Materials for Aircraft Structures

40

description

Materials for Aircraft Structures

Transcript of Materials for Aircraft Structures

Comparison of Basic Properties at Room Temperature

FIGURE 3/1

Note : Fibre Only

0

400

800

1200

1600

2000

2400

2800

3200

IM7 XASFibre

Steel Al Alloy Titanium

Sp

ecifi

c T

ensi

le S

tren

gth

(N/m

m2 )

0

20000

40000

60000

80000

100000

120000

140000

160000

IM7 XAS Fibre Steel Al Alloy TitaniumS

pec

ific

Mo

du

lus

(N/m

m2 )

Effect of Reduction Factors on CFC Specific Strength & Modulus

FIGURE 3/2

Temperature Reduction Factors

FIGURE 3/3

Comparison of Materials

FIGURE 3/4

Note!NO REDUCTION FOR EFFECTS OF FATIGUE HAS BEEN MADE TOTHE METALLIC TENSION SPECIFIC STRENGTHS

0

10000

20000

30000

40000

50000

60000

CFC Steel Al Alloy Titanium

Sp

ecif

ic m

od

ulu

s (N

/mm

2 )

0

50

100

150

200

250

300

CFC Steel Al Alloy Titanium

Sp

ecif

ic s

tren

gth

(N

/mm

2 ) Tension

Compression

Idealisation of Compression Panel

FIGURE 3/5

Comparison of Buckling Index

FIGURE 3/6

FIGURE 3/7

Stress - Strain Curve

FIGURE 3/8

Stress - Strain Curve - Clad Material

FIGURE 3/9

Stress - Strain Curve - ET / E and ES /E

Aluminium Alloy - f - ET / E Curves

FIGURE 3/9A

FIGURE 3/10

70% & 85% Young’s Modulus Secant Lines

Exponent n for Ramberg - Osgood

FIGURE 3/11

Non-dimensional stress - strain curves

FIGURE 3/12

Non-dimensional tangent modulus

FIGURE 3/13

Shear Modulus

FIGURE 3/13A

Comparison of Stress - Strain curves

FIGURE 3/14

Grain Flow Direction

FIGURE 3/15

Typical Fatigue Data

FIGURE 3/16

Three basic types of crack and stress intensities

FIGURE 3/17

Crack Intensity at Crack Tip

FIGURE 3/18

Fracture Toughness Orientation Specimens

FIGURE 3/19

FIGURE 3/20

Stress corrosion data on short transverse specimens exposed to industrial environments

FIGURE 3/21

Effect of Grain Direction on Stress - Corrosion Cracking

Distribution of Structural Material

Table3/1

MATERIAL Hawk T.Mk.1 T-45 Goshawk JAGUAR SEA HARRIER (I) HARRIER GR7 (II) TORNADO EAP EF2000

ALUMINIUM ALLOY 86 69 80 66 41 71 58.8 40

STEEL 9 22 12 10 11 6.4 3.9 2

TITANIUM 2 2 2 8 7 17.5 10.5 12

CFC 0 1 0 0 25 0 19.7 37

MISCELLANEOUS 3 6 6 17 16 5.1 7.1 9

DISTRIBUTION OF STRUCTURAL MATERIAL BY AIRCRAFT (%)

Comparison of Material Basic Properties at Room Temperature

Table3/2

Specific Tension Stress = Ultimate Tension StressSpecific Gravity

Specific Modulus = Young’s ModulusSpecific Gravity

ULTIMATE TENSION

STRESS N/mm2

YOUNG’S

MODULUS N/mm2SPECIFIC GRAVITY

SPECIFIC TENSION

STRESS N/mm2

SPECIFIC

MODULUS N/mm2

IM7 5379 276,000 1.77 3039 155,932

T300 3550 230,000 1.75 2029 131,429

XAS 3550 235,000 1.81 1960 129,800

STEEL S99 1230 200,000 7.833 157 25,530

ALUMINIUM ALLOY 7075 500 72,000 2.796 179 25,750

TITANIUM ALLOY TA 10 920 113,000 4.512 203 25,000

MATERIAL

CFC (Fibre Only)

Ratio of f 0.2 / f UTS for Metallic Materials

Table3/3

MATERIAL ALLOWABLESf 0.2 f UTS

L72 245 385 0.64 Al Cu sheet

L73 340 415 0.82 Al Cu sheet

2014 - T6 350 440 0.80 Al Cu sheet

7475 - T762 405 460 0.88 Al Zn sheet

2014 - T651 370 430 0.86 Al Cu Plate >80mm

7010 - T651 430 490 0.88 Al Cu Plate >120mm

A357 - T61 270 330 0.82 Designated area, Al casting

A357 - T61 240 305 0.79 Non-designated area, Al casting

8090 - T6/T62 300 410 0.73 Al Li sheet

6A1- 4V 870 920 0.95 Titanium alloy

S99 1050 1230 0.85 Steel

f 0.2 / f UTS REMARKSMATERIAL

Comparison of Mechanical Properties of Metal Matrix Compositeswith Current Alloys at Room Temperature

Table3/4

ULTIMATE TENSION STRESS

YOUNG’S MODULUS

SPECIFIC GRAVITY

SPECIFIC TENSION STRESS

SPECIFIC MODULUS

Al. ALLOY PLATE 2014 460 69,000 2.80 164 24,640

Si C PARTICULATE REINFORCED 2014 Al.ALLOY 30% VOL.

640 114,000 2.90 221 39,310

TITANIUM ALLOY 6A1-4V 920 113,000 4.51 203 25,000

Si C CONTINUOUS FIBRE REINFORCED 6A1-4V Ti 40% VOL.

904 195,000 4.05 223 48,150

N / mm2 N / mm2

MATERIAL