Modelled bipolar seesaw (ECBILT-CLIO) - EPIC · 2011. 9. 28. · LPJ anomalies coupled to the HILDA...

36
Alfred Wegener Institute for Polar and Marine Research AWI Land–atmosphere carbon exchange during abrupt climate change PeterK¨ohler AWI , Fortunat Joos Bern , Stefan Gerber Bern,PEI , Reto Knutti Bern,ETH ESF Conference OCEAN CONTROLS IN ABRUPT CLIMATE CHANGE, Obergurgl 05/2007 Climate Dynamics (2005), 25: 689-708 Data constraints on abrupt climate changes during past 60 kyr Modelled bipolar seesaw (ECBILT-CLIO) Terrestrial carbon storage in LPJ-DGVM Case study for preindustrial times (1 kyr BP) Importance of the background climate

Transcript of Modelled bipolar seesaw (ECBILT-CLIO) - EPIC · 2011. 9. 28. · LPJ anomalies coupled to the HILDA...

  • Alfred Wegener Institutefor Polar and Marine Research

    AWI

    Land–atmosphere carbon exchange duringabrupt climate change

    Peter KöhlerAWI,

    Fortunat JoosBern, Stefan GerberBern,PEI, Reto KnuttiBern,ETH

    ESF Conference OCEAN CONTROLS IN ABRUPT CLIMATE CHANGE, Obergurgl 05/2007

    Climate Dynamics (2005), 25: 689-708

    Data constraints on abrupt climate changes during past 60 kyr

    Modelled bipolar seesaw (ECBILT-CLIO)

    Terrestrial carbon storage in LPJ-DGVM

    Case study for preindustrial times (1 kyr BP)

    Importance of the background climate

  • -42-40-38-36-34

    δ18 Ο

    (ο/ ο

    ο)

    -40-38-36-34

    δ18 Ο

    (ο/ ο

    ο)

    180200220240260280

    CO

    2 (p

    pmv)

    -60000 -50000 -40000 -30000 -20000 -10000 0Age (years)

    300400500600700

    CH

    4 (p

    pbv)

    A4 A3 A1A2

    ▲ ▲ ▲ ▲ ▲

    12 81417

    H6 H5 H4 H3 H2 H1YD▲ ▲

    H5a▲

    GISP2

    BYRD

    TAYLOR DOME

    Data constraints onabrupt climate chan-ges in the past 60kyr

    Dansgaard/Oeschger events(e.g. 17, 14, 12, 8)

    Heinrich events (H1–H6)

    Antarctic warming events(A1–A4)

    atmospheric CO2 (±20 ppmv)

    atmospheric CH4 (±200 ppbv)

    Grootes and Stuiver, 1997; Johnsen etal.,1972; Indermühle et al., 1999, 2000;Blunier et al., 1998, Brook et al., 1996,2000, Blunier and Brook, 2001

  • Modelled bipolar seesaw (ECBILT-CLIO)

  • 0 1000 2000Simulation time (yr)

    -10

    -5

    0

    5

    Tem

    pera

    ture

    ano

    mal

    y (K

    )

    0 1000 2000Simulation time (yr)

    0

    5

    10

    15

    20

    NA

    DW

    (Sv

    )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5Fr

    eshw

    ater

    (Sv

    ) A

    B

    C

    Scenario F❏ Scenario F∆

    NATL

    SO

    Bipolar seesaw inECBILT-CLIOKnutti et al., 2004.

    Mimicking the bipolar seesawby freshwater discharge into theNorth Atlantic (50◦– 70◦N).

    Global coupled atmosphere–ocean–sea ice model

    ECBILT2: T21 atmosphere(Opsteegh et al., 1998)

    CLIO: OGCM + sea ice(Goose and Fichefet, 1999)

  • ECBILT-CLIO — Temperature

    Zonally averaged ∆T over ice free land area:

    North (70◦N): cooling by 7K

    South (50◦S): warming by 2K.

  • ECBILT-CLIO — Precipitation

    Zonally averaged ∆prec over ice free land area:

    Drier conditions in the tropics — wetter conditions in the subtropics

  • -42-40-38-36-34

    δ18 Ο

    (ο/ ο

    ο)

    -40-38-36-34

    δ18 Ο

    (ο/ ο

    ο)

    180200220240260280

    CO

    2 (p

    pmv)

    -60000 -50000 -40000 -30000 -20000 -10000 0Age (years)

    300400500600700

    CH

    4 (p

    pbv)

    A4 A3 A1A2

    ▲ ▲ ▲ ▲ ▲

    12 81417

    H6 H5 H4 H3 H2 H1YD▲ ▲

    H5a▲

    GISP2

    BYRD

    TAYLOR DOME

    Data constraints onabrupt climate chan-ges in the past 60kyr

    Dansgaard/Oeschger events(e.g. 17, 14, 12, 8)

    Heinrich events (H1–H6)

    Antarctic warming events(A1–A4)

    atmospheric CO2 (±20 ppmv)

    atmospheric CH4 (±200 ppbv)

    Grootes and Stuiver, 1997; Johnsen etal.,1972; Indermühle et al., 1999, 2000;Blunier et al., 1998, Brook et al., 1996,2000, Blunier and Brook, 2001

  • -42-40-38-36-34

    δ18 Ο

    (ο/ ο

    ο)

    -40-38-36-34

    δ18 Ο

    (ο/ ο

    ο)

    180200220240260280

    CO

    2 (p

    pmv)

    -60000 -50000 -40000 -30000 -20000 -10000 0Age (years)

    300400500600700

    CH

    4 (p

    pbv)

    A4 A3 A1A2

    ▲ ▲ ▲ ▲ ▲

    12 81417

    H6 H5 H4 H3 H2 H1YD▲ ▲

    H5a▲

    GISP2

    BYRD

    TAYLOR DOME

    Data constraints onabrupt climate chan-ges in the past 60kyr

    Dansgaard/Oeschger events(e.g. 17, 14, 12, 8)

    Heinrich events (H1–H6)

    Antarctic warming events(A1–A4)

    atmospheric CO2 (±20 ppmv)

    atmospheric CH4 (±200 ppbv)

    Case studies for 4 time slices:

    1, 13, 17, 21 kyr BP

    PRE, YD, H1, LGM

  • Terrestrial carbon storage in LPJ-DGVM

  • Terrestrial carbon storage in LPJ-DGVM

    PRE Difference LGM

  • Vegetation versus soil carbon

    Vegetation Soil

    Rule of thumb:

    Tropics: more than 2/3 of carbon in the vegetation

    Boreal areas: more than 2/3 of carbon in the soil

  • Case study for preindustrial times (1 kyr BP)

  • Vegetation — Tree Cover

    Southward shift of the northern treeline = f(temperature)

    Less trees in Sahel area (Mulitza et al.) = f(precipitation)

  • Zonally averaged land carbon storage anomalies

    Increase (soil respiration) & decrease (northern treeline) in C storage

    Persisting anomaly 20◦S (model artefact)

  • 0 1000 2000 3000 4000 5000Simulation time (yr)

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    Car

    bon

    stor

    age

    anom

    aly

    (PgC

    )

    F❏

    with CO2 ff

    F❏

    without CO2 ff

    ECBILT-ctrl

    1 kyr BP

    experiment background

    flux recover

    1

    2

    3Land carbon anomaly

    1. CO2 fertilization (NPP =

    f(CO2)) is dampening the

    amplitude by factor of two

    2. Final offset (20–30 PgC)

    due to single PFT reorga-

    nisation (precipitation) in a

    few grid cells in the tropics

    3. Peak-to-peak-amplitude:

    ∆C(terrestrial) = 70 and

    120 PgC

  • But...

    Evidence for CO2 fertilisation effect on vegetation growth is still poor

    Körner 2006

  • -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    Ano

    mal

    y (P

    gC)

    0 1000 2000 3000Simulation time (yr)

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    totalsoil+littervegetation

    1 kyr BP1

    23

    4

    Soil versus vegetation

    1. Soil respiration is reduced

    during cold times

    ⇒ carbon gain

    2. Treeline shifts to South

    ⇒ carbon loss

    3. Warming at the end of the

    experiment leads to increased

    soil respiration

    ⇒ carbon loss

    4. Treeline back North /

    delayed recovery

    ⇒ carbon gain

  • Importance of the background climate

    Atmospheric CO2 concentration (ice cores)

    Land ice sheet extent / sea level (ICE–4G)

    Global temperature / precipitation fields (HadSM3 model output)

  • -20000 -15000 -10000 -5000 0Time (yr BP)

    -80-60-40-20

    020406080

    100120

    Car

    bon

    stor

    age

    anom

    aly

    (PgC

    )

    200021002200230024002500

    26002700280029003000

    Ter

    rest

    rial

    car

    bon

    (PgC

    )

    freshwater release exp.

    background without

    Impact ofclimate changeduringTermination I

    Size and direction of carbon

    storage anomaly depends on

    background climate, mainly

    background temperature.

  • Zonally averaged land carbon storage anomalies

    1 kyr BP 13 kyr BP

    17 kyr BP 21 kyr BP

    Increase / decrease in terrestrial carbon storage

  • -75

    -50

    -25

    0

    25

    50

    75

    Ano

    mal

    y (P

    gC)

    -75

    -50

    -25

    0

    25

    50

    75

    totalsoil+littervegetation

    -75

    -50

    -25

    0

    25

    50

    75

    Ano

    mal

    y (P

    gC)

    -75

    -50

    -25

    0

    25

    50

    75

    Ano

    mal

    y (P

    gC)

    0 1000 2000Simulation time (yr)

    -75

    -50

    -25

    0

    25

    50

    75

    0 1000 2000 3000Simulation time (yr)

    0 1000 2000 3000-75

    -50

    -25

    0

    25

    50

    75

    Ano

    mal

    y (P

    gC)

    1 kyr BP 13 kyr BP

    21 kyr BP17 kyr BP

    Impact ofclimate changefordifferent times

    without CO2 fertilization

    13 kyr BP: YoungerDryas cold event

    17 kyr BP: Heinrich eventduring partly glaciation

    21 kyr BP: Heinrich eventduring full glaciation

  • 275

    280

    285

    290

    295

    300

    CO

    2 (p

    pmv)

    without CO2 fert.

    with CO2 fert.

    230

    235

    240

    245

    250

    255

    CO

    2 (p

    pmv)

    0 1000 2000Simulation time (yr)

    190

    195

    200

    205

    210

    215

    CO

    2 (p

    pmv)

    0 1000 2000Simulation time (yr)

    175

    180

    185

    190

    195

    200

    CO

    2 (p

    pmv)

    1 kyr BP 13 kyr BP

    21 kyr BP17 kyr BP

    Impacts onatmosphericCO2

    LGM amplitude:

    ∼7–12 ppmv

    To be consistent with theice core record the mari-ne carbon cycle needs tocontribute about the samemagnitude.

  • -7.0

    -6.9

    -6.8

    -6.7

    -6.6

    δ13 C

    (o /

    oo)

    -7.0

    -6.9

    -6.8

    -6.7

    -6,6

    δ13 C

    (o /

    oo)

    0 1000 2000Simulation time (yr)

    -7,1

    -7.0

    -6.9

    -6.8

    -6.7

    δ13 C

    (o/ o

    o)

    with CO2 fert.

    without CO2 fert.

    0 1000 2000 3000Simulation time (yr)

    -7.1

    -7.0

    -6.9

    -6.8

    -6.7

    δ13 C

    (o /

    oo)

    1 kyr BP 13 kyr BP

    21 kyr BP17 kyr BP

    Impacts onatmosphericδ13C

    LGM amplitude:

    ∼–0.2 to –0.3h

    Ice core recordnot clear on δ13C:

    H1 & YD:– 0.2 to –0.4h excursion

    but both events occurduring the last glacial/interglacial transition

  • -7.0

    -6.8

    -6.6

    -6.4

    -6.2

    13C

    [o/ o

    o]

    Interval I II III IV

    H1 BA YD

    180200220240260280

    pCO

    2[p

    pmv]

    20 18 16 14 12 10GISP2 Age [kyr BP]

    0

    100

    200

    300

    400

    50014

    C[o

    / oo]

    Data constraints on δ13C

    Taylor Dome (Smith et al., 1999)

    EPICA Dome C (Monnin et al., 2001)

    INTCAL98 (Stuiver et al., 1998)Cariaco basin (Hughen et al., 2004)

  • Conclusions

    • Abrupt climate changes caused by the bipolar seesaw lead to opposing

    trends in terrestrial carbon storage: a southward shift of the northern

    treeline (carbon loss) and a reduction in soil respiration in mid latitudes

    (carbon gain).

    • The overall net effect on carbon storage depends on the global balance

    of losses and gains and is highly sensitive to the applied background

    climatology.

    • Be careful about the magnitude because of the unknowns in the CO2fertilisation feedback.

    • The increase of 20 ppmv in atmospheric CO2 during the Antarctic

    warming events A1–A4 might by ∼50% caused terrestrial carbon re-

    lease.

    • OUTLOOK Impact of same ECBILT-CLIO scenarios on CH4 cycle

    in LPJ-DGVM: see poster by Jed Kaplan and Joe Melton.

  • LPJ-DGVMSitch et al., 2003 GCB.

    Drivers:– monthly mean temperature,precipitation and insolation fields– CO2– terrestrial ice free land area

    Spatial resolution: 3.75◦× 2.5◦

    Plant functional types (PFT)—————————————————Tropical broadleaved evergreen treeTropical broadleaved raingreen treeTemperate needle-leaved evergreen treeTemperate broadleaved evergreen treeTemperate broadleaved summergreen treeBoreal needle-leaved evergreen treeBoreal summergreen treeC3 grassC4 grass

  • 180

    200

    220

    240

    260

    280

    300

    CO

    2 (p

    pmv)

    180

    200

    220

    240

    260

    280

    300

    -10

    -5

    0

    5

    10

    15

    20

    ∆Are

    a (

    1012

    m2 )

    -12

    -10

    -8

    -6

    -4

    -2

    0

    ∆T (

    K)

    20 15 10 5Time (kyr BP)

    -12

    -10

    -8

    -6

    -4

    -2

    0

    global land

    30oS-30

    oN

    30oN-90

    oN

    20 15 10 5 0Time (kyr BP)

    -175

    -150

    -125

    -100

    -75

    -50

    -25

    0

    ∆pre

    c (m

    m y

    r-1 )

    A B

    C D

    ice retreat

    net change

    sea level

    Background forcing ofLPJ-DGVMsame as in Joos et al., 2004 GBC.

    Present day mean climatology(Leemans and Cramer 1991) withfollowing pertubations:

    A: CO2 (EPICA Dome C, Monninet al., 2001) GISP2 age scale

    B: land area from Peltier 1994

    C,D: ∆T and ∆prec fromHadley Centre Unified Model

  • Preindustrial carbon storage LPJ-DGVM

  • Glacial carbon storage LPJ-DGVM

  • Difference in carbon storage LPJ-DGVM (21 – 1 kyr BP)

  • -60 -40 -20 0 20 40 60 80Latitude

    -0,4

    -0,3

    -0,2

    -0,1

    0

    0,1

    0,2

    Ano

    mal

    y in

    rel

    ativ

    e fo

    liar

    proj

    ectiv

    e co

    ver

    tropical trees

    temperate trees

    grasses

    boreal trees1 kyr BP

    Impact of climatechange on vegetation

    Grasses replace boreal trees northof 50◦N

    Boreal trees replace temperatetrees in mid high latitudes

    Small reduction in tropical treecover

  • -20000 -15000 -10000 -5000 0Time (yr BP)

    -80-60-40-20

    020406080

    100120

    Car

    bon

    stor

    age

    anom

    aly

    (PgC

    )

    200021002200230024002500

    26002700280029003000

    Ter

    rest

    rial

    car

    bon

    (PgC

    )

    freshwater release exp.

    background without

    Impact ofclimate changeduringTermination I

    Background terrestrial carbon:

    ice retreat: + 610 PgCsea level rise: – 190 PgCCO2 fertilization: + 650 PgCclimate change: – 250 PgCtotal: + 820 PgC

    Size and direction of carbonstorage anomaly depends onbackground climate.

  • Atmospheric carbon records

    LPJ anomalies coupled to the HILDA carbon cycle model

    0 1000 2000 3000 4000 5000Simulation time (yr)

    270

    275

    280

    285

    290

    295

    300

    atm

    osph

    eric

    CO

    2 (p

    pmv)

    F❏

    with CO2 ff

    F❏

    without CO2 ff.

    ECBILT-ctrl

    1 kyr BP

    experiment background

    0 1000 2000 3000 4000 5000Simulation time (yr)

    -7.1

    -7.0

    -6.9

    -6.8

    -6.7

    -6.6

    atm

    osph

    eric

    δ13

    C (

    o /oo

    )

    F❏

    with CO2 ff

    F❏

    without CO2 ff

    ECBILT-ctrl

    1 kyr BP

    experiment background

    Peak-to-peak-amplitudes:

    ∆CO2 = 13 and 21 ppmv ∆δ13C = 0.24 and 0.40 h

  • Sensitivity studies

    0 1000 2000 3000 4000Simulation time (yr)

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    Car

    bon

    stor

    age

    anom

    aly

    (PgC

    )

    F❏

    F∆ECBILT-ctrl

    0 1000 2000 3000 4000 5000Simulation time (yr)

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    Car

    bon

    stor

    age

    anom

    aly

    (PgC

    )

    F❏

    F❏δP-only

    F❏δT-only

    ECBILT-ctrl

    1 kyr BP 1 kyr BP

    BA

    experiment background backgroundexperiment

    Shape of freshwater discharge Temperature vs. Precipitation

  • -100

    -50

    0

    50

    100

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    -100

    -50

    0

    50

    100

    0 1000 2000Simulation time (yr)

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    CO2 LGMClimate LGMLand LGM

    0 1000 2000Simulation time (yr)

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    StandardCO2 PREClimate PRELand PRE

    1 kyr BP 13 kyr BP

    21 kyr BP17 kyr BP

    Sensitivityanalysisonboundaryconditions

    without CO2 fertilization

    vary CO2vary climatevary land area

    LPJ is most sensitive toclimate variations

  • -100

    -50

    0

    50

    100

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    -100

    -50

    0

    50

    100

    0 1000 2000Simulation time (yr)

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    StandardδΤ − 50%

    0 1000 2000 3000Simulation time (yr)

    0 1000 2000 3000

    -100

    -50

    0

    50

    100

    Ano

    mal

    y (P

    gC)

    δΤ − 25%δΤ + 25%

    1 kyr BP 13 kyr BP

    21 kyr BP17 kyr BP

    Sensitivityanalysison themagnitudeof thetemperatureanomaly (∆T)

    without CO2 fertilization

    ∆T – 50%∆T – 25%∆T + 25%

    Especially during full gla-ciation the magnitude of∆T constitutes the re-sponse