Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!!...

5
WHITEPAPER Address: P.O. Box 4633 Nydalen, N0405 Oslo, Norway Telephone: +47 23 00 98 00 Fax: +47 23 00 98 01 www.energymicro.com Minimizing Energy Consumption in Inductive Sensing Applications by Anders Guldahl, Application Engineer Introduction Sensing is all about the ability to detect or measure changes in physical properties. In the context of an electronic control system, the requirement is to translate a parameter such as temperature, pressure or movement into an electrical signal. While some sensors directly produce a voltage output, which provides the ideal input for a microcontrollerbased system, the majority of sensors depend on resistive, inductive or capacitive circuit elements whose behavior varies according to a known characteristic. These sensors typically require an external circuit to convert their output into a measurable signal for capture by a microcontroller (MCU). Understanding the different sensing technologies is important in determining the most appropriate type of sensor for a given application, especially when more than one type is available for measuring a particular parameter. For example, the previous two articles in this series looked at capacitive and resistive sensors and both technologies provide solutions for detecting position or movement. Inductive sensors, the focus of this article, can equally be used for position/movement detection so clearly there must be good reasons for choosing one type of sensor in preference to another. In most instances this will depend on the more specific nature of what is being sensed or measured and then finding a sensor that matches that performance requirement. Other considerations maybe those related to accuracy, reliability and environment conditions as well as ease of implementation or quite simply cost. This article considers a number of inductive sensing applications to give an appreciation for the technology and how these systems work. It concludes by highlighting the importance of energy efficient solutions using microcontrollers that have been optimized for ultra low power sensing applications, such as the Energy Micro EFM32 Gecko series MCUs that can monitor sensor inputs autonomously without needing to continually wake the processor from a lowenergy sleep mode.

Transcript of Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!!...

Page 1: Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801 ! Figure)2.)Inductive)sensor)used)for

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

Minimizing  Energy  Consumption  in  Inductive  Sensing  Applications  

 by    

Anders  Guldahl,  Application  Engineer    

Introduction  Sensing  is  all  about  the  ability  to  detect  or  measure  changes  in  physical  properties.  In  the  context  of  an  electronic  control  system,  the  requirement  is  to  translate  a  parameter  such  as  temperature,  pressure  or  movement  into  an  electrical  signal.  While  some  sensors  directly  produce  a  voltage  output,  which  provides  the  ideal  input  for  a  microcontroller-­‐based  system,  the  majority  of  sensors  depend  on  resistive,  inductive  or  capacitive  circuit  elements  whose  behavior  varies  according  to  a  known  characteristic.  These  sensors  typically  require  an  external  circuit  to  convert  their  output  into  a  measurable  signal  for  capture  by  a  microcontroller  (MCU).  

Understanding  the  different  sensing  technologies  is  important  in  determining  the  most  appropriate  type  of  sensor  for  a  given  application,  especially  when  more  than  one  type  is  available  for  measuring  a  particular  parameter.  For  example,  the  previous  two  articles  in  this  series  looked  at  capacitive  and  resistive  sensors  and  both  technologies  provide  solutions  for  detecting  position  or  movement.  Inductive  sensors,  the  focus  of  this  article,  can  equally  be  used  for  position/movement  detection  so  clearly  there  must  be  good  reasons  for  choosing  one  type  of  sensor  in  preference  to  another.  In  most  instances  this  will  depend  on  the  more  specific  nature  of  what  is  being  sensed  or  measured  and  then  finding  a  sensor  that  matches  that  performance  requirement.  Other  considerations  maybe  those  related  to  accuracy,  reliability  and  environment  conditions  as  well  as  ease  of  implementation  or  quite  simply  cost.  

This  article  considers  a  number  of  inductive  sensing  applications  to  give  an  appreciation  for  the  technology  and  how  these  systems  work.  It  concludes  by  highlighting  the  importance  of  energy  efficient  solutions  using  microcontrollers  that  have  been  optimized  for  ultra  low  power  sensing  applications,  such  as  the  Energy  Micro  EFM32  Gecko  series  MCUs  that  can  monitor  sensor  inputs  autonomously  without  needing  to  continually  wake  the  processor  from  a  low-­‐energy  sleep  mode.  

Page 2: Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801 ! Figure)2.)Inductive)sensor)used)for

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

Inductive  sensing  applications  In  order  to  appreciate  inductive  sensors,  it  is  perhaps  necessary  to  remind  ourselves  about  the  basic  principles  of  inductance  and  hence  what  makes  an  inductor  and  affects  how  it  operates.  Essentially  all  conductors  possess  inductance  -­‐  it  is  the  property  whereby  a  change  in  current  through  the  conductor  “induces”  a  voltage  in  the  conductor  (see  equation  below).  This  is  because  in  normal  steady-­‐state  conditions  a  current  flowing  through  a  conductor  results  in  a  magnetic  field  being  formed  around  the  conductor.  But  when  the  current  is  changing  (increasing  or  decreasing)  the  resulting  increase  or  decrease  in  magnetic  flux  opposes  the  change  in  current.  Hence  an  inductor  is  characterized  by  this  resistance  to  change  in  current  but  also  by  the  way  it  stores  energy  as  a  magnetic  field,  much  as  a  capacitor  stores  energy  as  a  electrical  charge.  

𝑽 = 𝑳  𝒅𝒊𝒅𝒕

 

Where  V  is  the  induced  voltage,  L  is  the  inductance  and  𝒅𝒊𝒅𝒕  is  the  rate  of  change  of  current  

As  we  shall  see,  most  inductive  sensing  applications  employ  the  inductive  element  as  part  of  a  resonant  circuit,  either  detecting  the  change  in  frequency  as  the  inductance  varies  or  the  detuning  effect  resulting  from  the  presence  of  metallic  objects:  

1. Proximity  sensing  Many  industrial  control  applications  rely  on  inductive  sensors  for  the  accurate  proximity  detection  of  metallic  targets.  Figure  1  shows  a  typical  sensor  in  a  cylindrical  housing  but  other  shapes  and  sizes  exist  to  serve  different  applications.  These  devices  use  an  inductive  coil  as  part  of  an  L-­‐C  oscillator  circuit  to  generate  a  high  frequency  magnetic  field  in  front  of  the  sensor  face.  When  the  target  enters  this  field  it  absorbs  some  of  its  energy,  and  attenuates  the  oscillator  output.  Proximity  sensors  of  this  type  are  mainly  designed  for  close-­‐range,  non-­‐contact,  go/no-­‐go  operation  and  hence  they  incorporate  a  detector  circuit,  triggered  at  a  predefined  threshold,  to  drive  an  output  switch.  However  some  designs  output  an  analog  signal  that  is  optimized  for  measurements  over  a  slightly  greater  range  (from  a  few  millimeters  to  a  few  centimeters),  particularly  when  used  with  ferromagnetic  targets  that  absorb  more  energy  than  other  target  metals  and  therefore  offer  increased  operating  distance.    

Compared  to  other  technologies,  the  key  advantage  of  inductive  proximity  sensors  is  their  accuracy,  both  in  terms  of  absolute  accuracy  and,  often  more  importantly,  their  repeat  accuracy.  Other  benefits  of  inductive  proximity  sensors  are  their  high  switching  rate  (see  the  next  section  for  more  detail)  and  their  suitability  for  use  in  harsh  environmental  conditions.  The  latter  is  catered  for  by  commercially  available  devices  operating  over  extended  operating  temperatures  (from  -­‐40oC  to  +250oC),  offered  in  pressure  resistant  housings  (up  to  500  bar)  and  sealed  options  meeting  IP68  (full  ingress  protection  against  dust  and  immersion  in  water)  or  even  IP69k  (high  pressure  water  jet  resistant).  Sensors  approved  for  use  in  explosive  gas  or  dust  zones  are  also  available  as  are  models  with  stainless  steel  sensing  faces,  suitable  for  control  applications  in  the  food  processing  and  pharmaceutical  industries.  

Page 3: Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801 ! Figure)2.)Inductive)sensor)used)for

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

On  the  downside,  apart  from  their  limited  operating  range,  is  the  fact  that  inductive  sensors  only  work  with  metallic  i.e.  conducting  targets.  Also,  to  achieve  their  specified  accuracy,  these  targets  often  need  to  be  of  defined  size  and  material  although  some  manufacturers  do  specify  sensitivity  de-­‐rating  factors  for  non-­‐ferrous  metals  e.g.  0.9  for  stainless  steel  and  0.4  for  aluminum  or  copper.    

   

Figure  1.  Generic  analog  output  inductive  proximity  sensor  

2. Rotational  speed  sensors  The  type  of  inductive  sensor  described  above  can  of  course  be  used  to  detect  proximity  based  on  axial  movement  i.e.  towards  or  away  from  the  face  of  the  sensor  or,  in  the  case  of  specifically  developed  ring  format  sensors,  can  be  used  for  counting  small  metallic  parts  passing  through  the  inductive  loop.  The  basic  format  can  also  detect  a  target  passing  laterally  in  front  of  the  sensor  and  this  principle  is  readily  extended  to  tangential  movement  i.e.  detecting  the  rotation  of  a  toothed  wheel  as  shown  in  figure  2.  

A  key  difference  for  rotation  speed  sensing  is  that,  for  most  application  requirements,  it  is  not  necessary  to  use  the  sensor’s  coil  as  part  of  an  L-­‐C  oscillator  to  generate  an  alternating  magnetic  field.  Instead,  as  shown,  the  sensor  incorporates  a  permanent  magnet  whose  field  is  modulated  by  the  teeth  passing  of  the  sensor  face,  inducing  a  sinusoidal  output  voltage  in  the  coil.  

The  automotive  industry  is  a  major  market  for  rotational  sensors  where  they  are  used  to  provide  input  to  engine  control  units  (ECUs)  by  measuring  the  speed  and  position  of  the  crankshaft  (position,  for  dynamic  engine  timing  purposes,  can  be  detected  by  having  a  gap  in  toothed  wheel).  They  are  also  used  in  automatic  braking  systems  (ABS)  where  individual  sensors  are  located  on  each  wheel  hub  along  with  a  toothed  wheel  attached  to  the  CV  joint.  

Page 4: Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801 ! Figure)2.)Inductive)sensor)used)for

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

 

Figure  2.  Inductive  sensor  used  for  rotational  speed  measurement  

3. Traffic  light  sensors  Briefly  going  back  to  basics  again,  the  capacity  of  an  inductor  is  determined  by  various  factors;  the  number  of  coils,  the  cross-­‐sectional  area  of  the  coil,  the  length  of  the  coil  (short  or  overlapping  coils  produce  more  inductance)  and  the  material  at  the  core  of  the  coil.  All  these  parameters  allow  inductive  proximity  sensing  to  be  scaled  up  to  provide  a  means  for  controlling  traffic  lights,  by  detecting  the  presence  of  a  vehicle  waiting  at  a  stop  light  rather  than  simply  relying  on  timer  control.  

These  systems  work  by  embedding  a  car-­‐sized  coil  of  wire  into  the  road  surface  and  connecting  it  to  a  system  that  can  measure  the  difference  in  inductance  depending  on  whether  a  vehicle  is  positioned  over  the  loop  or  not.  Clearly  in  this  application  the  large  cross-­‐sectional  area  of  the  coil,  the  number  of  loops  of  wire  (typically  5  or  6)  and  the  short,  overlapped  form  of  the  coil  all  contribute  to  a  reasonably  high  initial  inductance.  Any  vehicle,  which  is  effectively  a  large  metallic  (often  ferrous  steel)  object,  stopped  at  the  lights  becomes  part  of  the  coil’s  core,  significantly  increasing  its  inductance  and  enabling  the  system  to  recognize  its  presence.  Such  large-­‐scale  proximity  detection  solutions  can  also  be  applied  to  similar  applications  such  as  the  movement  of  larger  metallic  objects  along  a  production  line.  

4. Metal  detectors  Metal  detectors  are  used  for  a  variety  of  purposes:  from  security  applications  such  as  the  scanners  used  in  airports,  government  buildings,  prisons,  schools,  etc.  or  the  detectors  used  to  locate  land  mines,  through  to  more  industrial,  commercial  or  even  consumer  applications;  such  as  mineral  or  archaeological  prospecting,  the  detection  of  electrical  cables  or  steel  reinforcement  bars  in  buildings  and  the  hobbyist  uses  for  beach-­‐combing  or  treasure  hunting.  An  interesting  commercial  application  is  the  detection  of  metal  contaminents  in  food  or  garment  production.  

Although  there  have  been  many  refinements  to  the  technologies  applied  to  metal  detecting,  all  share  similar  operating  principles  to  the  inductive  sensors  we’ve  already  considered.  The  simplest  form  uses  a  transmitter  coil  as  part  of  a  very  low  frequency  (VLF)  oscillator  to  generate  an  alternating  magnetic  field.  This  will  induce  eddy  currents  in  any  nearby  electrically  conductive  metal  which,  in  turn,  produces  its  own  magnetic  field  that  can  be  picked  up  be  a  second  (receiver)  coil  in  the  detector.  The  sensitivity  of  

Page 5: Minimizing9Energy9Consumption9in9InductiveSensing Applications€¦ · WHITEPAPER)!! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801 ! Figure)2.)Inductive)sensor)used)for

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

such  metal  detectors  depends  on  shielding  the  receiver  coil  from  the  magnetic  field  generated  by  the  transmitter  coil.  Analysis  of  the  received  signal  can  not  only  indicate  the  distance  from  the  detector  to  the  metal  object,  but  can  also  distinguish  between  different  metals  by  measuring  the  phase  shift  that  results  from  the  different  resistive  and  inductive  properties  of  these  metals.  Pulse  induction  (PI)  is  another  technique  used  for  metal  detection  which,  as  its  name  suggests,  transmits  the  alternating  magnetic  field  in  brief  pulses.  PI  detectors  can  provide  increased  detection  range  but  are  not  so  good  at  discriminating  different  metals.  

Energy  efficient  inductive  sensing  Capacitive,  resistive  and  inductive  sensing  techniques  address  a  variety  of  applications  and  the  circuits  required  to  interface  a  given  sensor  to  a  microcontroller  (MCU)  will  vary  depending  on  what  is  being  detected  or  measured.  What  doesn’t  change  is  the  need  to  minimize  the  involvement  of  the  processor  core  in  monitoring  these  sensors  to  keep  energy  consumption  to  the  absolute  minimum,  without  compromising  system  performance.  Energy  Micro’s  EFM32  Gecko  series  MCUs  achieve  this  with  a  Low  Energy  Sensor  Interface  (LESENSE)  and  Peripheral  Reflex  System  (PRS)  that  allows  its  low-­‐energy  peripherals  to  be  configured  using  sequencer  and  decoder  circuits  to  detect  and  evaluate  a  combination  of  sensor  states  and  event  patterns  before  waking  the  MCU,  as  illustrated  in  figure  3.    

   

Figure  3.  Energy  Micro’s  LESENSE  interface  enables  conditional  MCU  wake-­‐up