Model 8, He-He WDB No.:2 Model 8, CO-CO WDB No.:58 White...

1
White Dwarf Binary Statistics in Globular Cluster Simulations by MOCCA Dongming Jin, Matthew Benacquista Dept. of Physics, University of Texas at Brownsville Contact: [email protected] Abstract The MOCCA code is one of the most advanced codes which has the capacity to simulate a realistic sized star cluster with a full dynamical history including star evolution using Monte Carlo methods for the cluster evolution and the Fewbody code for scattering. The dynamical evolution of a cluster can result in the formation of many binary system. Some of these bi- naries may be very close. Close white dwarf binaries may be promising gravitational wave sources. Our work uses MOCCA to simulate 90 globular clusters of different number of stars, binary fraction, metallicity and ini- tial mass function parameter. After ruling out models which evaporate before 9 Gyrs and uninteresting models with a very low number of white dwarf binaries, we do multiple runs of the remaining models for around a Hubble time in order to get statistics on the overall white dwarf binary population of dif- ferent component types, orbital periods and cluster radii in the time range from 8 Gyrs to 12 Gyrs. We consider that white dwarf binaries which exist within a specified time range & La- grangian radius range and have orbit at periods less than a day are observable. Thus we set up a map of potential white dwarf binary detection rates for different types of globular clusters. Free Parameters To get a general estimate of the statistics for white dwarf binaries, simulations for globular clusters with a different total number of stars N , initial binary fraction f b , metallicity Z and initial mass function parameter α are performed. Parameter Value N 24000, 100000 f b 0.1, 0.2, 0.3, 0.4, 0.5 Z 0.02, 0.0002, 0.00001 α 2, 2.35, 3 α is the factor for the power-law mass function [4]: ξ (m) m -α where m is the stellar mass in solar units and ξ (m)dm is the num- ber of stars in the mass interval m to m + dm. White Dwarf Binary Population 0 2000 4000 6000 8000 10000 12000 14000 0 2 4 6 8 10 12 14 16 Model 8, White Dwarf Binary Population: Time: Myrs Binary Population HeHeWD Binary COCOWD Binary ONeONeWD Binary HeCOWD Binary HeONeWD Binary COONeWD Binary Total WD Binary 0 5000 10000 15000 0 100 200 300 400 500 600 Model 85, White Dwarf Binary Population: Time: Myrs Binary Population HeHeWD Binary COCOWD Binary ONeONeWD Binary HeCOWD Binary HeONeWD Binary COONeWD Binary Total WD Binary 0 5000 10000 15000 0 0.5 1 1.5 2 2.5 3 Model 30, White Dwarf Binary Population: Time: Myrs Binary Population HeHeWD Binary COCOWD Binary ONeONeWD Binary HeCOWD Binary HeONeWD Binary COONeWD Binary Total WD Binary 0 5000 10000 15000 0 50 100 150 200 250 300 Model 82, White Dwarf Binary Population: Time: Myrs Binary Population HeHeWD Binary COCOWD Binary ONeONeWD Binary HeCOWD Binary HeONeWD Binary COONeWD Binary Total WD Binary The population of different types of WD-WD binaries during cluster evolution. White Dwarf Binary Distribution 0 2000 4000 6000 8000 10000 12000 14000 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 Model 8, White Dwarf Binary Distribution Time: Myrs Lagrangian Radii: Log 1% 10% 30% 50% 70% 90% 0 2000 4000 6000 8000 10000 12000 14000 16000 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Model 85, White Dwarf Binary Distribution Time: Myrs Lagrangian Radii: Log 1% 10% 30% 50% 70% 90% 0 5000 10000 15000 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 Model 30, White Dwarf Binary Distribution Time: Myrs Lagrangian Radii: Log 1% 10% 30% 50% 70% 90% 0 2000 4000 6000 8000 10000 12000 14000 16000 -1.5 -1 -0.5 0 0.5 1 1.5 2 Model 82, White Dwarf Binary Distribution Time: Myrs Lagrangian Radii: Log 1% 10% 30% 50% 70% 90% Markers show the location when white dwarf binary is first formed, the size of the markers indicate the lifetime. White Dwarf Binary Orbital Period The trajectory begins with ‘×’ mark shows the evolution of a certain white dwarf binary. Color of the trajectory indicates the orbital period range. The No. in title is the amount of certain white dwarf binary for the whole stellar history. Color Green Magenta Cyan Orbital period less than 10 -2 day 10 -2 to 1 day larger than 1 day 8 9 10 11 12 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 8, He-He WDB No.:2 8 9 10 11 12 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 8, CO-CO WDB No.:58 8 9 10 11 12 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 8, ONe-ONe WDB No.:4 8 9 10 11 12 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 8, He-CO WDB No.:9 8 9 10 11 12 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 8, He-ONe WDB No.:1 8 9 10 11 12 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 8, CO-ONe WDB No.:24 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 85, He-He WDB No.:264 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 85, CO-CO WDB No.:490 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 85, ONe-ONe WDB No.:54 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 85, He-CO WDB No.:466 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 85, He-ONe WDB No.:53 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 85, CO-ONe WDB No.:215 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 30, He-He WDB No.:1 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 30, CO-CO WDB No.:5 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 30, ONe-ONe WDB No.:0 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 30, He-CO WDB No.:2 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 30, He-ONe WDB No.:0 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 30, CO-ONe WDB No.:0 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 82, He-He WDB No.:82 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 82, CO-CO WDB No.:208 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 82, ONe-ONe WDB No.:17 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 82, He-CO WDB No.:356 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 82, He-ONe WDB No.:60 8 10 12 14 -1 0 1 Time: Gyrs Lagrangian Radii: Log Model 82, CO-ONe WDB No.:89 Potential Detectable Rate Mapping 0.1 0.2 0.3 0.4 0.5 2 2.5 3 N=24000, Z=0.02 Binary Fraction IMF parameter Model 30 0.1 0.2 0.3 0.4 0.5 2 2.5 3 N=24000, Z=0.001 Binary Fraction IMF parameter 0.1 0.2 0.3 0.4 0.5 2 2.5 3 N=24000, Z=0.0002 Binary Fraction IMF parameter Model 8 0.1 0.2 0.3 0.4 0.5 2 2.5 3 N=100000, Z=0.02 Binary Fraction IMF parameter Model 82 0.1 0.2 0.3 0.4 0.5 2 2.5 3 N=100000, Z=0.001 Binary Fraction IMF parameter Model 85 0.1 0.2 0.3 0.4 0.5 2 2.5 3 N=100000, Z=0.0002 Binary Fraction IMF parameter Figure 1: Size indicates the number of WD-WD binaries under following con- ditions of a certain model: 1. Exists during 8 Gyr to 12 Gyr, 2. has a orbital period less than 1 day, 3. locates between 30% to 70% Lagrangian radii. The marked models are plotted for more detail information. Acknowledgements: MJB and DJ acknowledge the support of NASA grant NNX08AB74G and the Center for Gravitational Wave Astronomy, supported by NSF Cooperative Agreements HRD- 0734800 and HRD-1242090. References [1] M. Giersz. Monte Carlo simulations of star clusters - I. First Results. , 298:1239–1248, August 1998. [2] M. Giersz. Monte Carlo simulations of star clusters - II. Tidally limited, multimass systems with stellar evolution. , 324:218–230, June 2001. [3] M. Giersz. Monte Carlo simulations of star clusters - III. A million-body star cluster. , 371:484–494, September 2006. [4]P. Kroupa, C. A. Tout, and G. Gilmore. The distribution of low-mass stars in the Galactic disc. , 262:545–587, June 1993.

Transcript of Model 8, He-He WDB No.:2 Model 8, CO-CO WDB No.:58 White...

Page 1: Model 8, He-He WDB No.:2 Model 8, CO-CO WDB No.:58 White ...sambaran/DS2014/Modest14_Posters/Jin.pdf · White Dwarf Binary Statistics in Globular Cluster Simulations by MOCCA ...

White Dwarf Binary Statistics in Globular ClusterSimulations by MOCCA

Dongming Jin, Matthew BenacquistaDept. of Physics, University of Texas at Brownsville

Contact: [email protected]

AbstractThe MOCCA code is one of the most advanced codes whichhas the capacity to simulate a realistic sized star cluster witha full dynamical history including star evolution using MonteCarlo methods for the cluster evolution and the Fewbody codefor scattering. The dynamical evolution of a cluster can resultin the formation of many binary system. Some of these bi-naries may be very close. Close white dwarf binaries may bepromising gravitational wave sources.

Our work uses MOCCA to simulate 90 globular clusters ofdifferent number of stars, binary fraction, metallicity and ini-tial mass function parameter. After ruling out models whichevaporate before 9 Gyrs and uninteresting models with a verylow number of white dwarf binaries, we do multiple runs ofthe remaining models for around a Hubble time in order to getstatistics on the overall white dwarf binary population of dif-ferent component types, orbital periods and cluster radii in thetime range from 8 Gyrs to 12 Gyrs. We consider that whitedwarf binaries which exist within a specified time range & La-grangian radius range and have orbit at periods less than a dayare observable. Thus we set up a map of potential white dwarfbinary detection rates for different types of globular clusters.

Free ParametersTo get a general estimate of the statistics for white dwarf binaries,simulations for globular clusters with a different total number ofstars N , initial binary fraction fb, metallicity Z and initial massfunction parameter α are performed.

Parameter ValueN 24000, 100000fb 0.1, 0.2, 0.3, 0.4, 0.5Z 0.02, 0.0002, 0.00001α 2, 2.35, 3

α is the factor for the power-law mass function [4]:

ξ(m) ∝ m−α

where m is the stellar mass in solar units and ξ(m)dm is the num-ber of stars in the mass interval m to m + dm.

White Dwarf Binary Population

0 2000 4000 6000 8000 10000 12000 140000

2

4

6

8

10

12

14

16Model 8, White Dwarf Binary Population:

Time: Myrs

Bin

ary

Popula

tion

HeHeWD Binary

COCOWD Binary

ONeONeWD Binary

HeCOWD Binary

HeONeWD Binary

COONeWD Binary

Total WD Binary

0 5000 10000 150000

100

200

300

400

500

600Model 85, White Dwarf Binary Population:

Time: Myrs

Bin

ary

Popula

tion

HeHeWD Binary

COCOWD Binary

ONeONeWD Binary

HeCOWD Binary

HeONeWD Binary

COONeWD Binary

Total WD Binary

0 5000 10000 150000

0.5

1

1.5

2

2.5

3Model 30, White Dwarf Binary Population:

Time: Myrs

Bin

ary

Popula

tion

HeHeWD Binary

COCOWD Binary

ONeONeWD Binary

HeCOWD Binary

HeONeWD Binary

COONeWD Binary

Total WD Binary

0 5000 10000 150000

50

100

150

200

250

300Model 82, White Dwarf Binary Population:

Time: Myrs

Bin

ary

Popula

tion

HeHeWD Binary

COCOWD Binary

ONeONeWD Binary

HeCOWD Binary

HeONeWD Binary

COONeWD Binary

Total WD Binary

The population of different types of WD-WD binaries during cluster evolution.

White Dwarf Binary Distribution

0 2000 4000 6000 8000 10000 12000 14000−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5Model 8, White Dwarf Binary Distribution

Time: Myrs

La

gra

ngia

n R

ad

ii: L

og

1%

10%

30%

50%

70%

90%

0 2000 4000 6000 8000 10000 12000 14000 16000−2

−1.5

−1

−0.5

0

0.5

1

1.5

2Model 85, White Dwarf Binary Distribution

Time: Myrs

La

gra

ngia

n R

ad

ii: L

og

1%

10%

30%

50%

70%

90%

0 5000 10000 15000−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5Model 30, White Dwarf Binary Distribution

Time: Myrs

La

gra

ngia

n R

ad

ii: L

og

1%

10%

30%

50%

70%

90%

0 2000 4000 6000 8000 10000 12000 14000 16000−1.5

−1

−0.5

0

0.5

1

1.5

2Model 82, White Dwarf Binary Distribution

Time: Myrs

La

gra

ngia

n R

ad

ii: L

og

1%

10%

30%

50%

70%

90%

Markers show the location when white dwarf binary is first formed, the size ofthe markers indicate the lifetime.

White Dwarf Binary Orbital PeriodThe trajectory begins with ‘×’ mark shows the evolution of a certain whitedwarf binary. Color of the trajectory indicates the orbital period range. TheNo. in title is the amount of certain white dwarf binary for the whole stellarhistory.

Color Green Magenta CyanOrbital period less than 10−2 day 10−2 to 1 day larger than 1 day

8 9 10 11 12

−1

0

1

Time: Gyrs

La

gra

ngia

n R

ad

ii: L

og

Model 8, He−He WDB No.:2

8 9 10 11 12

−1

0

1

Time: Gyrs

La

gra

ngia

n R

ad

ii: L

og

Model 8, CO−CO WDB No.:58

8 9 10 11 12

−1

0

1

Time: Gyrs

Lagra

ng

ian R

adii:

Log

Model 8, ONe−ONe WDB No.:4

8 9 10 11 12

−1

0

1

Time: Gyrs

Lagra

ng

ian R

adii:

Log

Model 8, He−CO WDB No.:9

8 9 10 11 12

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

adii:

Lo

g

Model 8, He−ONe WDB No.:1

8 9 10 11 12

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

adii:

Lo

g

Model 8, CO−ONe WDB No.:24

8 10 12 14

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

ad

ii: L

og

Model 85, He−He WDB No.:264

8 10 12 14

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

ad

ii: L

og

Model 85, CO−CO WDB No.:490

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ng

ian

Rad

ii: L

og

Model 85, ONe−ONe WDB No.:54

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ng

ian

Rad

ii: L

og

Model 85, He−CO WDB No.:466

8 10 12 14

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

adii:

Log

Model 85, He−ONe WDB No.:53

8 10 12 14

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

adii:

Log

Model 85, CO−ONe WDB No.:215

8 10 12 14

−1

0

1

Time: Gyrs

La

gra

ng

ian

Radii:

Lo

g

Model 30, He−He WDB No.:1

8 10 12 14

−1

0

1

Time: Gyrs

La

gra

ng

ian

Radii:

Lo

g

Model 30, CO−CO WDB No.:5

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ngia

n R

adii:

Log

Model 30, ONe−ONe WDB No.:0

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ngia

n R

adii:

Log

Model 30, He−CO WDB No.:2

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ngia

n R

adii:

Log

Model 30, He−ONe WDB No.:0

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ngia

n R

adii:

Log

Model 30, CO−ONe WDB No.:0

8 10 12 14

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

adii:

Log

Model 82, He−He WDB No.:82

8 10 12 14

−1

0

1

Time: Gyrs

Lag

ran

gia

n R

adii:

Log

Model 82, CO−CO WDB No.:208

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ngia

n R

adii:

Log

Model 82, ONe−ONe WDB No.:17

8 10 12 14

−1

0

1

Time: Gyrs

Lagra

ngia

n R

adii:

Log

Model 82, He−CO WDB No.:356

8 10 12 14

−1

0

1

Time: Gyrs

Lag

rang

ian R

adii:

Log

Model 82, He−ONe WDB No.:60

8 10 12 14

−1

0

1

Time: Gyrs

Lag

rang

ian R

adii:

Log

Model 82, CO−ONe WDB No.:89

Potential Detectable Rate Mapping

0.1 0.2 0.3 0.4 0.5

2

2.5

3

N=24000, Z=0.02

Binary Fraction

IMF

pa

ram

ete

r Model 30

0.1 0.2 0.3 0.4 0.5

2

2.5

3

N=24000, Z=0.001

Binary Fraction

IMF

pa

ram

ete

r

0.1 0.2 0.3 0.4 0.5

2

2.5

3

N=24000, Z=0.0002

Binary Fraction

IMF

pa

ram

ete

r

Model 8

0.1 0.2 0.3 0.4 0.5

2

2.5

3

N=100000, Z=0.02

Binary Fraction

IMF

pa

ram

ete

r

Model 82

0.1 0.2 0.3 0.4 0.5

2

2.5

3

N=100000, Z=0.001

Binary Fraction

IMF

para

mete

r

Model 85

0.1 0.2 0.3 0.4 0.5

2

2.5

3

N=100000, Z=0.0002

Binary Fraction

IMF

para

mete

r

Figure 1: Size indicates the number of WD-WD binaries under following con-ditions of a certain model:

1. Exists during 8 Gyr to 12 Gyr,

2. has a orbital period less than 1 day,

3. locates between 30% to 70% Lagrangian radii.

The marked models are plotted for more detail information.

Acknowledgements: MJB and DJ acknowledge the supportof NASA grant NNX08AB74G and the Center for GravitationalWave Astronomy, supported by NSF Cooperative Agreements HRD-0734800 and HRD-1242090.

References

[1] M. Giersz. Monte Carlo simulations of star clusters - I. FirstResults. , 298:1239–1248, August 1998.

[2] M. Giersz. Monte Carlo simulations of star clusters - II.Tidally limited, multimass systems with stellar evolution. ,324:218–230, June 2001.

[3] M. Giersz. Monte Carlo simulations of star clusters - III. Amillion-body star cluster. , 371:484–494, September 2006.

[4] P. Kroupa, C. A. Tout, and G. Gilmore. The distribution oflow-mass stars in the Galactic disc. , 262:545–587, June 1993.