Magnetic Materials 2

download Magnetic Materials 2

of 35

Transcript of Magnetic Materials 2

  • 8/8/2019 Magnetic Materials 2

    1/35

    Magnetic

    Materials16th and the LAST !!

  • 8/8/2019 Magnetic Materials 2

    2/35

    Basic Magnetic Quantities

    Magnetic Induction or

    Magnetic Flux Density B

    BvF v! q

    Units: N C-1 m-1 s = Tesla (T) = Wb m-2

  • 8/8/2019 Magnetic Materials 2

    3/35

    2006: UNESCO Nikola Tesla Year

    150th birth Anniversary of Nikola Tesla

    AC vs. DC

  • 8/8/2019 Magnetic Materials 2

    4/35

    Amperes law in free space

    id 0. Q! lBi

    B

    Q0= permeability of freespace

    = 4 T 10-7 T m A-1

    = 4 T 10-7 H m-1

  • 8/8/2019 Magnetic Materials 2

    5/35

    Magnetic dipole moment m

    i

    Area=A

    m=iA

    Units: A m2

  • 8/8/2019 Magnetic Materials 2

    6/35

    V

    m

    M !

    Magnetization M of a solid

    A solid may have internal magnetic dipolemoments due to electrons

    Magnetic dipole moment per unit volumeof a solid is called magnetization

    Units: A m2

    /m3

    = A m-1

  • 8/8/2019 Magnetic Materials 2

    7/35

    Amperes law in a solid

    id 0. Q{ lB

    i

    B0

    ! lMlB did .. 00 QQ

    id !

    l

    MB

    .0

    0

    Q

    Q

    MHB 00 QQ |

    id !

    lH.

    H: magnetic field intensity Units: A m-1

  • 8/8/2019 Magnetic Materials 2

    8/35

    In free space

    HB 0Q!

    Inside a solid

    MHB 00 QQ !

    HB Q!

    16.1

    16.3

    16.2

    Q = permeability of solid, H m-1

    relative permeability of solid,

    dimensionless0Q

    QQ !

    r

  • 8/8/2019 Magnetic Materials 2

    9/35

    HM G!

    G: magnetic susceptibility of the solid

    GType of magnetic solid

    dimensionless

    diamagnetic -10-5

    superconductor -1paramagnetic +10-3

    ferromagnetic

    (universal)

    +103

    -105

    16.4

  • 8/8/2019 Magnetic Materials 2

    10/35

    Origin of permanent magnetic moments in

    solids:

    1. orbital magnetic moment of electrons

    2. spin magnetic moment of electrons3. spin magnetic moment of nucleus

    We will consider only spin magneticmoment of electrons

  • 8/8/2019 Magnetic Materials 2

    11/35

    Bohrmagneton QB

    The magnetic moment due to spinof a single electron is called theBohr magneton QB

    QB= 9.273 x 10-24A m2

    Net moment of two electrons ofopposite spins = 0

  • 8/8/2019 Magnetic Materials 2

    12/35

    Unpaired electrons give rise to

    paramagnetism in alkali metals

    Na 3s1

    Net magnetic moment

    1 QB

    Fe 3d64s2 4 QB

    atom crystal

    2.2 QB

    Co 3d74s2 3 QB 1.7 QB

    Ni 3d84s2 2 QB 0.6 QB

  • 8/8/2019 Magnetic Materials 2

    13/35

    Example 16.1

    The saturation magnetization of bcc Fe is1750 kA m-1. Determine the magneticmoment per Fe atom in the crystal.

    a=2.87 V = a3 = 2.873x10-30

    Magnetic moment per atom

    = 1750x1000x2.873x10-30

    = 2.068x10-23A m2

    = 2.2 QB

  • 8/8/2019 Magnetic Materials 2

    14/35

    Ferromagnetic, ferrimagnetic and

    antiferromagneticmaterials

    Due to quantum mechanical interactionthe magnetic moment of neighbouringatoms are aligned parallel orantiparallel to each other.

    ferromagnetic Anti-ferromagnetic

    Ferri-magnetic

  • 8/8/2019 Magnetic Materials 2

    15/35

    ferromagnetic Fe, Co, Ni, Gd

    Element

    orbitald

    atom

    d

    d

    3

    Ti Cr Mn Fe Co Ni

    1.12 1.18 1.47 1.63 1.82 1.98

    Eexchange interaction= Eunmagnetized-Emagnetized

    1.5-2.0

    Heusler Alloys: Cu2MnSn, Cu2MnAl

    Ferromagnetic alloys made of non-ferromagneticelements

  • 8/8/2019 Magnetic Materials 2

    16/35

    Thermal energy can randomize the spin

    Ferromagnetic ParamagneticTcurieheat

    Fe 1043 K Co 1400 K Ni 631 K

    Gd 298 K Cu2MnAl 710 K

  • 8/8/2019 Magnetic Materials 2

    17/35

    Ferrimagnetic materials

    24

    3

    2

    2OFeMFerrites

    M2+: Fe2+, Zn2+, Ni2+, Mg2+, Co2+, Ba2+, Mn2+,

    Crystal structure: Inverse spinel

    See last paragraph (small print) ofSection 5.4

  • 8/8/2019 Magnetic Materials 2

    18/35

    Crystal structure: Inverse spinel

    2

    4

    3

    2

    2OFeFerrites

    O2+ FCC packing

    4 O2+

    8 THV

    4 OHV

    Antiferromagnetic

    coupling

    Fe3+

    Fe3+ M2+

    Net moment due to M2+

    ions only.

  • 8/8/2019 Magnetic Materials 2

    19/35

    If Fe is ferromagnetic with atomicmagnetic moments perfectly aligned

    due to positive exchange interactionthen why do we have Fe which is not amagnet?

    Answer byPierre Ernest Weiss (1907)

    Existence of domains knownas Weiss domains

  • 8/8/2019 Magnetic Materials 2

    20/35

    Domain walls are regions of high energy(0.002 Jm-2) due to moment misalignment.Then why do the exist?

    Ans: Fig. 16.3

  • 8/8/2019 Magnetic Materials 2

    21/35

    Randomly aligned domains

    1. decrease the manetostaticenergy in the field outside themagnet

    2. increase the domain wall energyinside the magnet

    A magnet will attain a domain structurewhich minimizes the overall energy

  • 8/8/2019 Magnetic Materials 2

    22/35

    MHB 00 QQ !

    16.3

    B never saturates

    M saturates

    The value of B at

    the saturation of Mis called thesaturationinduction (~ 1 T)

  • 8/8/2019 Magnetic Materials 2

    23/35

    Two ways foraligning ofmagneticdomains:

    1.Growth offavorably orienteddomains (initially)

    2.Rotation ofdomains (finally)

    Initial

    permeability

    Saturation induction

  • 8/8/2019 Magnetic Materials 2

    24/35

    The hysteresis

    Loop

    Fig. 16.4

    Br residual

    induction

    Hc coercivefield

    Area =hysteresis loss

  • 8/8/2019 Magnetic Materials 2

    25/35

    Soft magnetic materials

    High initial permeability

    Low hysteresis loss

    Low eddy current losses

    For application requiring highfrequency reversal of directionof magnetization

    Eg. Tape head

    Problem 6.11

  • 8/8/2019 Magnetic Materials 2

    26/35

    Easily moving domain walls

    Low impurity,low non magnetic inclusions,

    low dislocation densitylow second phase precipitate

    Soft magnetic materials

    For low hysteresis loss ( w frequency)

    For low eddy current loss ( w frequency2)

    Material: high resistivity

    Design: Lamination

    Choose: Pure, single phase, well-annealed materialof high resistivity

  • 8/8/2019 Magnetic Materials 2

    27/35

  • 8/8/2019 Magnetic Materials 2

    28/35

    Table 16.1

  • 8/8/2019 Magnetic Materials 2

    29/35

    Magnetic anisotropy

    Fig. 16.5

    easy direction

    hard direction

    Iron single crystal

    Polycrystal: attempt to align easy direction in all grains

    Preferred orientation or texture

    By rolling and recrystallization

    By solidification

    By sintering ferrite powder in magnetic field

  • 8/8/2019 Magnetic Materials 2

    30/35

    Fe-4% Si alloy for low frequency transformers

    Wt% Si Wt% Si

    resistivity

    BsTDBTT

    Si enhancesresistivity: low eddycurrent losses

    More than 4 wt% Siwill make it too brittle

  • 8/8/2019 Magnetic Materials 2

    31/35

    T

    Stableliquid

    log t

    Tm

    glass

    Metallic Glass Fe + 15-25%(Si, B, C)

    High solute

    High resistivity

    Low eddy currentloss

    Amorphous Isotropic No hard direction

    Amorphous No grain boundary

    Easy domain wall movement

    Low eddy current loss

  • 8/8/2019 Magnetic Materials 2

    32/35

    50 Hz Fe-4wt% Si

    K Hz Permalloy, SupermalloyMHz Ferrites

  • 8/8/2019 Magnetic Materials 2

    33/35

    Hard magnetic materials

    For permanent magnetsMotors, headphones

    High Br, high Hc

    Br Hc = energy product

    Martensitic high carbon steels (BrHc=3.58 kJm3)Alnico alloys: directionally solidified and annealed in amagnetic field (BrHc=5.85 kJm3)

    Mechanically hard c Magnetically hard

    Large M phase as elongated particle in low M matrix

  • 8/8/2019 Magnetic Materials 2

    34/35

    Elongated Single Domain (ESD) magnets

    Long particles, thickness < domain wall thickness

    Each particle a single domain

    No domain growth possible only rotation

    Ferrite: BaO 6 Fe2O3 (Br Hc=48-144 kJm3)

    Co-Rare Earths (Sm, Pr) (Br Hc=200 kJm3)

    Nd2 Fe14 B (Br Hc=400 kJm3)

  • 8/8/2019 Magnetic Materials 2

    35/35

    For true understanding comprehension

    of detail is imperative. Since such

    detail is well nigh infinite

    our knowledge is alwayssuperficial and

    imperfect.

    Duc Franccois de la Rochefoucald(1613-1680)