10

-10

10

-15

(/Flux cm

2

)sec MeV

10

6

10

4

10

2

10

0

( )Energy MeV

supernova

10 @ kpc

π

+

DAR

LSND atmos

CERN SPS

CHORUS

Page 14: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

14

Reactors

FeaturesComplicated but well-understood source.Low energyShort, medium, long baselinesDisappearance experiments

DataSeveral at short baselines; 10-250 mCHOOZ/Palo Verde at ~1 kmKamLAND at ~250 km

10

15

10

10

10

5

10

0

10

-5

10

-10

10

-15

Anti-

e

(/Flux cm

2

)sec MeV

10

6

10

4

10

2

10

0

( )Energy MeV

Reactors

CHOOZ

supernova

10 @ kpc

atmos

Page 15: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

15

Accelerators

FeaturesUsually appearanceVarious baselines and wide energy rangeControlled experimental conditions

DataOscillation limits for many speciesLots of experimental results

10

15

10

10

10

5

10

0

10

-5

10

-10

10

-15

(/Flux cm

2

)sec MeV

10

6

10

4

10

2

10

0

( )Energy MeV

supernova

10 @ kpc

π

+

DAR

LSND atmos

CERN SPS

CHORUS

Page 16: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

16

A reminder of the questions

• Are neutrinos Majorana or Dirac?• What is the absolute mass scale?• How small is 13?• How maximal is 23?• Is there CP violation in the neutrino

sector?• Is the mass hierarchy inverted or normal?• Is the LSND evidence for oscillation true?

Are there sterile neutrinos?

Page 17: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

17

Present Values (from oscillation expts.)

m122 = (8.0 ± 0.3)10−5 eV 2 Solar/Reactor

δm232 = (2.5± 0.2)10−3 eV 2 Atmospheric

tan2 θ12 = 0.45± 0.05 Solar/Reactor

sin2 θ 23 = 1.02 ± 0.04 Atmospheric

sin2 θ13 ≤ 0.05 Reactor

hep-ph/0606054

Page 18: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Neutrino Oscillations

Or how we know most of what we know

Page 19: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

19

Outline

• Two-flavor vacuum oscillations

• Two-flavor matter oscillations

• Three-flavor oscillations– The general formalism

– The “rotation” matrices

Page 20: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

20

Consider Two Mass States

1 corresponding to m1

2 corresponding to m2

Think of as a Vector

Ψ =1(t)

ψ2 (t)

⎝ ⎜

⎠ ⎟=

e−iE1t ψ1

e−iE2t ψ2

⎝ ⎜

⎠ ⎟

E1 = p12 + m1

2 ≈ p1 +m1

2

2 p1

Page 21: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

21

Ψ is a solution of H

i∂∂t

Ψ = HΨ

H=E1 0

0 E2

⎝ ⎜

⎠ ⎟

i∂ /∂t ψ1(t)

i∂ /∂t ψ2 (t)

⎝ ⎜

⎠ ⎟=

E1 0

0 E2

⎝ ⎜

⎠ ⎟ψ1(t)

ψ2 (t)

⎝ ⎜

⎠ ⎟

Page 22: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

22

The Neutrinos

Consider the weak eigenstates e, .These are not the mass eigenstates, 1, 2.The mass eigenstates are propagated via H.

e (t)

ν μ (t)

⎝ ⎜

⎠ ⎟=

cosθ sinθ

−sinθ cosθ

⎝ ⎜

⎠ ⎟ν 1(t)

ν 2 (t)

⎝ ⎜

⎠ ⎟

The Mixing Matrix: U

Page 23: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

23

Mixing

Weak eigenstates are a linear superposition of mass eigenstates.

α =Uν i

Page 24: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

24

In Vacuum, no potential in H

−i∂∂t

ν i = Hν i

−i∂∂t

U−1ν α = HU−1ν α

−i∂∂t

ν α = UHU−1ν α

Denote c = cos s = sin

Page 25: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

25

UHU-1

UHU−1 =c s

−s c

⎝ ⎜

⎠ ⎟E1 0

0 E2

⎝ ⎜

⎠ ⎟c −s

s c

⎝ ⎜

⎠ ⎟

= E1C2 + E2S2( )

1 0

0 1

⎝ ⎜

⎠ ⎟+

0 sc(E2 − E1 )

sc(E2 − E1 ) (c2 − s2 )(E2 − E1 )

⎝ ⎜

⎠ ⎟

Page 26: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

26

The energy difference (and Trig.)

E2 − E1 = p +m2

2

2 p− p −

m12

2 p

E2 − E1 =m2

2 − m12

2 p≡

δm2

2 p≈

δm2

2E

2sc ≡ sin2θ

c2 − s2 ≡ cos2θ

Page 27: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

27

UHU-1 becomes

= E1C2 + E2S2( )

1 0

0 1

⎝ ⎜

⎠ ⎟+

δm2

4E

0 sin2θ

sin2θ 2cos2θ

⎝ ⎜

⎠ ⎟

The algebra is going to get involved, so lets defineA, B, and D such that:

UHU−1 =A B

B A+ D

⎝ ⎜

⎠ ⎟

Page 28: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

28

The Diff Eq

∂α∂t

= iA B

B A+ D

⎝ ⎜

⎠ ⎟ν α

A solution to this equation should have the form:

α =e

ν μ

⎝ ⎜

⎠ ⎟=

ye

⎝ ⎜

⎠ ⎟eirt

Page 29: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

29

Insert proposed solution

rye

⎝ ⎜

⎠ ⎟eirt =

A B

B A+ D

⎝ ⎜

⎠ ⎟ye

⎝ ⎜

⎠ ⎟eirt

or

A− r B

B A+ D − r

⎝ ⎜

⎠ ⎟ye

⎝ ⎜

⎠ ⎟= 0

Page 30: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

30

Two Equations

(A− r)ye + Byμ = 0

Bye + (A+ D − r)yμ = 0

(A− r)(A+ D − r)− B2 = 0

⇒ r =D + 2A± D + 4B2

2

Page 31: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

31

r+ solution

A− r+ B

B A+ D − r+

⎝ ⎜

⎠ ⎟ye

⎝ ⎜

⎠ ⎟= 0

ye =−sinθcosθ

r- solution

ye =cosθsinθ

Page 32: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

32

α is a superposition of these 2 solutions

α =C1sinθ

cosθ

⎝ ⎜

⎠ ⎟e

ir+t + C2cosθ

−sinθ

⎝ ⎜

⎠ ⎟e

−ir−t

r± =12

(D + 2A)±δm2

4E

(D+2A) is a constant so we sweep it into a redefinition of the C’s.

Page 33: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

33

The solutions

α =C1sinθ

cosθ

⎝ ⎜

⎠ ⎟e

iδm2

4Et

+ C2cosθ

−sinθ

⎝ ⎜

⎠ ⎟e

−iδm2

4Et

To determine the C’s, use <α|α>=1 and assume that at t=0, we have all e.

α (t = 0) =1

0

⎝ ⎜

⎠ ⎟=

C1 sinθ + C2 cosθ

C1 cosθ − C2 sinθ

⎝ ⎜

⎠ ⎟

⇒ C1 = sinθ , C2 = cosθ

Page 34: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

34

The time dependent solution

α =sin2 θ

sinθ cosθ

⎝ ⎜

⎠ ⎟e

iδm2

4Et+

cos2 θ

−sinθ cosθ

⎝ ⎜

⎠ ⎟e

−iδm2

4Et

What is the probability of finding all at time t?

α (t) = prob. amp.

= sinθ cosθeiδm2

4Et− sinθ cosθe−

iδm2

4Et

= 2sinθ cosθ (12

eiK − e−iK[ ] = sin2θ sin

δm2

4Et

⎝ ⎜

⎠ ⎟

Page 35: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

35

Transition probability

α (t)2

= probability

= sin2 2θ sin2 δm2

4Et

⎝ ⎜

⎠ ⎟

define δm2

4Et ≡

πRL

for h = c = 1, R ≈ t

L =4πE

∂m2 ≡ oscillation length

Page 36: Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor 505-665-0068, elliotts@lanl.gov.

Spring 2007 Steve Elliott, UNM Seminar Series

36

The Answer

P(ν e → ν μ ) = sin2 2θ sin2 1.27δm2 (eV2 )E(MeV)

R(meters) ⎛

⎝ ⎜

⎠ ⎟

Complete mixing: large sin2 and long R/L would result in an “average”: that is P=1/2.